Distributed Primal Decomposition for Large-Scale MILPs
This article deals with a distributed Mixed-Integer Linear Programming (MILP) setup arising in several control applications. Agents of a network aim to minimize the sum of local linear cost functions subject to both individual constraints and a linear coupling constraint involving all the decision v...
Uloženo v:
| Vydáno v: | IEEE transactions on automatic control Ročník 67; číslo 1; s. 413 - 420 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9286, 1558-2523 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This article deals with a distributed Mixed-Integer Linear Programming (MILP) setup arising in several control applications. Agents of a network aim to minimize the sum of local linear cost functions subject to both individual constraints and a linear coupling constraint involving all the decision variables. A key, challenging feature of the considered setup is that some components of the decision variables must assume integer values. The addressed MILPs are NP-hard, nonconvex, and large-scale. Moreover, several additional challenges arise in a distributed framework due to the coupling constraint, so that feasible solutions with guaranteed suboptimality bounds are of interest. We propose a fully distributed algorithm based on a primal decomposition approach and an appropriate tightening of the coupling constraint. The algorithm is guaranteed to provide feasible solutions in finite time. Moreover, asymptotic and finite-time suboptimality bounds are established for the computed solution. Monte Carlo simulations highlight the extremely low suboptimality bounds achieved by the algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9286 1558-2523 |
| DOI: | 10.1109/TAC.2021.3057061 |