An Effective Subsuperpixel-Based Approach for Background Subtraction

How to achieve competitive accuracy and less computation time simultaneously for background estimation is still an intractable task. In this paper, an effective background subtraction approach for video sequences is proposed based on a subsuperpixel model. In our algorithm, the superpixels of the fi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial electronics (1982) Ročník 67; číslo 1; s. 601 - 609
Hlavní autoři: Chen, Yu-Qiu, Sun, Zhan-Li, Lam, Kin-Man
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0046, 1557-9948
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract How to achieve competitive accuracy and less computation time simultaneously for background estimation is still an intractable task. In this paper, an effective background subtraction approach for video sequences is proposed based on a subsuperpixel model. In our algorithm, the superpixels of the first frame are constructed using a simple linear iterative clustering method. After transforming the frame from a color format to gray level, the initial superpixels are divided into K smaller units, i.e., subsuperpixels, via the k-means clustering algorithm. The background model is then initialized by representing each subsuperpixel as a multidimensional feature vector. For the subsequent frames, moving objects are detected by the subsuperpixel representation and a weighting measure. In order to deal with ghost artifacts, a background model updating strategy is devised, based on the number of pixels represented by each cluster center. As each superpixel is refined via the subsuperpixel representation, the proposed method is more efficient and achieves a competitive accuracy for background subtraction. Experimental results demonstrate the effectiveness of the proposed method.
AbstractList How to achieve competitive accuracy and less computation time simultaneously for background estimation is still an intractable task. In this paper, an effective background subtraction approach for video sequences is proposed based on a subsuperpixel model. In our algorithm, the superpixels of the first frame are constructed using a simple linear iterative clustering method. After transforming the frame from a color format to gray level, the initial superpixels are divided into K smaller units, i.e., subsuperpixels, via the k-means clustering algorithm. The background model is then initialized by representing each subsuperpixel as a multidimensional feature vector. For the subsequent frames, moving objects are detected by the subsuperpixel representation and a weighting measure. In order to deal with ghost artifacts, a background model updating strategy is devised, based on the number of pixels represented by each cluster center. As each superpixel is refined via the subsuperpixel representation, the proposed method is more efficient and achieves a competitive accuracy for background subtraction. Experimental results demonstrate the effectiveness of the proposed method.
Author Chen, Yu-Qiu
Sun, Zhan-Li
Lam, Kin-Man
Author_xml – sequence: 1
  givenname: Yu-Qiu
  surname: Chen
  fullname: Chen, Yu-Qiu
  email: 615960770@qq.com
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China
– sequence: 2
  givenname: Zhan-Li
  orcidid: 0000-0002-2405-2927
  surname: Sun
  fullname: Sun, Zhan-Li
  email: zhlsun2006@126.com
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China
– sequence: 3
  givenname: Kin-Man
  surname: Lam
  fullname: Lam, Kin-Man
  email: enkmlam@polyu.edu.hk
  organization: Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong
BookMark eNp9kDtPwzAURi1UJNrCjsQSiTnF79hjWwpUqsRAmS3HuYaUkgQ7QfDvSdSKgYHJyznXn84Ejaq6AoQuCZ4RgvXNdr2aUUz0jCrNFOUnaEyEyFKtuRqhMaaZSjHm8gxNYtxhTLggYoxu51Wy8h5cW35C8tTlsWsgNOUX7NOFjVAk86YJtXWvia9DsrDu7SXUXVUMbBts79XVOTr1dh_h4vhO0fPdart8SDeP9-vlfJM6xlibags5E1wpCxqAe0KhINIzrznFhRc5c4QXmRZW5SC80y6jOnfSWVFw7YBN0fXhbr_oo4PYml3dhar_0lCqBGMyw6Kn5IFyoY4xgDeubO2ws99b7g3BZihm-mJmKGaOxXoR_xGbUL7b8P2fcnVQSgD4xZWkXGLJfgAsnHju
CODEN ITIED6
CitedBy_id crossref_primary_10_1007_s11042_022_12446_6
crossref_primary_10_1109_TIP_2020_3037472
crossref_primary_10_1016_j_eswa_2020_113518
crossref_primary_10_1049_ipr2_12026
crossref_primary_10_1049_iet_ipr_2018_6095
crossref_primary_10_1007_s11771_021_4642_9
crossref_primary_10_1007_s11760_021_01920_7
crossref_primary_10_1007_s00371_021_02286_0
crossref_primary_10_1109_ACCESS_2020_3030108
crossref_primary_10_3390_photonics12060560
crossref_primary_10_1155_2021_4725875
crossref_primary_10_1109_TITS_2021_3077883
crossref_primary_10_3390_life13020368
crossref_primary_10_1109_TII_2020_3044068
crossref_primary_10_1016_j_neucom_2021_09_080
crossref_primary_10_1109_JPHOTOV_2020_3041189
crossref_primary_10_1016_j_neucom_2020_07_141
crossref_primary_10_1007_s00500_023_07955_x
crossref_primary_10_1016_j_asoc_2022_109310
crossref_primary_10_1109_TIM_2023_3276513
crossref_primary_10_1109_TITS_2020_3030801
crossref_primary_10_3390_app12052674
crossref_primary_10_1109_TIE_2022_3150097
Cites_doi 10.2174/2213275910801030219
10.1007/s11554-018-0750-7
10.1109/TPAMI.2012.120
10.1007/978-981-10-3002-4_33
10.1016/j.cosrev.2016.11.001
10.1007/978-3-319-23222-5_57
10.1109/ICCVW.2015.123
10.1016/j.patcog.2014.10.020
10.1109/TPAMI.2017.2717828
10.1109/CVPR.1999.784637
10.1016/j.rti.2004.12.004
10.3390/jimaging4100122
10.1109/ECTICon.2017.8096258
10.1109/TIE.2013.2288199
10.1016/j.cosrev.2018.01.004
10.1016/j.cosrev.2014.04.001
10.1109/TIE.2010.2055771
10.1109/TIE.2011.2106093
10.1109/LGRS.2018.2797538
10.3390/jimaging4060078
10.1109/CVPR.2015.7299114
10.1109/TPAMI.2005.213
10.1109/ACCESS.2018.2846678
10.1109/TIP.2017.2746268
10.1109/JPROC.2002.801448
10.1109/ICCVW.2015.125
10.1109/MSP.2018.2826566
10.1109/ICIP.2014.7025661
10.1109/CVPRW.2012.6238919
10.1109/IWSSIP.2016.7502717
10.1109/TIE.2009.2038395
10.1109/TIP.2010.2101613
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2019.2893824
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 609
ExternalDocumentID 10_1109_TIE_2019_2893824
8624606
Genre orig-research
GrantInformation_xml – fundername: Outstanding Young Talents of Anhui Province University
  grantid: gxyqZD2016013
– fundername: Science and Technology Program to strengthen police force
  grantid: 1604d0802019
– fundername: Academic and Technical Leaders and Candidates of Anhui Province
  grantid: 2016H090
– fundername: Anhui Province
  grantid: CGHBMWSJC07
– fundername: National Natural Science Foundation of China
  grantid: 61370109
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c333t-9aeb35488ae9ee4f12ed16f3f9420df5b3c14d795a8be5fc9c729bc6ca5d49ce3
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490863400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0046
IngestDate Mon Jun 30 10:19:22 EDT 2025
Tue Nov 18 22:28:56 EST 2025
Sat Nov 29 01:31:42 EST 2025
Wed Aug 27 06:28:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-9aeb35488ae9ee4f12ed16f3f9420df5b3c14d795a8be5fc9c729bc6ca5d49ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2405-2927
OpenAccessLink http://ira.lib.polyu.edu.hk/bitstream/10397/107146/1/Lam_Effective_Subsuperpixel-Based_Approach.pdf
PQID 2285336705
PQPubID 85464
PageCount 9
ParticipantIDs proquest_journals_2285336705
crossref_primary_10_1109_TIE_2019_2893824
ieee_primary_8624606
crossref_citationtrail_10_1109_TIE_2019_2893824
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
benezeth (ref5) 2010; 19
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
javed (ref25) 0
References_xml – ident: ref8
  doi: 10.2174/2213275910801030219
– ident: ref30
  doi: 10.1007/s11554-018-0750-7
– ident: ref22
  doi: 10.1109/TPAMI.2012.120
– ident: ref23
  doi: 10.1007/978-981-10-3002-4_33
– ident: ref14
  doi: 10.1016/j.cosrev.2016.11.001
– ident: ref33
  doi: 10.1007/978-3-319-23222-5_57
– ident: ref26
  doi: 10.1109/ICCVW.2015.123
– ident: ref13
  doi: 10.1016/j.patcog.2014.10.020
– ident: ref28
  doi: 10.1109/TPAMI.2017.2717828
– ident: ref7
  doi: 10.1109/CVPR.1999.784637
– year: 0
  ident: ref25
  article-title: Superpixels-based manifold structured sparse RPCA for moving object detection
  publication-title: Proc Int Workshop Activity Monitor Multiple Distrib Sens
– ident: ref11
  doi: 10.1016/j.rti.2004.12.004
– ident: ref31
  doi: 10.3390/jimaging4100122
– ident: ref27
  doi: 10.1109/ECTICon.2017.8096258
– volume: 19
  year: 2010
  ident: ref5
  article-title: Comparative study of background subtraction algorithms
  publication-title: J Electron Imag
– ident: ref3
  doi: 10.1109/TIE.2013.2288199
– ident: ref21
  doi: 10.1016/j.cosrev.2018.01.004
– ident: ref6
  doi: 10.1016/j.cosrev.2014.04.001
– ident: ref4
  doi: 10.1109/TIE.2010.2055771
– ident: ref1
  doi: 10.1109/TIE.2011.2106093
– ident: ref20
  doi: 10.1109/LGRS.2018.2797538
– ident: ref19
  doi: 10.3390/jimaging4060078
– ident: ref29
  doi: 10.1109/CVPR.2015.7299114
– ident: ref34
  doi: 10.1109/TPAMI.2005.213
– ident: ref24
  doi: 10.1109/ACCESS.2018.2846678
– ident: ref16
  doi: 10.1109/TIP.2017.2746268
– ident: ref9
  doi: 10.1109/JPROC.2002.801448
– ident: ref15
  doi: 10.1109/ICCVW.2015.125
– ident: ref17
  doi: 10.1109/MSP.2018.2826566
– ident: ref12
  doi: 10.1109/ICIP.2014.7025661
– ident: ref32
  doi: 10.1109/CVPRW.2012.6238919
– ident: ref18
  doi: 10.1109/IWSSIP.2016.7502717
– ident: ref2
  doi: 10.1109/TIE.2009.2038395
– ident: ref10
  doi: 10.1109/TIP.2010.2101613
SSID ssj0014515
Score 2.4715757
Snippet How to achieve competitive accuracy and less computation time simultaneously for background estimation is still an intractable task. In this paper, an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> k</tex-math> </inline-formula> </named-content>-means clustering
Accuracy
Algorithms
Background subtraction
Clustering
Clustering algorithms
Computational modeling
Feature extraction
Image representation
Image sequences
Iteraitve methods
Iterative methods
Model updating
Moving object recognition
Object detection
Representations
Subtraction
superpixel
Title An Effective Subsuperpixel-Based Approach for Background Subtraction
URI https://ieeexplore.ieee.org/document/8624606
https://www.proquest.com/docview/2285336705
Volume 67
WOSCitedRecordID wos000490863400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA5zeNCDv6Y4ndKDF8FubZM0zXHqhl6Ghwm7lTR5geHoRteJf75J2hVFEbz18FLKl_T9SPK-D6EbLABjrK1qgCY-kZH0M0GY7VhmjIVUcC6c2ASbTJLZjL-00F3TCwMA7vIZ9O2jO8tXS7mxW2UD28wQW37tHfOeqlerOTEgtFIriCxjrCn6tkeSAR9Mn0f2Dhfvm-ICJxH5FoKcpsoPR-yiy_jwf991hA7qLNIbVtN-jFqQn6D9L9yCHfQ4zL2Kmtj4M8_6h80KitX8Axb-vQldyhvWdOKeyVu9eyHfbIdHrqxtWVT9DqfodTyaPjz5tWSCLw3kpc-FKY5NEZII4ABEhxGoMNZYcxIFStMMy5AoxqlIMqBacmmS60zGUlBFuAR8htr5Modz5KkgUxAzLjRLSKKpIGEoMaFaqyQTWnbRYItiKms-cStrsUhdXRHw1OCeWtzTGvcuum1GrCoujT9sOxbnxq6GuIt624lK659tnUaRyTksER29-H3UJdqLbJnsdk56qF0WG7hCu_K9nK-La7eOPgFs68YZ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBVxXrMwcvgmmbfTTZY6stLWrxUKG3sNmdhWJJSx_iz3c3SYuiCN5ymIXwbTKPnf2-AbihEimlxk0NMMxniig_kSx0jOUwDAMuhZDZsImw34-GQ_FSgrs1FwYRs8tnWHWPWS9fT9TSHZXVHJmh4fS1NzljJMjZWuueAeP5vALiNGNt2bdqStZFbdBru1tcomrLCxoR9i0IZVNVfrjiLL509v_3ZgewV-SRXjPf-EMoYXoEu1_UBcvw0Ey9XJzYejTPeYjlFGfT0QeO_ZYNXtprFoLins1cvZZUb47jkWpnu5jljIdjeO20B_ddvxia4CsL-sIX0pbHtgyJJApEZgKCOmgYagQjdW14QlXAdCi4jBLkRgll0-tENZTkmgmF9AQ20kmKp-DpeqKxEQppwohFhksWBIoyboyOEmlUBWorFGNVKIq7wRbjOKss6iK2uMcO97jAvQK36xXTXE3jD9uyw3ltV0BcgYvVRsXF7zaPCbFZh5Oi42e_r7qG7e7g-Sl-6vUfz2GHuKI5O0e5gI3FbImXsKXeF6P57Cr7pj4B5LPJYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Subsuperpixel-Based+Approach+for+Background+Subtraction&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Chen%2C+Yu-Qiu&rft.au=Sun%2C+Zhan-Li&rft.au=Lam%2C+Kin-Man&rft.date=2020-01-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=67&rft.issue=1&rft.spage=601&rft.epage=609&rft_id=info:doi/10.1109%2FTIE.2019.2893824&rft.externalDocID=8624606
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon