A Hierarchical Self-Adaptive Data-Analytics Method for Real-Time Power System Short-Term Voltage Stability Assessment

As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on industrial informatics Ročník 15; číslo 1; s. 74 - 84
Hlavní autoři: Zhang, Yuchen, Xu, Yan, Dong, Zhao Yang, Zhang, Rui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1551-3203, 1941-0050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:As one of the most complex and largest dynamic industrial systems, a modern power grid envisages the wide-area measurement protection and control (WAMPAC) system as the grid sensing backbone to enhance security, reliability, and resiliency. However, based on the massive wide-area measurement data, how to realize real-time short-term voltage stability (STVS) assessment is an essential yet challenging problem. This paper proposes a hierarchical and self-adaptive data-analytics method for real-time STVS assessment covering both the voltage instability and the fault-induced delayed voltage recovery phenomenon. Based on a strategically designed ensemble-based randomized learning model, the STVS assessment is achieved sequentially and self-adaptively. Besides, the assessment accuracy and the earliness are simultaneously optimized through the multiobjective programming. The proposed method has been tested on a benchmark power system, and its exceptional assessment accuracy, speed, and comprehensiveness are demonstrated by comparing with existing methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2018.2829818