Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection
•Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results i...
Saved in:
| Published in: | Expert systems with applications Vol. 42; no. 9; pp. 4239 - 4252 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.06.2015
|
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results in terms of hypervolume and speedup.•Superlinear speedups are justified by adjusting models to experimental results.
Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain–Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile. |
|---|---|
| AbstractList | •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results in terms of hypervolume and speedup.•Superlinear speedups are justified by adjusting models to experimental results.
Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain–Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile. Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain-Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile. |
| Author | Ortiz, Andrés Kimovski, Dragi Ortega, Julio Baños, Raúl |
| Author_xml | – sequence: 1 givenname: Dragi surname: Kimovski fullname: Kimovski, Dragi email: dragi.kimovski@uist.edu.mk organization: University of Information, Science & Technology, Ohrid, Macedonia – sequence: 2 givenname: Julio surname: Ortega fullname: Ortega, Julio email: jortega@ugr.es organization: Dept. Computer Architecture and Technology, CITIC, University of Granada, Spain – sequence: 3 givenname: Andrés surname: Ortiz fullname: Ortiz, Andrés email: aortiz@ic.uma.es organization: Dept. Communications Engineering, University of Malaga, Spain – sequence: 4 givenname: Raúl surname: Baños fullname: Baños, Raúl email: rbanos@ucam.edu organization: Dept. Business Administration and Management, Catholic University of Murcia, Spain |
| BookMark | eNp9kD1PwzAQQC0EEuXjDzB5ZEmw4yR2JBZU8SVVggFmy3HOkivXLrZTBL-ehDIxdLrh3jvp3hk69sEDQleUlJTQ9mZdQvpUZUVoUxJakpYeoQUVnBUt79gxWpCu4UVNeX2KzlJaE0I5IXyB4FVF5Rw4rFyG6FW2O0jYhIhhF9yYbfAqfuHN6LItQr8GPRM4bLPd2G8177H1ePRp3ELc2QQDNqDyGAEncDMe_AU6McoluPyb5-j94f5t-VSsXh6fl3erQjPGctFxJWrRsoY1hnQDmJaaXgsQtK9Uy7qhoaYTSgwDUR2QruJ1JXpt6p73MDQtO0fX-7vbGD5GSFlubNLgnPIQxiSpqJq6EZRVE1rtUR1DShGM3Ea7mV6VlMi5qVzLuamcm0pC5dR0ksQ_Sdv82yBHZd1h9XavwvT_zkKUSVvwGgYbp0hyCPaQ_gP61ZgQ |
| CitedBy_id | crossref_primary_10_3390_electronics12102343 crossref_primary_10_1016_j_neucom_2017_04_035 crossref_primary_10_1016_j_eswa_2016_06_005 crossref_primary_10_1016_j_artmed_2020_101818 crossref_primary_10_1016_j_neucom_2016_12_045 crossref_primary_10_1016_j_neunet_2015_04_002 crossref_primary_10_1016_j_asoc_2018_04_033 crossref_primary_10_1016_j_asoc_2019_105757 crossref_primary_10_1007_s11277_016_3350_5 crossref_primary_10_1016_j_eswa_2015_07_005 crossref_primary_10_1002_cpe_3594 crossref_primary_10_1016_j_eswa_2015_09_046 crossref_primary_10_1007_s00500_018_3479_0 crossref_primary_10_1016_j_ins_2021_06_089 crossref_primary_10_1186_s12938_016_0178_x crossref_primary_10_3390_a17080355 crossref_primary_10_1002_widm_1338 crossref_primary_10_1016_j_epsr_2024_110298 crossref_primary_10_1016_j_knosys_2017_07_018 crossref_primary_10_1109_TCYB_2020_2995464 crossref_primary_10_1007_s11633_020_1253_0 crossref_primary_10_3389_fnins_2020_546656 crossref_primary_10_1007_s10489_019_01420_9 crossref_primary_10_3390_s21062096 crossref_primary_10_1016_j_compbiolchem_2017_06_002 crossref_primary_10_1109_ACCESS_2020_3007291 crossref_primary_10_1016_j_cie_2021_107481 |
| Cites_doi | 10.1109/TMAG.2013.2282395 10.1016/j.cor.2011.11.014 10.3233/IDA-2002-6605 10.1080/01621459.1952.10483441 10.1016/j.patcog.2012.07.021 10.1007/s00453-006-1220-3 10.1088/1741-2560/4/2/R01 10.1177/001316446002000104 10.1016/j.neucom.2008.12.037 10.1109/TPAMI.1979.4766909 10.1023/A:1025667309714 10.1142/S021800140300271X 10.1109/TEVC.2005.860762 10.1016/j.neucom.2013.06.043 10.1007/s10994-013-5373-4 10.1016/j.eswa.2009.10.027 10.1093/bioinformatics/btm344 10.1109/4235.996017 10.1109/CEC.2004.1331135 10.1109/TEVC.2003.810751 10.1007/978-3-540-30217-9_78 10.1007/s10589-007-9119-8 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier Ltd |
| Copyright_xml | – notice: 2015 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2015.01.061 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 4252 |
| ExternalDocumentID | 10_1016_j_eswa_2015_01_061 S0957417415000846 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-97a84863535f09def61fbc8e81b2a639d51f98a8dd0a9e0927428bcf4b7bed563 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352748900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 04:59:01 EST 2025 Tue Nov 18 21:12:14 EST 2025 Sat Nov 29 04:44:42 EST 2025 Fri Feb 23 02:29:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | High-dimensional data Speedup models Feature selection Multi-objective clustering Parallel evolutionary algorithms Unsupervised classification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-97a84863535f09def61fbc8e81b2a639d51f98a8dd0a9e0927428bcf4b7bed563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825458132 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1825458132 crossref_primary_10_1016_j_eswa_2015_01_061 crossref_citationtrail_10_1016_j_eswa_2015_01_061 elsevier_sciencedirect_doi_10_1016_j_eswa_2015_01_061 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 2015-06-00 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mao, J., Hirasawa, K., & Murata, J., 2001. Genetic symbiosis algorithm for multi-objective optimization problem. In Sun (b0215) 1991; 13 Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (b0015) 2013; 46 (last accessed: 2014-09-05). Theodoridis, Koutroumbas (b0225) 2009 Kunkle, D. (2005). Morita, Sabourin, Bortolozzi, Suen (b0185) 2003; Vol. 2 Guillén, Pomares, González, Rojas, Valenzuela, Prieto (b0105) 2009; 72 (pp. 462–471). Coello Coello, Sierra (b0040) 2003; Vol. 11 EEG motor activity data set. (2014). Project BCI - EEG motor activity data set (Computer Interface research at NUST Pakistan). URL Deb, Zope, Jain (b0070) 2003 Corder, Foreman (b0050) 2009 . Lotte, Congedo, Lcuyer, Lamarche, Arnaldi (b0160) 2007; 4 Robnik-Šikonja, Kononenko (b0205) 2003; 53 Van Veldhuizen, Zydallis, Lamont (b0230) 2003; 7 Maneeratana, K., Boonlong, K., & Chaiyaratana, N., 2004. Multi-objective optimisation by co-operative co-evolution. In Deb, Agrawal, Pratap, Meyarivan (b0065) 2002; 6 Baatar, Jeong, Koh (b0020) 2014; 50 Kim, Street, Menczer (b0135) 2002; 6 (pp. 772–781). Potter, Jong (b0195) 1994 Dorronsoro, Danoy, Nebro, Bouvry (b0075) 2013; 40 Raudys, Jain (b0200) 2014 Saeys, Inza, Larrañaga (b0210) 2007; 23 Davies, Bouldin (b0055) 1979; 1 Tan, Yang, Goh (b0220) 2006; 10 Garcia, D. J., Hall, L. O., Goldgof, D. B., & Kramer, K. (2004). A parallel feature selection algorithm from random subsets. In Vapnik (b0235) 1998 Luna, Nebro, Alba (b0165) 2006; Vol. 22 Iorio, Li (b0125) 2004; Vol. 3102 Hiroyasu, Miki, Watanabe (b0115) 2000 Cohen (b0045) 1960; 20 Li, Fialho, Kwong (b0155) 2011 Acir, N., & Güzelis, C. (2004). An application of support vector machine in bioinformatics: Automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In Handl, Knowles (b0110) 2006; 8 Branke, J., Schmeck, H., Deb, K., & Maheshwar, R. S. (2004). Parallelizing multi-objective evolutionary algorithms: cone separation. In (pp. 1–12). Cámara, Ortega, de Toro (b0035) 2012; Vol. 415 Emmanouilidis, Hunter, MacIntyre (b0085) 2000; Vol. 1 Goldberg (b0100) 1989 Internal report. Tech. rep., College of Computer and Information Science, Northeastern University, URL Zhao, Zhang, Cox, Duling, Sarle (b0245) 2013; 92 De Souza, Matwin, Japkowitz (b0060) 2006 (b0140) 2001 Antonio, Coello Coello (b0010) 2013 (pp. 1952–1957). Mierswa, Wurst (b0180) 2006 Bui, Abbass, Essam (b0030) 2009; 42 Keerativuttitumrong, Chaiyaratana, Varavithya (b0130) 2002 Kruskal, Wallis (b0145) 1952; 47 Goh, Tan (b0095) 2009; Vol. 186 Oliveira, Sabourin, Bortolozzi, Suen (b0190) 2003; 17 Huang, Buckley, Kechadi (b0120) 2010; 37 Venske, Gonalves, Delgado (b0240) 2014; 127 Keerativuttitumrong (10.1016/j.eswa.2015.01.061_b0130) 2002 Tan (10.1016/j.eswa.2015.01.061_b0220) 2006; 10 Corder (10.1016/j.eswa.2015.01.061_b0050) 2009 Lotte (10.1016/j.eswa.2015.01.061_b0160) 2007; 4 Morita (10.1016/j.eswa.2015.01.061_b0185) 2003; Vol. 2 Cámara (10.1016/j.eswa.2015.01.061_b0035) 2012; Vol. 415 Hiroyasu (10.1016/j.eswa.2015.01.061_b0115) 2000 Deb (10.1016/j.eswa.2015.01.061_b0065) 2002; 6 10.1016/j.eswa.2015.01.061_b0150 Baatar (10.1016/j.eswa.2015.01.061_b0020) 2014; 50 Sun (10.1016/j.eswa.2015.01.061_b0215) 1991; 13 Bui (10.1016/j.eswa.2015.01.061_b0030) 2009; 42 Handl (10.1016/j.eswa.2015.01.061_b0110) 2006; 8 Huang (10.1016/j.eswa.2015.01.061_b0120) 2010; 37 Saeys (10.1016/j.eswa.2015.01.061_b0210) 2007; 23 Davies (10.1016/j.eswa.2015.01.061_b0055) 1979; 1 De Souza (10.1016/j.eswa.2015.01.061_b0060) 2006 Robnik-Šikonja (10.1016/j.eswa.2015.01.061_b0205) 2003; 53 Iorio (10.1016/j.eswa.2015.01.061_b0125) 2004; Vol. 3102 Luna (10.1016/j.eswa.2015.01.061_b0165) 2006; Vol. 22 Coello Coello (10.1016/j.eswa.2015.01.061_b0040) 2003; Vol. 11 Cohen (10.1016/j.eswa.2015.01.061_b0045) 1960; 20 Emmanouilidis (10.1016/j.eswa.2015.01.061_b0085) 2000; Vol. 1 Kruskal (10.1016/j.eswa.2015.01.061_b0145) 1952; 47 Raudys (10.1016/j.eswa.2015.01.061_b0200) 2014 Venske (10.1016/j.eswa.2015.01.061_b0240) 2014; 127 10.1016/j.eswa.2015.01.061_b0025 Theodoridis (10.1016/j.eswa.2015.01.061_b0225) 2009 (10.1016/j.eswa.2015.01.061_b0140) 2001 Vapnik (10.1016/j.eswa.2015.01.061_b0235) 1998 10.1016/j.eswa.2015.01.061_b0090 Goldberg (10.1016/j.eswa.2015.01.061_b0100) 1989 10.1016/j.eswa.2015.01.061_b0175 Mierswa (10.1016/j.eswa.2015.01.061_b0180) 2006 10.1016/j.eswa.2015.01.061_b0170 Zhao (10.1016/j.eswa.2015.01.061_b0245) 2013; 92 Kim (10.1016/j.eswa.2015.01.061_b0135) 2002; 6 Deb (10.1016/j.eswa.2015.01.061_b0070) 2003 Li (10.1016/j.eswa.2015.01.061_b0155) 2011 Oliveira (10.1016/j.eswa.2015.01.061_b0190) 2003; 17 10.1016/j.eswa.2015.01.061_b0080 Arbelaitz (10.1016/j.eswa.2015.01.061_b0015) 2013; 46 Potter (10.1016/j.eswa.2015.01.061_b0195) 1994 Van Veldhuizen (10.1016/j.eswa.2015.01.061_b0230) 2003; 7 Guillén (10.1016/j.eswa.2015.01.061_b0105) 2009; 72 Antonio (10.1016/j.eswa.2015.01.061_b0010) 2013 10.1016/j.eswa.2015.01.061_b0005 Dorronsoro (10.1016/j.eswa.2015.01.061_b0075) 2013; 40 Goh (10.1016/j.eswa.2015.01.061_b0095) 2009; Vol. 186 |
| References_xml | – volume: 13 start-page: 252 year: 1991 end-page: 264 ident: b0215 article-title: Parallel feature selection based on MapReduce publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 10 start-page: 527 year: 2006 end-page: 549 ident: b0220 article-title: A distributed cooperative coevolutionary algorithm for multiobjective optimization publication-title: Transactions on Evolutionary Computation – volume: Vol. 11 start-page: 482 year: 2003 end-page: 489 ident: b0040 article-title: A coevolutionary multi-objective evolutionary algorithm publication-title: IEEE congress on evolutionary computation – start-page: 1545 year: 2006 end-page: 1552 ident: b0180 article-title: Information preserving multi-objective feature selection for unsupervised learning publication-title: Proceedings of the eighth annual conference on genetic and evolutionary computation, GECCO ’06 – year: 2009 ident: b0050 article-title: Nonparametric statistics for non-statisticians – reference: (last accessed: 2014-09-05). – volume: 4 year: 2007 ident: b0160 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering – reference: . Internal report. Tech. rep., College of Computer and Information Science, Northeastern University, URL: – year: 1998 ident: b0235 article-title: Statistical learning theory publication-title: 1st ed. – reference: Garcia, D. J., Hall, L. O., Goldgof, D. B., & Kramer, K. (2004). A parallel feature selection algorithm from random subsets. In – volume: 53 start-page: 23 year: 2003 end-page: 69 ident: b0205 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Machine Learning – volume: 7 start-page: 144 year: 2003 end-page: 173 ident: b0230 article-title: Considerations in engineering parallel multiobjective evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation – volume: 20 start-page: 37 year: 1960 ident: b0045 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement – reference: Acir, N., & Güzelis, C. (2004). An application of support vector machine in bioinformatics: Automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In – volume: Vol. 3102 start-page: 537 year: 2004 ident: b0125 article-title: A cooperative coevolutionary multiobjective algorithm using nondominated sorting publication-title: Proceedings of GECCO – volume: 40 start-page: 1552 year: 2013 end-page: 1563 ident: b0075 article-title: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution publication-title: Computers & Operations Research – volume: Vol. 186 start-page: 153 year: 2009 end-page: 185 ident: b0095 article-title: A coevolutionary paradigm for dynamic multiobjective optimization publication-title: Evolutionary Multi-objective Optimization in Uncertainty Environments – volume: 50 start-page: 709 year: 2014 end-page: 712 ident: b0020 article-title: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems publication-title: IEEE Transactions on Magnetics – start-page: 333 year: 2000 end-page: 340 ident: b0115 article-title: The new model of parallel genetic algorithm in multiobjective optimization problems divided range multiobjective genetic algorithm publication-title: Proceedings of the congress on evolutionary computation – year: 2001 ident: b0140 publication-title: Self-organizing maps – reference: Kunkle, D. (2005). – volume: 46 start-page: 243 year: 2013 end-page: 256 ident: b0015 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognition – volume: Vol. 22 start-page: 33 year: 2006 end-page: 56 ident: b0165 article-title: Parallel evolutionary multiobjective optimization publication-title: Parallel evolutionary computations – reference: Mao, J., Hirasawa, K., & Murata, J., 2001. Genetic symbiosis algorithm for multi-objective optimization problem. In: – start-page: 2758 year: 2013 end-page: 2765 ident: b0010 article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems publication-title: IEEE Congress on Evolutionary Computation – volume: Vol. 2 start-page: 666 year: 2003 ident: b0185 article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition publication-title: Proceedings of the seventh international conference on document analysis and recognition, ICDAR ’03 – reference: (pp. 772–781). – start-page: 288 year: 2002 end-page: 297 ident: b0130 article-title: Multi-objective co-operative co-evolutionary genetic algorithm publication-title: Proceedings of the seventh international conference on parallel problem solving from nature, PPSN VII – reference: Branke, J., Schmeck, H., Deb, K., & Maheshwar, R. S. (2004). Parallelizing multi-objective evolutionary algorithms: cone separation. In – volume: Vol. 415 start-page: 101 year: 2012 end-page: 123 ident: b0035 article-title: Comparison of frameworks for parallel multiobjective evolutionary optimization in dynamic problems publication-title: Parallel architectures and bioinspired algorithms – volume: 42 start-page: 105 year: 2009 end-page: 139 ident: b0030 article-title: Local models – an approach to distributed multi-objective optimization publication-title: Computational Optimization and Applications – reference: (pp. 1952–1957). – volume: 17 start-page: 2003 year: 2003 ident: b0190 article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition publication-title: International Journal of Pattern Recognition and Artificial Intelligence – volume: Vol. 1 start-page: 309 year: 2000 end-page: 316 ident: b0085 article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator publication-title: Proc. of congress on evolutionary computation – volume: 6 start-page: 531 year: 2002 end-page: 556 ident: b0135 article-title: Evolutionary model selection in unsupervised learning publication-title: Intelligent Data Analysis – volume: 1 start-page: 224 year: 1979 end-page: 227 ident: b0055 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 127 start-page: 65 year: 2014 end-page: 77 ident: b0240 article-title: An extensive comparative study of cluster validity indices publication-title: Neurocomputing – volume: 92 start-page: 195 year: 2013 end-page: 220 ident: b0245 article-title: Massively parallel feature selection: An approach based on variance preservation publication-title: Machine Learning – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0065 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – start-page: 299 year: 2014 end-page: 306 ident: b0200 article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners publication-title: Lecture Notes in Electric Engineering – volume: 8 start-page: 217 year: 2006 end-page: 238 ident: b0110 article-title: Feature subset selection in unsupervised learning via multiobjective optimization publication-title: International Journal of Computational Intelligence – reference: (pp. 462–471). – reference: (pp. 1–12). – volume: 47 start-page: 583 year: 1952 end-page: 621 ident: b0145 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: b0210 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – start-page: 249 year: 1994 end-page: 257 ident: b0195 article-title: A cooperative coevolutionary approach to function optimization publication-title: Proceedings of the international conference on evolutionary computation. the third conference on parallel problem solving from nature: Parallel problem solving from nature, PPSN III – volume: 72 start-page: 3541 year: 2009 end-page: 3555 ident: b0105 article-title: Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems publication-title: Neurocomputing – start-page: 473 year: 2011 end-page: 487 ident: b0155 article-title: Multi-objective differential evolution with adaptive control of parameters and operators publication-title: Proceedings of the fifth international conference on learning and intelligent optimization, LION’05 – year: 2009 ident: b0225 article-title: Pattern recognition – volume: 37 start-page: 3638 year: 2010 end-page: 3646 ident: b0120 article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications publication-title: Expert Systems With Applications – start-page: 534 year: 2003 end-page: 549 ident: b0070 article-title: Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms publication-title: Proceedings of the second international conference on evolutionary multi-criterion optimization (EMO 2003) – reference: . – year: 1989 ident: b0100 publication-title: Genetic algorithms in search, optimization and machine learning – reference: EEG motor activity data set. (2014). Project BCI - EEG motor activity data set (Computer Interface research at NUST Pakistan). URL: – start-page: 433 year: 2006 end-page: 456 ident: b0060 article-title: Parallelizing feature selection publication-title: Algoritmica – reference: Maneeratana, K., Boonlong, K., & Chaiyaratana, N., 2004. Multi-objective optimisation by co-operative co-evolution. In – volume: 50 start-page: 709 issue: 2 year: 2014 ident: 10.1016/j.eswa.2015.01.061_b0020 article-title: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems publication-title: IEEE Transactions on Magnetics doi: 10.1109/TMAG.2013.2282395 – volume: 40 start-page: 1552 issue: 6 year: 2013 ident: 10.1016/j.eswa.2015.01.061_b0075 article-title: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.11.014 – volume: 6 start-page: 531 issue: 6 year: 2002 ident: 10.1016/j.eswa.2015.01.061_b0135 article-title: Evolutionary model selection in unsupervised learning publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2002-6605 – year: 2009 ident: 10.1016/j.eswa.2015.01.061_b0225 – volume: 47 start-page: 583 issue: 260 year: 1952 ident: 10.1016/j.eswa.2015.01.061_b0145 article-title: Use of ranks in one-criterion variance analysis publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1952.10483441 – volume: Vol. 2 start-page: 666 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0185 article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition – year: 1998 ident: 10.1016/j.eswa.2015.01.061_b0235 article-title: Statistical learning theory – ident: 10.1016/j.eswa.2015.01.061_b0175 – volume: 13 start-page: 252 issue: 3 year: 1991 ident: 10.1016/j.eswa.2015.01.061_b0215 article-title: Parallel feature selection based on MapReduce publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 46 start-page: 243 issue: 1 year: 2013 ident: 10.1016/j.eswa.2015.01.061_b0015 article-title: An extensive comparative study of cluster validity indices publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.07.021 – start-page: 433 issue: 45 year: 2006 ident: 10.1016/j.eswa.2015.01.061_b0060 article-title: Parallelizing feature selection publication-title: Algoritmica doi: 10.1007/s00453-006-1220-3 – volume: Vol. 3102 start-page: 537 year: 2004 ident: 10.1016/j.eswa.2015.01.061_b0125 article-title: A cooperative coevolutionary multiobjective algorithm using nondominated sorting – year: 2001 ident: 10.1016/j.eswa.2015.01.061_b0140 – volume: Vol. 415 start-page: 101 year: 2012 ident: 10.1016/j.eswa.2015.01.061_b0035 article-title: Comparison of frameworks for parallel multiobjective evolutionary optimization in dynamic problems – volume: 4 year: 2007 ident: 10.1016/j.eswa.2015.01.061_b0160 article-title: A review of classification algorithms for EEG-based brain–computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/4/2/R01 – volume: 20 start-page: 37 issue: 1 year: 1960 ident: 10.1016/j.eswa.2015.01.061_b0045 article-title: A coefficient of agreement for nominal scales publication-title: Educational and Psychological Measurement doi: 10.1177/001316446002000104 – ident: 10.1016/j.eswa.2015.01.061_b0150 – volume: 72 start-page: 3541 issue: 16–18 year: 2009 ident: 10.1016/j.eswa.2015.01.061_b0105 article-title: Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.12.037 – volume: 1 start-page: 224 issue: 2 year: 1979 ident: 10.1016/j.eswa.2015.01.061_b0055 article-title: A cluster separation measure publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.1979.4766909 – start-page: 2758 year: 2013 ident: 10.1016/j.eswa.2015.01.061_b0010 article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems – volume: 53 start-page: 23 issue: 1–2 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0205 article-title: Theoretical and empirical analysis of ReliefF and RReliefF publication-title: Machine Learning doi: 10.1023/A:1025667309714 – year: 1989 ident: 10.1016/j.eswa.2015.01.061_b0100 – start-page: 249 year: 1994 ident: 10.1016/j.eswa.2015.01.061_b0195 article-title: A cooperative coevolutionary approach to function optimization – start-page: 333 year: 2000 ident: 10.1016/j.eswa.2015.01.061_b0115 article-title: The new model of parallel genetic algorithm in multiobjective optimization problems divided range multiobjective genetic algorithm – ident: 10.1016/j.eswa.2015.01.061_b0090 – volume: Vol. 11 start-page: 482 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0040 article-title: A coevolutionary multi-objective evolutionary algorithm – volume: 17 start-page: 2003 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0190 article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S021800140300271X – volume: Vol. 186 start-page: 153 year: 2009 ident: 10.1016/j.eswa.2015.01.061_b0095 article-title: A coevolutionary paradigm for dynamic multiobjective optimization – volume: 8 start-page: 217 issue: 3 year: 2006 ident: 10.1016/j.eswa.2015.01.061_b0110 article-title: Feature subset selection in unsupervised learning via multiobjective optimization publication-title: International Journal of Computational Intelligence – volume: 10 start-page: 527 issue: 5 year: 2006 ident: 10.1016/j.eswa.2015.01.061_b0220 article-title: A distributed cooperative coevolutionary algorithm for multiobjective optimization publication-title: Transactions on Evolutionary Computation doi: 10.1109/TEVC.2005.860762 – start-page: 473 year: 2011 ident: 10.1016/j.eswa.2015.01.061_b0155 article-title: Multi-objective differential evolution with adaptive control of parameters and operators – volume: 127 start-page: 65 year: 2014 ident: 10.1016/j.eswa.2015.01.061_b0240 article-title: An extensive comparative study of cluster validity indices publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.043 – volume: 92 start-page: 195 issue: 1 year: 2013 ident: 10.1016/j.eswa.2015.01.061_b0245 article-title: Massively parallel feature selection: An approach based on variance preservation publication-title: Machine Learning doi: 10.1007/s10994-013-5373-4 – ident: 10.1016/j.eswa.2015.01.061_b0080 – start-page: 1545 year: 2006 ident: 10.1016/j.eswa.2015.01.061_b0180 article-title: Information preserving multi-objective feature selection for unsupervised learning – volume: 37 start-page: 3638 issue: 5 year: 2010 ident: 10.1016/j.eswa.2015.01.061_b0120 article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications publication-title: Expert Systems With Applications doi: 10.1016/j.eswa.2009.10.027 – start-page: 534 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0070 article-title: Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.eswa.2015.01.061_b0210 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – year: 2009 ident: 10.1016/j.eswa.2015.01.061_b0050 – ident: 10.1016/j.eswa.2015.01.061_b0005 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.eswa.2015.01.061_b0065 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.eswa.2015.01.061_b0025 doi: 10.1109/CEC.2004.1331135 – volume: Vol. 22 start-page: 33 year: 2006 ident: 10.1016/j.eswa.2015.01.061_b0165 article-title: Parallel evolutionary multiobjective optimization – volume: 7 start-page: 144 issue: 2 year: 2003 ident: 10.1016/j.eswa.2015.01.061_b0230 article-title: Considerations in engineering parallel multiobjective evolutionary algorithms publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2003.810751 – ident: 10.1016/j.eswa.2015.01.061_b0170 doi: 10.1007/978-3-540-30217-9_78 – start-page: 288 year: 2002 ident: 10.1016/j.eswa.2015.01.061_b0130 article-title: Multi-objective co-operative co-evolutionary genetic algorithm – volume: 42 start-page: 105 issue: 1 year: 2009 ident: 10.1016/j.eswa.2015.01.061_b0030 article-title: Local models – an approach to distributed multi-objective optimization publication-title: Computational Optimization and Applications doi: 10.1007/s10589-007-9119-8 – start-page: 299 issue: 277 year: 2014 ident: 10.1016/j.eswa.2015.01.061_b0200 article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners publication-title: Lecture Notes in Electric Engineering – volume: Vol. 1 start-page: 309 year: 2000 ident: 10.1016/j.eswa.2015.01.061_b0085 article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator |
| SSID | ssj0017007 |
| Score | 2.3206992 |
| Snippet | •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as... Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4239 |
| SubjectTerms | Computational efficiency Computing time Evolution Evolutionary Expert systems Feature selection High-dimensional data Human-computer interface Multi-objective clustering Optimization Parallel evolutionary algorithms Pattern recognition Speedup models Unsupervised classification |
| Title | Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection |
| URI | https://dx.doi.org/10.1016/j.eswa.2015.01.061 https://www.proquest.com/docview/1825458132 |
| Volume | 42 |
| WOSCitedRecordID | wos000352748900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLS0biVgXZcRzbxwKLAKHVCi1Sb5GdOKhVN6mStKz4VfxE7NhOQ8Wu2AOXqLWaR_t9HY_HM98A8DqWpCzMuisSVKooYaiIVKJZpCkTlKE8pmWP9Bd2esoXC3E2mfwKtTC7NasqfnkpNv8VajNmwLalszeAe7ioGTCvDejmaGA3x38C_kw2tj-KzTz2wT4rLOuUvf2NbaZcn0kY1WrlLN6sNrbjwhdl2iDItmq3G2tIWuOSlrrX_5y1fdecAOVqSOPTTec1oUO13GhffL_Nf1HvfJvs9438vhwCvE2nXXzXVmvXo-Hlz5B06Tb09zF9aQfeYpck-NW9m6_HMQxM97lWQzCSRQl2_XqCXU7iEf_EyMhazcLRhG2sTvzXycDFJVZvdPvDKkxhJ9DqtN__VN4-mBGHPMWQArfK7DUye40M4QzZ9fZRzKjgU3A0_3Sy-DzsXDHkSvTDN_KFWi6n8PBJrnKGDtyC3tc5vwfu-EUKnDty3QcTXT0Ad0MDEOjng4dAB67BMdeg4Roccw0ecA2OuQaXFRxzDXquwYFrj8C3Dyfn7z5Gvm9HlBNCukgwyRNuPFlCSyQKXaa4VDnXZoUUS-MRFxSXgkteFEgKjYTNFuAqLxPFlC5oSh6DaVVX-gmAKo21sRgSpZxY6TmpcsllnBIiidZIHQMcfsAs96L2trfKOrsaumMwG87ZOEmXaz9NAy6Zd0qds5kZml173qsAYmYstt2Gk5Wut22GbVCGckzipzd6kmfg9v6_8xxMu2arX4Bb-a5bts1Lz8Pf33K_ew |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+alternatives+for+evolutionary+multi-objective+optimization+in+unsupervised+feature+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Kimovski%2C+Dragi&rft.au=Ortega%2C+Julio&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Ba%C3%B1os%2C+Ra%C3%BAl&rft.date=2015-06-01&rft.issn=0957-4174&rft.volume=42&rft.issue=9&rft.spage=4239&rft.epage=4252&rft_id=info:doi/10.1016%2Fj.eswa.2015.01.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_01_061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |