Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection

•Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results i...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 42; no. 9; pp. 4239 - 4252
Main Authors: Kimovski, Dragi, Ortega, Julio, Ortiz, Andrés, Baños, Raúl
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.06.2015
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results in terms of hypervolume and speedup.•Superlinear speedups are justified by adjusting models to experimental results. Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain–Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile.
AbstractList •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as benchmarks.•Cooperative evolutionary algorithms for multiobjective optimization are given.•Parallel implementations obtain quality results in terms of hypervolume and speedup.•Superlinear speedups are justified by adjusting models to experimental results. Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain–Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile.
Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed. This way, feature selection has become an important issue on these researching areas. Nevertheless, as in past years the number of patterns and, more specifically, the number of features to be selected have grown very fast, parallel processing constitutes an important tool to reach efficient approaches that make possible to tackle complex problems within reasonable computing times. In this paper we propose parallel multi-objective optimization approaches to cope with high-dimensional feature selection problems. Several parallel multi-objective evolutionary alternatives are proposed, and experimentally evaluated by using some synthetic and BCI (Brain-Computer Interface) benchmarks. The experimental results show that the cooperation of parallel evolving subpopulations provides improvements in the solution quality and computing time speedups depending on the parallel alternative and data profile.
Author Ortiz, Andrés
Kimovski, Dragi
Ortega, Julio
Baños, Raúl
Author_xml – sequence: 1
  givenname: Dragi
  surname: Kimovski
  fullname: Kimovski, Dragi
  email: dragi.kimovski@uist.edu.mk
  organization: University of Information, Science & Technology, Ohrid, Macedonia
– sequence: 2
  givenname: Julio
  surname: Ortega
  fullname: Ortega, Julio
  email: jortega@ugr.es
  organization: Dept. Computer Architecture and Technology, CITIC, University of Granada, Spain
– sequence: 3
  givenname: Andrés
  surname: Ortiz
  fullname: Ortiz, Andrés
  email: aortiz@ic.uma.es
  organization: Dept. Communications Engineering, University of Malaga, Spain
– sequence: 4
  givenname: Raúl
  surname: Baños
  fullname: Baños, Raúl
  email: rbanos@ucam.edu
  organization: Dept. Business Administration and Management, Catholic University of Murcia, Spain
BookMark eNp9kD1PwzAQQC0EEuXjDzB5ZEmw4yR2JBZU8SVVggFmy3HOkivXLrZTBL-ehDIxdLrh3jvp3hk69sEDQleUlJTQ9mZdQvpUZUVoUxJakpYeoQUVnBUt79gxWpCu4UVNeX2KzlJaE0I5IXyB4FVF5Rw4rFyG6FW2O0jYhIhhF9yYbfAqfuHN6LItQr8GPRM4bLPd2G8177H1ePRp3ELc2QQDNqDyGAEncDMe_AU6McoluPyb5-j94f5t-VSsXh6fl3erQjPGctFxJWrRsoY1hnQDmJaaXgsQtK9Uy7qhoaYTSgwDUR2QruJ1JXpt6p73MDQtO0fX-7vbGD5GSFlubNLgnPIQxiSpqJq6EZRVE1rtUR1DShGM3Ea7mV6VlMi5qVzLuamcm0pC5dR0ksQ_Sdv82yBHZd1h9XavwvT_zkKUSVvwGgYbp0hyCPaQ_gP61ZgQ
CitedBy_id crossref_primary_10_3390_electronics12102343
crossref_primary_10_1016_j_neucom_2017_04_035
crossref_primary_10_1016_j_eswa_2016_06_005
crossref_primary_10_1016_j_artmed_2020_101818
crossref_primary_10_1016_j_neucom_2016_12_045
crossref_primary_10_1016_j_neunet_2015_04_002
crossref_primary_10_1016_j_asoc_2018_04_033
crossref_primary_10_1016_j_asoc_2019_105757
crossref_primary_10_1007_s11277_016_3350_5
crossref_primary_10_1016_j_eswa_2015_07_005
crossref_primary_10_1002_cpe_3594
crossref_primary_10_1016_j_eswa_2015_09_046
crossref_primary_10_1007_s00500_018_3479_0
crossref_primary_10_1016_j_ins_2021_06_089
crossref_primary_10_1186_s12938_016_0178_x
crossref_primary_10_3390_a17080355
crossref_primary_10_1002_widm_1338
crossref_primary_10_1016_j_epsr_2024_110298
crossref_primary_10_1016_j_knosys_2017_07_018
crossref_primary_10_1109_TCYB_2020_2995464
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_3389_fnins_2020_546656
crossref_primary_10_1007_s10489_019_01420_9
crossref_primary_10_3390_s21062096
crossref_primary_10_1016_j_compbiolchem_2017_06_002
crossref_primary_10_1109_ACCESS_2020_3007291
crossref_primary_10_1016_j_cie_2021_107481
Cites_doi 10.1109/TMAG.2013.2282395
10.1016/j.cor.2011.11.014
10.3233/IDA-2002-6605
10.1080/01621459.1952.10483441
10.1016/j.patcog.2012.07.021
10.1007/s00453-006-1220-3
10.1088/1741-2560/4/2/R01
10.1177/001316446002000104
10.1016/j.neucom.2008.12.037
10.1109/TPAMI.1979.4766909
10.1023/A:1025667309714
10.1142/S021800140300271X
10.1109/TEVC.2005.860762
10.1016/j.neucom.2013.06.043
10.1007/s10994-013-5373-4
10.1016/j.eswa.2009.10.027
10.1093/bioinformatics/btm344
10.1109/4235.996017
10.1109/CEC.2004.1331135
10.1109/TEVC.2003.810751
10.1007/978-3-540-30217-9_78
10.1007/s10589-007-9119-8
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2015.01.061
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 4252
ExternalDocumentID 10_1016_j_eswa_2015_01_061
S0957417415000846
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-97a84863535f09def61fbc8e81b2a639d51f98a8dd0a9e0927428bcf4b7bed563
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352748900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 04:59:01 EST 2025
Tue Nov 18 21:12:14 EST 2025
Sat Nov 29 04:44:42 EST 2025
Fri Feb 23 02:29:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords High-dimensional data
Speedup models
Feature selection
Multi-objective clustering
Parallel evolutionary algorithms
Unsupervised classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-97a84863535f09def61fbc8e81b2a639d51f98a8dd0a9e0927428bcf4b7bed563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825458132
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1825458132
crossref_primary_10_1016_j_eswa_2015_01_061
crossref_citationtrail_10_1016_j_eswa_2015_01_061
elsevier_sciencedirect_doi_10_1016_j_eswa_2015_01_061
PublicationCentury 2000
PublicationDate 2015-06-01
2015-06-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mao, J., Hirasawa, K., & Murata, J., 2001. Genetic symbiosis algorithm for multi-objective optimization problem. In
Sun (b0215) 1991; 13
Arbelaitz, Gurrutxaga, Muguerza, Pérez, Perona (b0015) 2013; 46
(last accessed: 2014-09-05).
Theodoridis, Koutroumbas (b0225) 2009
Kunkle, D. (2005).
Morita, Sabourin, Bortolozzi, Suen (b0185) 2003; Vol. 2
Guillén, Pomares, González, Rojas, Valenzuela, Prieto (b0105) 2009; 72
(pp. 462–471).
Coello Coello, Sierra (b0040) 2003; Vol. 11
EEG motor activity data set. (2014). Project BCI - EEG motor activity data set (Computer Interface research at NUST Pakistan). URL
Deb, Zope, Jain (b0070) 2003
Corder, Foreman (b0050) 2009
.
Lotte, Congedo, Lcuyer, Lamarche, Arnaldi (b0160) 2007; 4
Robnik-Šikonja, Kononenko (b0205) 2003; 53
Van Veldhuizen, Zydallis, Lamont (b0230) 2003; 7
Maneeratana, K., Boonlong, K., & Chaiyaratana, N., 2004. Multi-objective optimisation by co-operative co-evolution. In
Deb, Agrawal, Pratap, Meyarivan (b0065) 2002; 6
Baatar, Jeong, Koh (b0020) 2014; 50
Kim, Street, Menczer (b0135) 2002; 6
(pp. 772–781).
Potter, Jong (b0195) 1994
Dorronsoro, Danoy, Nebro, Bouvry (b0075) 2013; 40
Raudys, Jain (b0200) 2014
Saeys, Inza, Larrañaga (b0210) 2007; 23
Davies, Bouldin (b0055) 1979; 1
Tan, Yang, Goh (b0220) 2006; 10
Garcia, D. J., Hall, L. O., Goldgof, D. B., & Kramer, K. (2004). A parallel feature selection algorithm from random subsets. In
Vapnik (b0235) 1998
Luna, Nebro, Alba (b0165) 2006; Vol. 22
Iorio, Li (b0125) 2004; Vol. 3102
Hiroyasu, Miki, Watanabe (b0115) 2000
Cohen (b0045) 1960; 20
Li, Fialho, Kwong (b0155) 2011
Acir, N., & Güzelis, C. (2004). An application of support vector machine in bioinformatics: Automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In
Handl, Knowles (b0110) 2006; 8
Branke, J., Schmeck, H., Deb, K., & Maheshwar, R. S. (2004). Parallelizing multi-objective evolutionary algorithms: cone separation. In
(pp. 1–12).
Cámara, Ortega, de Toro (b0035) 2012; Vol. 415
Emmanouilidis, Hunter, MacIntyre (b0085) 2000; Vol. 1
Goldberg (b0100) 1989
Internal report. Tech. rep., College of Computer and Information Science, Northeastern University, URL
Zhao, Zhang, Cox, Duling, Sarle (b0245) 2013; 92
De Souza, Matwin, Japkowitz (b0060) 2006
(b0140) 2001
Antonio, Coello Coello (b0010) 2013
(pp. 1952–1957).
Mierswa, Wurst (b0180) 2006
Bui, Abbass, Essam (b0030) 2009; 42
Keerativuttitumrong, Chaiyaratana, Varavithya (b0130) 2002
Kruskal, Wallis (b0145) 1952; 47
Goh, Tan (b0095) 2009; Vol. 186
Oliveira, Sabourin, Bortolozzi, Suen (b0190) 2003; 17
Huang, Buckley, Kechadi (b0120) 2010; 37
Venske, Gonalves, Delgado (b0240) 2014; 127
Keerativuttitumrong (10.1016/j.eswa.2015.01.061_b0130) 2002
Tan (10.1016/j.eswa.2015.01.061_b0220) 2006; 10
Corder (10.1016/j.eswa.2015.01.061_b0050) 2009
Lotte (10.1016/j.eswa.2015.01.061_b0160) 2007; 4
Morita (10.1016/j.eswa.2015.01.061_b0185) 2003; Vol. 2
Cámara (10.1016/j.eswa.2015.01.061_b0035) 2012; Vol. 415
Hiroyasu (10.1016/j.eswa.2015.01.061_b0115) 2000
Deb (10.1016/j.eswa.2015.01.061_b0065) 2002; 6
10.1016/j.eswa.2015.01.061_b0150
Baatar (10.1016/j.eswa.2015.01.061_b0020) 2014; 50
Sun (10.1016/j.eswa.2015.01.061_b0215) 1991; 13
Bui (10.1016/j.eswa.2015.01.061_b0030) 2009; 42
Handl (10.1016/j.eswa.2015.01.061_b0110) 2006; 8
Huang (10.1016/j.eswa.2015.01.061_b0120) 2010; 37
Saeys (10.1016/j.eswa.2015.01.061_b0210) 2007; 23
Davies (10.1016/j.eswa.2015.01.061_b0055) 1979; 1
De Souza (10.1016/j.eswa.2015.01.061_b0060) 2006
Robnik-Šikonja (10.1016/j.eswa.2015.01.061_b0205) 2003; 53
Iorio (10.1016/j.eswa.2015.01.061_b0125) 2004; Vol. 3102
Luna (10.1016/j.eswa.2015.01.061_b0165) 2006; Vol. 22
Coello Coello (10.1016/j.eswa.2015.01.061_b0040) 2003; Vol. 11
Cohen (10.1016/j.eswa.2015.01.061_b0045) 1960; 20
Emmanouilidis (10.1016/j.eswa.2015.01.061_b0085) 2000; Vol. 1
Kruskal (10.1016/j.eswa.2015.01.061_b0145) 1952; 47
Raudys (10.1016/j.eswa.2015.01.061_b0200) 2014
Venske (10.1016/j.eswa.2015.01.061_b0240) 2014; 127
10.1016/j.eswa.2015.01.061_b0025
Theodoridis (10.1016/j.eswa.2015.01.061_b0225) 2009
(10.1016/j.eswa.2015.01.061_b0140) 2001
Vapnik (10.1016/j.eswa.2015.01.061_b0235) 1998
10.1016/j.eswa.2015.01.061_b0090
Goldberg (10.1016/j.eswa.2015.01.061_b0100) 1989
10.1016/j.eswa.2015.01.061_b0175
Mierswa (10.1016/j.eswa.2015.01.061_b0180) 2006
10.1016/j.eswa.2015.01.061_b0170
Zhao (10.1016/j.eswa.2015.01.061_b0245) 2013; 92
Kim (10.1016/j.eswa.2015.01.061_b0135) 2002; 6
Deb (10.1016/j.eswa.2015.01.061_b0070) 2003
Li (10.1016/j.eswa.2015.01.061_b0155) 2011
Oliveira (10.1016/j.eswa.2015.01.061_b0190) 2003; 17
10.1016/j.eswa.2015.01.061_b0080
Arbelaitz (10.1016/j.eswa.2015.01.061_b0015) 2013; 46
Potter (10.1016/j.eswa.2015.01.061_b0195) 1994
Van Veldhuizen (10.1016/j.eswa.2015.01.061_b0230) 2003; 7
Guillén (10.1016/j.eswa.2015.01.061_b0105) 2009; 72
Antonio (10.1016/j.eswa.2015.01.061_b0010) 2013
10.1016/j.eswa.2015.01.061_b0005
Dorronsoro (10.1016/j.eswa.2015.01.061_b0075) 2013; 40
Goh (10.1016/j.eswa.2015.01.061_b0095) 2009; Vol. 186
References_xml – volume: 13
  start-page: 252
  year: 1991
  end-page: 264
  ident: b0215
  article-title: Parallel feature selection based on MapReduce
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 10
  start-page: 527
  year: 2006
  end-page: 549
  ident: b0220
  article-title: A distributed cooperative coevolutionary algorithm for multiobjective optimization
  publication-title: Transactions on Evolutionary Computation
– volume: Vol. 11
  start-page: 482
  year: 2003
  end-page: 489
  ident: b0040
  article-title: A coevolutionary multi-objective evolutionary algorithm
  publication-title: IEEE congress on evolutionary computation
– start-page: 1545
  year: 2006
  end-page: 1552
  ident: b0180
  article-title: Information preserving multi-objective feature selection for unsupervised learning
  publication-title: Proceedings of the eighth annual conference on genetic and evolutionary computation, GECCO ’06
– year: 2009
  ident: b0050
  article-title: Nonparametric statistics for non-statisticians
– reference: (last accessed: 2014-09-05).
– volume: 4
  year: 2007
  ident: b0160
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
– reference: . Internal report. Tech. rep., College of Computer and Information Science, Northeastern University, URL:
– year: 1998
  ident: b0235
  article-title: Statistical learning theory
  publication-title: 1st ed.
– reference: Garcia, D. J., Hall, L. O., Goldgof, D. B., & Kramer, K. (2004). A parallel feature selection algorithm from random subsets. In
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: b0205
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Machine Learning
– volume: 7
  start-page: 144
  year: 2003
  end-page: 173
  ident: b0230
  article-title: Considerations in engineering parallel multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 20
  start-page: 37
  year: 1960
  ident: b0045
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
– reference: Acir, N., & Güzelis, C. (2004). An application of support vector machine in bioinformatics: Automated recognition of epileptiform patterns in EEG using SVM classifier designed by a perturbation method. In
– volume: Vol. 3102
  start-page: 537
  year: 2004
  ident: b0125
  article-title: A cooperative coevolutionary multiobjective algorithm using nondominated sorting
  publication-title: Proceedings of GECCO
– volume: 40
  start-page: 1552
  year: 2013
  end-page: 1563
  ident: b0075
  article-title: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution
  publication-title: Computers & Operations Research
– volume: Vol. 186
  start-page: 153
  year: 2009
  end-page: 185
  ident: b0095
  article-title: A coevolutionary paradigm for dynamic multiobjective optimization
  publication-title: Evolutionary Multi-objective Optimization in Uncertainty Environments
– volume: 50
  start-page: 709
  year: 2014
  end-page: 712
  ident: b0020
  article-title: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems
  publication-title: IEEE Transactions on Magnetics
– start-page: 333
  year: 2000
  end-page: 340
  ident: b0115
  article-title: The new model of parallel genetic algorithm in multiobjective optimization problems divided range multiobjective genetic algorithm
  publication-title: Proceedings of the congress on evolutionary computation
– year: 2001
  ident: b0140
  publication-title: Self-organizing maps
– reference: Kunkle, D. (2005).
– volume: 46
  start-page: 243
  year: 2013
  end-page: 256
  ident: b0015
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognition
– volume: Vol. 22
  start-page: 33
  year: 2006
  end-page: 56
  ident: b0165
  article-title: Parallel evolutionary multiobjective optimization
  publication-title: Parallel evolutionary computations
– reference: Mao, J., Hirasawa, K., & Murata, J., 2001. Genetic symbiosis algorithm for multi-objective optimization problem. In:
– start-page: 2758
  year: 2013
  end-page: 2765
  ident: b0010
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
  publication-title: IEEE Congress on Evolutionary Computation
– volume: Vol. 2
  start-page: 666
  year: 2003
  ident: b0185
  article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition
  publication-title: Proceedings of the seventh international conference on document analysis and recognition, ICDAR ’03
– reference: (pp. 772–781).
– start-page: 288
  year: 2002
  end-page: 297
  ident: b0130
  article-title: Multi-objective co-operative co-evolutionary genetic algorithm
  publication-title: Proceedings of the seventh international conference on parallel problem solving from nature, PPSN VII
– reference: Branke, J., Schmeck, H., Deb, K., & Maheshwar, R. S. (2004). Parallelizing multi-objective evolutionary algorithms: cone separation. In
– volume: Vol. 415
  start-page: 101
  year: 2012
  end-page: 123
  ident: b0035
  article-title: Comparison of frameworks for parallel multiobjective evolutionary optimization in dynamic problems
  publication-title: Parallel architectures and bioinspired algorithms
– volume: 42
  start-page: 105
  year: 2009
  end-page: 139
  ident: b0030
  article-title: Local models – an approach to distributed multi-objective optimization
  publication-title: Computational Optimization and Applications
– reference: (pp. 1952–1957).
– volume: 17
  start-page: 2003
  year: 2003
  ident: b0190
  article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: Vol. 1
  start-page: 309
  year: 2000
  end-page: 316
  ident: b0085
  article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
  publication-title: Proc. of congress on evolutionary computation
– volume: 6
  start-page: 531
  year: 2002
  end-page: 556
  ident: b0135
  article-title: Evolutionary model selection in unsupervised learning
  publication-title: Intelligent Data Analysis
– volume: 1
  start-page: 224
  year: 1979
  end-page: 227
  ident: b0055
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 127
  start-page: 65
  year: 2014
  end-page: 77
  ident: b0240
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Neurocomputing
– volume: 92
  start-page: 195
  year: 2013
  end-page: 220
  ident: b0245
  article-title: Massively parallel feature selection: An approach based on variance preservation
  publication-title: Machine Learning
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0065
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– start-page: 299
  year: 2014
  end-page: 306
  ident: b0200
  article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners
  publication-title: Lecture Notes in Electric Engineering
– volume: 8
  start-page: 217
  year: 2006
  end-page: 238
  ident: b0110
  article-title: Feature subset selection in unsupervised learning via multiobjective optimization
  publication-title: International Journal of Computational Intelligence
– reference: (pp. 462–471).
– reference: (pp. 1–12).
– volume: 47
  start-page: 583
  year: 1952
  end-page: 621
  ident: b0145
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: Journal of the American Statistical Association
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: b0210
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– start-page: 249
  year: 1994
  end-page: 257
  ident: b0195
  article-title: A cooperative coevolutionary approach to function optimization
  publication-title: Proceedings of the international conference on evolutionary computation. the third conference on parallel problem solving from nature: Parallel problem solving from nature, PPSN III
– volume: 72
  start-page: 3541
  year: 2009
  end-page: 3555
  ident: b0105
  article-title: Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems
  publication-title: Neurocomputing
– start-page: 473
  year: 2011
  end-page: 487
  ident: b0155
  article-title: Multi-objective differential evolution with adaptive control of parameters and operators
  publication-title: Proceedings of the fifth international conference on learning and intelligent optimization, LION’05
– year: 2009
  ident: b0225
  article-title: Pattern recognition
– volume: 37
  start-page: 3638
  year: 2010
  end-page: 3646
  ident: b0120
  article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
  publication-title: Expert Systems With Applications
– start-page: 534
  year: 2003
  end-page: 549
  ident: b0070
  article-title: Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms
  publication-title: Proceedings of the second international conference on evolutionary multi-criterion optimization (EMO 2003)
– reference: .
– year: 1989
  ident: b0100
  publication-title: Genetic algorithms in search, optimization and machine learning
– reference: EEG motor activity data set. (2014). Project BCI - EEG motor activity data set (Computer Interface research at NUST Pakistan). URL:
– start-page: 433
  year: 2006
  end-page: 456
  ident: b0060
  article-title: Parallelizing feature selection
  publication-title: Algoritmica
– reference: Maneeratana, K., Boonlong, K., & Chaiyaratana, N., 2004. Multi-objective optimisation by co-operative co-evolution. In
– volume: 50
  start-page: 709
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2015.01.061_b0020
  article-title: Adaptive parameter controlling non-dominated ranking differential evolution for multi-objective optimization of electromagnetic problems
  publication-title: IEEE Transactions on Magnetics
  doi: 10.1109/TMAG.2013.2282395
– volume: 40
  start-page: 1552
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2015.01.061_b0075
  article-title: Achieving super-linear performance in parallel multi-objective evolutionary algorithms by means of cooperative coevolution
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2011.11.014
– volume: 6
  start-page: 531
  issue: 6
  year: 2002
  ident: 10.1016/j.eswa.2015.01.061_b0135
  article-title: Evolutionary model selection in unsupervised learning
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6605
– year: 2009
  ident: 10.1016/j.eswa.2015.01.061_b0225
– volume: 47
  start-page: 583
  issue: 260
  year: 1952
  ident: 10.1016/j.eswa.2015.01.061_b0145
  article-title: Use of ranks in one-criterion variance analysis
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1952.10483441
– volume: Vol. 2
  start-page: 666
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0185
  article-title: Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition
– year: 1998
  ident: 10.1016/j.eswa.2015.01.061_b0235
  article-title: Statistical learning theory
– ident: 10.1016/j.eswa.2015.01.061_b0175
– volume: 13
  start-page: 252
  issue: 3
  year: 1991
  ident: 10.1016/j.eswa.2015.01.061_b0215
  article-title: Parallel feature selection based on MapReduce
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 46
  start-page: 243
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2015.01.061_b0015
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2012.07.021
– start-page: 433
  issue: 45
  year: 2006
  ident: 10.1016/j.eswa.2015.01.061_b0060
  article-title: Parallelizing feature selection
  publication-title: Algoritmica
  doi: 10.1007/s00453-006-1220-3
– volume: Vol. 3102
  start-page: 537
  year: 2004
  ident: 10.1016/j.eswa.2015.01.061_b0125
  article-title: A cooperative coevolutionary multiobjective algorithm using nondominated sorting
– year: 2001
  ident: 10.1016/j.eswa.2015.01.061_b0140
– volume: Vol. 415
  start-page: 101
  year: 2012
  ident: 10.1016/j.eswa.2015.01.061_b0035
  article-title: Comparison of frameworks for parallel multiobjective evolutionary optimization in dynamic problems
– volume: 4
  year: 2007
  ident: 10.1016/j.eswa.2015.01.061_b0160
  article-title: A review of classification algorithms for EEG-based brain–computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/4/2/R01
– volume: 20
  start-page: 37
  issue: 1
  year: 1960
  ident: 10.1016/j.eswa.2015.01.061_b0045
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educational and Psychological Measurement
  doi: 10.1177/001316446002000104
– ident: 10.1016/j.eswa.2015.01.061_b0150
– volume: 72
  start-page: 3541
  issue: 16–18
  year: 2009
  ident: 10.1016/j.eswa.2015.01.061_b0105
  article-title: Parallel multiobjective memetic RBFNNS design and feature selection for function approximation problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.037
– volume: 1
  start-page: 224
  issue: 2
  year: 1979
  ident: 10.1016/j.eswa.2015.01.061_b0055
  article-title: A cluster separation measure
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1979.4766909
– start-page: 2758
  year: 2013
  ident: 10.1016/j.eswa.2015.01.061_b0010
  article-title: Use of cooperative coevolution for solving large scale multiobjective optimization problems
– volume: 53
  start-page: 23
  issue: 1–2
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0205
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Machine Learning
  doi: 10.1023/A:1025667309714
– year: 1989
  ident: 10.1016/j.eswa.2015.01.061_b0100
– start-page: 249
  year: 1994
  ident: 10.1016/j.eswa.2015.01.061_b0195
  article-title: A cooperative coevolutionary approach to function optimization
– start-page: 333
  year: 2000
  ident: 10.1016/j.eswa.2015.01.061_b0115
  article-title: The new model of parallel genetic algorithm in multiobjective optimization problems divided range multiobjective genetic algorithm
– ident: 10.1016/j.eswa.2015.01.061_b0090
– volume: Vol. 11
  start-page: 482
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0040
  article-title: A coevolutionary multi-objective evolutionary algorithm
– volume: 17
  start-page: 2003
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0190
  article-title: A methodology for feature selection using multi-objective genetic algorithms for handwritten digit string recognition
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S021800140300271X
– volume: Vol. 186
  start-page: 153
  year: 2009
  ident: 10.1016/j.eswa.2015.01.061_b0095
  article-title: A coevolutionary paradigm for dynamic multiobjective optimization
– volume: 8
  start-page: 217
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2015.01.061_b0110
  article-title: Feature subset selection in unsupervised learning via multiobjective optimization
  publication-title: International Journal of Computational Intelligence
– volume: 10
  start-page: 527
  issue: 5
  year: 2006
  ident: 10.1016/j.eswa.2015.01.061_b0220
  article-title: A distributed cooperative coevolutionary algorithm for multiobjective optimization
  publication-title: Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2005.860762
– start-page: 473
  year: 2011
  ident: 10.1016/j.eswa.2015.01.061_b0155
  article-title: Multi-objective differential evolution with adaptive control of parameters and operators
– volume: 127
  start-page: 65
  year: 2014
  ident: 10.1016/j.eswa.2015.01.061_b0240
  article-title: An extensive comparative study of cluster validity indices
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.043
– volume: 92
  start-page: 195
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2015.01.061_b0245
  article-title: Massively parallel feature selection: An approach based on variance preservation
  publication-title: Machine Learning
  doi: 10.1007/s10994-013-5373-4
– ident: 10.1016/j.eswa.2015.01.061_b0080
– start-page: 1545
  year: 2006
  ident: 10.1016/j.eswa.2015.01.061_b0180
  article-title: Information preserving multi-objective feature selection for unsupervised learning
– volume: 37
  start-page: 3638
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2015.01.061_b0120
  article-title: Multi-objective feature selection by using NSGA-II for customer churn prediction in telecommunications
  publication-title: Expert Systems With Applications
  doi: 10.1016/j.eswa.2009.10.027
– start-page: 534
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0070
  article-title: Distributed computing of Pareto-optimal solutions using multi-objective evolutionary algorithms
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.eswa.2015.01.061_b0210
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– year: 2009
  ident: 10.1016/j.eswa.2015.01.061_b0050
– ident: 10.1016/j.eswa.2015.01.061_b0005
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2015.01.061_b0065
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.eswa.2015.01.061_b0025
  doi: 10.1109/CEC.2004.1331135
– volume: Vol. 22
  start-page: 33
  year: 2006
  ident: 10.1016/j.eswa.2015.01.061_b0165
  article-title: Parallel evolutionary multiobjective optimization
– volume: 7
  start-page: 144
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2015.01.061_b0230
  article-title: Considerations in engineering parallel multiobjective evolutionary algorithms
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2003.810751
– ident: 10.1016/j.eswa.2015.01.061_b0170
  doi: 10.1007/978-3-540-30217-9_78
– start-page: 288
  year: 2002
  ident: 10.1016/j.eswa.2015.01.061_b0130
  article-title: Multi-objective co-operative co-evolutionary genetic algorithm
– volume: 42
  start-page: 105
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2015.01.061_b0030
  article-title: Local models – an approach to distributed multi-objective optimization
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-007-9119-8
– start-page: 299
  issue: 277
  year: 2014
  ident: 10.1016/j.eswa.2015.01.061_b0200
  article-title: Small sample size effects in statistical pattern recognition: Recommendations for practitioners
  publication-title: Lecture Notes in Electric Engineering
– volume: Vol. 1
  start-page: 309
  year: 2000
  ident: 10.1016/j.eswa.2015.01.061_b0085
  article-title: A multiobjective evolutionary setting for feature selection and a commonality-based crossover operator
SSID ssj0017007
Score 2.3206992
Snippet •Multiobjective unsupervised feature selection with many decision variables is tackled.•EEG signals for Brain–Computer Interface (BCI) applications are used as...
Many machine learning and pattern recognition applications require reducing dimensionality to improve learning accuracy while irrelevant inputs are removed....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4239
SubjectTerms Computational efficiency
Computing time
Evolution
Evolutionary
Expert systems
Feature selection
High-dimensional data
Human-computer interface
Multi-objective clustering
Optimization
Parallel evolutionary algorithms
Pattern recognition
Speedup models
Unsupervised classification
Title Parallel alternatives for evolutionary multi-objective optimization in unsupervised feature selection
URI https://dx.doi.org/10.1016/j.eswa.2015.01.061
https://www.proquest.com/docview/1825458132
Volume 42
WOSCitedRecordID wos000352748900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLS0biVgXZcRzbxwKLAKHVCi1Sb5GdOKhVN6mStKz4VfxE7NhOQ8Wu2AOXqLWaR_t9HY_HM98A8DqWpCzMuisSVKooYaiIVKJZpCkTlKE8pmWP9Bd2esoXC3E2mfwKtTC7NasqfnkpNv8VajNmwLalszeAe7ioGTCvDejmaGA3x38C_kw2tj-KzTz2wT4rLOuUvf2NbaZcn0kY1WrlLN6sNrbjwhdl2iDItmq3G2tIWuOSlrrX_5y1fdecAOVqSOPTTec1oUO13GhffL_Nf1HvfJvs9438vhwCvE2nXXzXVmvXo-Hlz5B06Tb09zF9aQfeYpck-NW9m6_HMQxM97lWQzCSRQl2_XqCXU7iEf_EyMhazcLRhG2sTvzXycDFJVZvdPvDKkxhJ9DqtN__VN4-mBGHPMWQArfK7DUye40M4QzZ9fZRzKjgU3A0_3Sy-DzsXDHkSvTDN_KFWi6n8PBJrnKGDtyC3tc5vwfu-EUKnDty3QcTXT0Ad0MDEOjng4dAB67BMdeg4Roccw0ecA2OuQaXFRxzDXquwYFrj8C3Dyfn7z5Gvm9HlBNCukgwyRNuPFlCSyQKXaa4VDnXZoUUS-MRFxSXgkteFEgKjYTNFuAqLxPFlC5oSh6DaVVX-gmAKo21sRgSpZxY6TmpcsllnBIiidZIHQMcfsAs96L2trfKOrsaumMwG87ZOEmXaz9NAy6Zd0qds5kZml173qsAYmYstt2Gk5Wut22GbVCGckzipzd6kmfg9v6_8xxMu2arX4Bb-a5bts1Lz8Pf33K_ew
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parallel+alternatives+for+evolutionary+multi-objective+optimization+in+unsupervised+feature+selection&rft.jtitle=Expert+systems+with+applications&rft.au=Kimovski%2C+Dragi&rft.au=Ortega%2C+Julio&rft.au=Ortiz%2C+Andr%C3%A9s&rft.au=Ba%C3%B1os%2C+Ra%C3%BAl&rft.date=2015-06-01&rft.issn=0957-4174&rft.volume=42&rft.issue=9&rft.spage=4239&rft.epage=4252&rft_id=info:doi/10.1016%2Fj.eswa.2015.01.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2015_01_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon