Distributed Reinforcement Learning Algorithm for Dynamic Economic Dispatch With Unknown Generation Cost Functions

In this article, the dynamic economic dispatch (DED) problem for smart grid is solved under the assumption that no knowledge of the mathematical formulation of the actual generation cost functions is available. The objective of the DED problem is to find the optimal power output of each unit at each...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics Jg. 16; H. 4; S. 2258 - 2267
Hauptverfasser: Dai, Pengcheng, Yu, Wenwu, Wen, Guanghui, Baldi, Simone
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1551-3203, 1941-0050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, the dynamic economic dispatch (DED) problem for smart grid is solved under the assumption that no knowledge of the mathematical formulation of the actual generation cost functions is available. The objective of the DED problem is to find the optimal power output of each unit at each time so as to minimize the total generation cost. To address the lack of a priori knowledge, a new distributed reinforcement learning optimization algorithm is proposed. The algorithm combines the state-action-value function approximation with a distributed optimization based on multiplier splitting. Theoretical analysis of the proposed algorithm is provided to prove the feasibility of the algorithm, and several case studies are presented to demonstrate its effectiveness.
AbstractList In this article, the dynamic economic dispatch (DED) problem for smart grid is solved under the assumption that no knowledge of the mathematical formulation of the actual generation cost functions is available. The objective of the DED problem is to find the optimal power output of each unit at each time so as to minimize the total generation cost. To address the lack of a priori knowledge, a new distributed reinforcement learning optimization algorithm is proposed. The algorithm combines the state-action-value function approximation with a distributed optimization based on multiplier splitting. Theoretical analysis of the proposed algorithm is provided to prove the feasibility of the algorithm, and several case studies are presented to demonstrate its effectiveness.
Author Baldi, Simone
Yu, Wenwu
Wen, Guanghui
Dai, Pengcheng
Author_xml – sequence: 1
  givenname: Pengcheng
  surname: Dai
  fullname: Dai, Pengcheng
  email: jldaipc@163.com
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 2
  givenname: Wenwu
  orcidid: 0000-0003-3755-179X
  surname: Yu
  fullname: Yu, Wenwu
  email: wwyu@seu.edu.cn
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 3
  givenname: Guanghui
  orcidid: 0000-0003-0070-8597
  surname: Wen
  fullname: Wen, Guanghui
  email: wenguanghui@gmail.com
  organization: School of Mathematics, Southeast University, Nanjing, China
– sequence: 4
  givenname: Simone
  orcidid: 0000-0001-9752-8925
  surname: Baldi
  fullname: Baldi, Simone
  email: s.baldi@tudelft.nl
  organization: School of Mathematics, Southeast University, Nanjing, China
BookMark eNp9UE1LAzEQDaKgVu-Cl4DnrZPMZrc5Slu1UBCkxeOSTbNtapvUJEX679214sGDp3nDvA_mXZJT550h5IZBnzGQ97PJpM-ByT6XiHmOJ-SCyZxlAAJOWywEy5ADnpPLGNcAWALKC_IxsjEFW--TWdBXY13jgzZb4xKdGhWcdUv6sFn6YNNqS9sjHR2c2lpNx9o734HWYaeSXtG3lkPn7t35T0efjDNBJesdHfqY6OPe6W6LV-SsUZtorn9mj8wfx7PhczZ9eZoMH6aZRsSUSaihUbUuuZYG5EJjwQuRM63Lpii1aMrFooS8ZkIKUEwJrg0UhWJachzUHHvk7ui7C_5jb2Kq1n4fXBtZccyF4IggWhYcWTr4GINpql2wWxUOFYOqK7Zqi626YqufYltJ8Ueibfr-NAVlN_8Jb49Ca4z5zRmUA4lS4hcni4iq
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_TSG_2023_3339541
crossref_primary_10_1016_j_jclepro_2021_128318
crossref_primary_10_1016_j_enconman_2025_119827
crossref_primary_10_1109_TNNLS_2021_3054778
crossref_primary_10_1109_TII_2023_3296887
crossref_primary_10_1109_TNNLS_2023_3337387
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1109_TPWRS_2021_3070161
crossref_primary_10_1109_TSG_2023_3329459
crossref_primary_10_1002_int_22945
crossref_primary_10_1109_JIOT_2024_3377201
crossref_primary_10_1007_s00202_023_01947_8
crossref_primary_10_1109_TNSE_2025_3527466
crossref_primary_10_1109_JIOT_2021_3067951
crossref_primary_10_3390_robotics11020035
crossref_primary_10_1109_TII_2024_3465601
crossref_primary_10_1016_j_ijepes_2023_109195
crossref_primary_10_1109_TSG_2023_3331467
crossref_primary_10_1007_s10489_023_04489_5
crossref_primary_10_1016_j_energy_2022_125624
crossref_primary_10_1016_j_epsr_2022_108828
crossref_primary_10_1109_TII_2022_3151772
crossref_primary_10_1109_TSTE_2024_3355123
crossref_primary_10_3390_pr12061199
crossref_primary_10_1109_TSMC_2024_3462762
crossref_primary_10_1016_j_sysconle_2023_105657
crossref_primary_10_1016_j_apenergy_2023_121704
crossref_primary_10_3390_sym16030322
crossref_primary_10_1109_TPWRS_2023_3298007
crossref_primary_10_1109_TCNS_2024_3510598
crossref_primary_10_1016_j_ijepes_2020_106759
crossref_primary_10_1016_j_ijepes_2024_109867
crossref_primary_10_1109_TETCI_2024_3360305
crossref_primary_10_1016_j_neucom_2021_08_140
crossref_primary_10_1016_j_neucom_2023_01_038
crossref_primary_10_1016_j_apenergy_2023_122121
crossref_primary_10_1109_TNNLS_2023_3234049
crossref_primary_10_1016_j_ifacol_2022_05_043
crossref_primary_10_1109_ACCESS_2021_3125102
crossref_primary_10_1177_01423312221110999
crossref_primary_10_1049_gtd2_12206
crossref_primary_10_1109_TPWRS_2022_3217905
crossref_primary_10_1016_j_asoc_2020_106882
crossref_primary_10_1109_TII_2021_3078110
crossref_primary_10_1109_JSYST_2023_3315833
crossref_primary_10_1109_TNSE_2020_3018871
crossref_primary_10_3390_pr11051513
crossref_primary_10_1109_TCYB_2021_3082639
crossref_primary_10_1109_TVT_2024_3434969
crossref_primary_10_3390_en17030550
crossref_primary_10_1080_00207721_2025_2461016
crossref_primary_10_3390_app15020900
crossref_primary_10_1002_acs_3234
crossref_primary_10_1016_j_isatra_2025_01_009
crossref_primary_10_1109_JIOT_2023_3284510
crossref_primary_10_1109_TETCI_2023_3299294
crossref_primary_10_1109_TPWRS_2022_3159825
crossref_primary_10_1038_s41598_025_00492_7
crossref_primary_10_1631_FITEE_2000205
crossref_primary_10_1007_s00521_022_08089_1
crossref_primary_10_1109_TII_2020_3016336
crossref_primary_10_1109_TNSE_2024_3384505
crossref_primary_10_1109_TNNLS_2022_3160645
crossref_primary_10_1109_JAS_2023_123402
crossref_primary_10_1109_TNNLS_2021_3139138
crossref_primary_10_1109_TIA_2025_3529675
Cites_doi 10.1109/TCST.2018.2816902
10.1007/s11432-016-9114-y
10.1109/TAC.2010.2041686
10.1016/j.sysconle.2015.06.006
10.1109/TAC.2004.834113
10.1038/nature14236
10.1109/TSMCB.2008.920269
10.1109/TCNS.2015.2399191
10.1515/9781400873173
10.1109/TII.2013.2287807
10.1109/TII.2015.2479558
10.1109/TSG.2016.2623980
10.1109/SURV.2011.101911.00087
10.1016/j.neucom.2013.06.037
10.1109/TNN.1998.712192
10.1109/MPE.2009.934876
10.1049/iet-gtd.2015.1345
10.1109/TPWRS.2018.2889989
10.1002/rnc.1760
10.1109/TIE.2016.2617832
10.1109/TPWRS.2013.2271640
10.1109/TII.2017.2772088
10.1109/TSG.2015.2434831
10.1016/j.rser.2013.10.022
10.1109/TIE.2016.2542134
10.1109/PSCE.2009.4840087
10.1109/TAC.2008.2009515
10.1109/TIE.2016.2615037
10.1109/TII.2011.2166794
10.1109/TSG.2018.2834368
10.1016/j.automatica.2016.08.007
10.1109/TII.2012.2209668
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2019.2933443
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1941-0050
EndPage 2267
ExternalDocumentID 10_1109_TII_2019_2933443
8789399
Genre orig-research
GrantInformation_xml – fundername: Six Talent Peaks of Jiangsu Province
  grantid: 2019-DZXX-006
– fundername: National Ten Thousand Talent Program for Young Top-Notch Talents
  grantid: W2070082
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 4007019109
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61673107; 61673104
  funderid: 10.13039/501100001809
– fundername: Ministry of Education
  grantid: 6141A020223
  funderid: 10.13039/100010449
– fundername: Jiangsu Provincial Key Laboratory of Networked Collective Intelligence
  grantid: BM2017002
– fundername: Special Guiding Funds for Double First-Class
  grantid: 4007019201
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-90b0fabc72c9e09dc3626541cc7f67c5f7dd704b15950a1a52ce066a1c9238b23
IEDL.DBID RIE
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000510901000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:22:21 EDT 2025
Sat Nov 29 04:16:48 EST 2025
Tue Nov 18 22:35:39 EST 2025
Wed Aug 27 02:38:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-90b0fabc72c9e09dc3626541cc7f67c5f7dd704b15950a1a52ce066a1c9238b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9752-8925
0000-0003-0070-8597
0000-0003-3755-179X
OpenAccessLink http://resolver.tudelft.nl/uuid:49d9f5f6-8fbc-419f-a599-3368d6cecf0d
PQID 2345523305
PQPubID 85507
PageCount 10
ParticipantIDs crossref_primary_10_1109_TII_2019_2933443
crossref_citationtrail_10_1109_TII_2019_2933443
proquest_journals_2345523305
ieee_primary_8789399
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
wood (ref33) 2012
mnih (ref31) 2015; 518
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
mnih (ref30) 2013
ref6
ref5
References_xml – ident: ref21
  doi: 10.1109/TCST.2018.2816902
– year: 2012
  ident: ref33
  publication-title: Power Generation Operation and Control
– ident: ref19
  doi: 10.1007/s11432-016-9114-y
– ident: ref9
  doi: 10.1109/TAC.2010.2041686
– ident: ref17
  doi: 10.1016/j.sysconle.2015.06.006
– ident: ref7
  doi: 10.1109/TAC.2004.834113
– volume: 518
  start-page: 529
  year: 2015
  ident: ref31
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: ref26
  doi: 10.1109/TSMCB.2008.920269
– ident: ref13
  doi: 10.1109/TCNS.2015.2399191
– ident: ref32
  doi: 10.1515/9781400873173
– ident: ref16
  doi: 10.1109/TII.2013.2287807
– ident: ref20
  doi: 10.1109/TII.2015.2479558
– ident: ref23
  doi: 10.1109/TSG.2016.2623980
– ident: ref1
  doi: 10.1109/SURV.2011.101911.00087
– ident: ref28
  doi: 10.1016/j.neucom.2013.06.037
– ident: ref25
  doi: 10.1109/TNN.1998.712192
– ident: ref2
  doi: 10.1109/MPE.2009.934876
– ident: ref22
  doi: 10.1049/iet-gtd.2015.1345
– ident: ref34
  doi: 10.1109/TPWRS.2018.2889989
– ident: ref29
  doi: 10.1002/rnc.1760
– ident: ref12
  doi: 10.1109/TIE.2016.2617832
– ident: ref10
  doi: 10.1109/TPWRS.2013.2271640
– ident: ref18
  doi: 10.1109/TII.2017.2772088
– ident: ref15
  doi: 10.1109/TSG.2015.2434831
– ident: ref3
  doi: 10.1016/j.rser.2013.10.022
– ident: ref27
  doi: 10.1109/TIE.2016.2542134
– ident: ref5
  doi: 10.1109/PSCE.2009.4840087
– ident: ref8
  doi: 10.1109/TAC.2008.2009515
– year: 2013
  ident: ref30
  article-title: Playing Atari with deep reinforcement learning
  publication-title: arXiv 1312 5602
– ident: ref11
  doi: 10.1109/TIE.2016.2615037
– ident: ref4
  doi: 10.1109/TII.2011.2166794
– ident: ref24
  doi: 10.1109/TSG.2018.2834368
– ident: ref14
  doi: 10.1016/j.automatica.2016.08.007
– ident: ref6
  doi: 10.1109/TII.2012.2209668
SSID ssj0037039
Score 2.5687609
Snippet In this article, the dynamic economic dispatch (DED) problem for smart grid is solved under the assumption that no knowledge of the mathematical formulation of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2258
SubjectTerms Algorithms
Approximation algorithms
Cost function
Distributed reinforcement learning
dynamic economic dispatch (DED)
Economics
Heuristic algorithms
Machine learning
Mathematical analysis
multiplier splitting
Optimization
Power dispatch
Reinforcement learning
Smart grid
Smart grids
state-action-value function approximation
Title Distributed Reinforcement Learning Algorithm for Dynamic Economic Dispatch With Unknown Generation Cost Functions
URI https://ieeexplore.ieee.org/document/8789399
https://www.proquest.com/docview/2345523305
Volume 16
WOSCitedRecordID wos000510901000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB9UBO8e1NMT9_wgD_ciWDdtmk3zKOqiICKi6FtJp4kraFd36_39N0nbRVEE3wpNQulvMl_J_AbgrzNZ6mKJkaFYIUqdVJHhaRG5gRhYw2MsRSgUPlcXF9ndnb6cg_1ZLYy1Nlw-swf-MZzll2N89amyfqbIumo9D_NKDZparU7rCpJcHbhRZRyJhIvuSJLr_vXZmb_DpQ_ItIk0Fe9MUOip8kERB-syXPned63CcutFssMG9l8wZ6s1WOqKjKdr8PMNz-A6vBx7elzf2cqW7MoGslQMeUHW8qves8PH-_HkoR49MXrJjptG9axbktEKz6S1R-yWxrCbyufiKtaQVnts2dF4WrMhWckgyL_hZnhyfXQatb0WIhRC1JHmBXemQJWgtlyX6GlqZBojKjdQKJ0qS0UgkvcjuYmNTNCSt2JiJA8xKxKxAQvVuLKbwHjpLEoCWQh_cixN6rSUmElXFDyzqgf97vfn2BKR-34Yj3kISLjOCbDcA5a3gPVgbzbjuSHh-GLsugdoNq7FpgfbHcJ5u0uneSJSSYE4qbw_n8_agh-Jj6_DTZ1tWKgnr3YHFvFf_TCd7AYB_A8lYtoH
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NgTR44GMDrTDAD7wgkdWJ7Tp-nLZVqygVQp3YW-Rc7G3SSLc24-_n7CTVpiEk3iLFtqL8zvdl3-8APnmbS58qTCzFCon0SieWyzLxIzFylqdYiVgoPNWzWX52Zr5vwJd1LYxzLl4-c_vhMZ7lVwu8DamyYa7JuhrzCB4rKTPeVmv1eleQ7JrIjqrSRGRc9IeS3Aznk0m4xWX2ybgJKcU9IxS7qjxQxdG-jF_835e9hOedH8kOWuBfwYart2GrLzNebcOzO0yDO3BzFAhyQ28rV7EfLtKlYswMso5h9ZwdXJ0vlpfNxS9GL9lR26qe9UsyWuGa9PYF-0lj2GkdsnE1a2mrA7rscLFq2JjsZBTl13A6Pp4fniRdt4UEhRBNYnjJvS1RZ2gcNxUGoholU0TtRxqV11WlCUbyfxS3qVUZOvJXbIrkI-ZlJt7AZr2o3S4wXnmHimAWIpwdKyu9UQpz5cuS504PYNj__gI7KvLQEeOqiCEJNwUBVgTAig6wAXxez7huaTj-MXYnALQe12EzgL0e4aLbp6siE1JRKE5K7-3fZ32ErZP5t2kxncy-voOnWYi2472dPdhslrfuPTzB383lavkhCuMfooTdTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Reinforcement+Learning+Algorithm+for+Dynamic+Economic+Dispatch+With+Unknown+Generation+Cost+Functions&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Dai%2C+Pengcheng&rft.au=Yu%2C+Wenwu&rft.au=Wen%2C+Guanghui&rft.au=Baldi%2C+Simone&rft.date=2020-04-01&rft.pub=IEEE&rft.issn=1551-3203&rft.volume=16&rft.issue=4&rft.spage=2258&rft.epage=2267&rft_id=info:doi/10.1109%2FTII.2019.2933443&rft.externalDocID=8789399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon