Object Detection Using Sim2Real Domain Randomization for Robotic Applications

Robots working in unstructured environments must be capable of sensing and interpreting their surroundings. One of the main obstacles of deep-learning-based models in the field of robotics is the lack of domain-specific labeled data for different industrial applications. In this article, we propose...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on robotics Ročník 39; číslo 2; s. 1225 - 1243
Hlavní autori: Horvath, Daniel, Erdos, Gabor, Istenes, Zoltan, Horvath, Tomas, Foldi, Sandor
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1552-3098, 1941-0468
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Robots working in unstructured environments must be capable of sensing and interpreting their surroundings. One of the main obstacles of deep-learning-based models in the field of robotics is the lack of domain-specific labeled data for different industrial applications. In this article, we propose a sim2real transfer learning method based on domain randomization for object detection with which labeled synthetic datasets of arbitrary size and object types can be automatically generated. Subsequently, a state-of-the-art convolutional neural network, YOLOv4, is trained to detect the different types of industrial objects. With the proposed domain randomization method, we could shrink the reality gap to a satisfactory level, achieving 86.32% and 97.38% <inline-formula><tex-math notation="LaTeX">\mathrm{{mAP}}_{50}</tex-math></inline-formula> scores, respectively, in the case of zero-shot and one-shot transfers, on our manually annotated dataset containing 190 real images. Our solution fits for industrial use as the data generation process takes less than 0.5 s per image and the training lasts only around 12 h, on a GeForce RTX 2080 Ti GPU. Furthermore, it can reliably differentiate similar classes of objects by having access to only one real image for training. To our best knowledge, this is the only work thus far satisfying these constraints.
AbstractList Robots working in unstructured environments must be capable of sensing and interpreting their surroundings. One of the main obstacles of deep-learning-based models in the field of robotics is the lack of domain-specific labeled data for different industrial applications. In this article, we propose a sim2real transfer learning method based on domain randomization for object detection with which labeled synthetic datasets of arbitrary size and object types can be automatically generated. Subsequently, a state-of-the-art convolutional neural network, YOLOv4, is trained to detect the different types of industrial objects. With the proposed domain randomization method, we could shrink the reality gap to a satisfactory level, achieving 86.32% and 97.38% [Formula Omitted] scores, respectively, in the case of zero-shot and one-shot transfers, on our manually annotated dataset containing 190 real images. Our solution fits for industrial use as the data generation process takes less than 0.5 s per image and the training lasts only around 12 h, on a GeForce RTX 2080 Ti GPU. Furthermore, it can reliably differentiate similar classes of objects by having access to only one real image for training. To our best knowledge, this is the only work thus far satisfying these constraints.
Robots working in unstructured environments must be capable of sensing and interpreting their surroundings. One of the main obstacles of deep-learning-based models in the field of robotics is the lack of domain-specific labeled data for different industrial applications. In this article, we propose a sim2real transfer learning method based on domain randomization for object detection with which labeled synthetic datasets of arbitrary size and object types can be automatically generated. Subsequently, a state-of-the-art convolutional neural network, YOLOv4, is trained to detect the different types of industrial objects. With the proposed domain randomization method, we could shrink the reality gap to a satisfactory level, achieving 86.32% and 97.38% <inline-formula><tex-math notation="LaTeX">\mathrm{{mAP}}_{50}</tex-math></inline-formula> scores, respectively, in the case of zero-shot and one-shot transfers, on our manually annotated dataset containing 190 real images. Our solution fits for industrial use as the data generation process takes less than 0.5 s per image and the training lasts only around 12 h, on a GeForce RTX 2080 Ti GPU. Furthermore, it can reliably differentiate similar classes of objects by having access to only one real image for training. To our best knowledge, this is the only work thus far satisfying these constraints.
Author Horvath, Daniel
Erdos, Gabor
Foldi, Sandor
Istenes, Zoltan
Horvath, Tomas
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0002-6450-5193
  surname: Horvath
  fullname: Horvath, Daniel
  email: daniel.horvath@sztaki.hu
  organization: Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
– sequence: 2
  givenname: Gabor
  orcidid: 0000-0002-3531-3803
  surname: Erdos
  fullname: Erdos, Gabor
  email: erdos.gabor@sztaki.hu
  organization: Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
– sequence: 3
  givenname: Zoltan
  orcidid: 0000-0002-0169-4791
  surname: Istenes
  fullname: Istenes, Zoltan
  email: istenes@inf.elte.hu
  organization: CoLocation Center for Academic and Industrial Cooperation, Eötvös Loránd University, Budapest, Hungary
– sequence: 4
  givenname: Tomas
  orcidid: 0000-0002-9438-840X
  surname: Horvath
  fullname: Horvath, Tomas
  email: tomas.horvath@inf.elte.hu
  organization: Department of Data Science and Engineering, Eötvös Loránd University, Budapest, Hungary
– sequence: 5
  givenname: Sandor
  orcidid: 0000-0002-6573-0659
  surname: Foldi
  fullname: Foldi, Sandor
  email: sandorfoldi98@gmail.com
  organization: Centre of Excellence in Production Informatics and Control, Institute for Computer Science and Control, Eötvös Loránd Research Network, Budapest, Hungary
BookMark eNp9kEtLAzEUhYMo2Fb3gpsB11PznmRZWl9QKYx1HdJMIikzkzGZLvTXO33gwoWrc7l8597DGYPzNrQWgBsEpwhBeb8uV1MMMZ4SDAuO5BkYIUlRDikX58PMGM4JlOISjFPaQoiphGQEXlebrTV9trD9ID602Xvy7Uf25htcWl1ni9Bo32albqvQ-G99YFyIWRk2ofcmm3Vd7c1hn67AhdN1stcnnYD148N6_pwvV08v89kyN4SQPheGSEtxxQsOGbYWSiMkd4Vz2lbYCK6NcciYiiNqKswcZdQZgigzhdAVmYC749kuhs-dTb3ahl1sh48KF5IJyJmQA8WPlIkhpWidMr4_5Oyj9rVCUO2bU0Nzat-cOjU3GOEfYxd9o-PXf5bbo8Vba39xKdGQBJEfNdh7hA
CODEN ITREAE
CitedBy_id crossref_primary_10_1007_s11263_025_02472_w
crossref_primary_10_1016_j_procir_2025_08_154
crossref_primary_10_1109_JSEN_2025_3552822
crossref_primary_10_1109_TDSC_2024_3518500
crossref_primary_10_1016_j_autcon_2025_106252
crossref_primary_10_1016_j_ins_2023_120052
crossref_primary_10_1109_ACCESS_2024_3427012
crossref_primary_10_3390_electronics14132738
crossref_primary_10_1016_j_asoc_2024_112365
crossref_primary_10_1109_JIOT_2024_3363036
crossref_primary_10_1016_j_procs_2025_02_002
crossref_primary_10_1016_j_solener_2025_113728
crossref_primary_10_1038_s44182_023_00006_5
crossref_primary_10_1016_j_neucom_2024_129215
crossref_primary_10_1109_TNNLS_2023_3282958
crossref_primary_10_1016_j_cviu_2023_103907
crossref_primary_10_1007_s00170_024_13168_9
crossref_primary_10_1109_TIM_2025_3580815
crossref_primary_10_1109_TASE_2024_3410891
crossref_primary_10_1016_j_iswa_2023_200295
crossref_primary_10_1109_TIE_2025_3532733
crossref_primary_10_1016_j_compositesb_2025_112656
crossref_primary_10_1007_s11042_024_19087_x
crossref_primary_10_1016_j_eij_2025_100680
crossref_primary_10_1016_j_procir_2025_02_205
crossref_primary_10_1109_ACCESS_2025_3526458
crossref_primary_10_1109_TASE_2024_3432405
crossref_primary_10_1016_j_asoc_2024_112568
crossref_primary_10_1007_s00371_025_04043_z
crossref_primary_10_1109_ACCESS_2024_3493755
crossref_primary_10_1049_hve2_70091
Cites_doi 10.1109/CVPR.2018.00352
10.1109/IROS.2013.6696520
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-10578-9_23
10.1145/2601097.2601152
10.1109/TRO.2020.2974099
10.1109/CVPR.2017.690
10.1109/ICCV.2015.169
10.1016/j.mfglet.2014.12.001
10.1109/CVPR.2012.6248074
10.1109/CVPR42600.2020.00625
10.1007/978-3-319-10602-1_48
10.1109/ICRA.2017.7989092
10.1109/JPROC.2023.3238524
10.1109/CVPRW.2018.00143
10.1109/CVPR.2018.00395
10.1109/CVPR.2016.90
10.1109/TPAMI.2022.3158902
10.1109/ICAR.2015.7251504
10.1177/105971239700600205
10.1016/j.ifacol.2021.08.068
10.1007/978-3-030-11009-3_42
10.1109/IROS.2017.8202133
10.1016/j.eng.2019.07.015
10.1109/IROS.2012.6386109
10.1109/LRA.2021.3063925
10.1177/0278364917710318
10.1109/CVPR.2014.81
10.1109/CVPR.2014.461
10.1145/566654.566636
10.l007/978-3-319-46448-0_2
10.1109/TKDE.2009.191
10.1017/9781108891530.013
10.1109/ICRA.2018.8460875
10.1007/978-3-540-75538-8_7
10.1145/360825.360839
10.1109/TRO.2020.2994002
10.1109/TPAMI.2018.2858826
10.1109/TRO.2020.2988642
10.1109/CVPR.2017.106
10.1109/CVPR.2016.352
10.1109/CVPR.2016.470
10.1109/CVPR.2016.91
10.1109/ICARSC.2018.8374189
10.1177/0278364919870227
10.1007/s11263-015-0816-y
10.21105/joss.00500
10.1109/TPAMI.2022.3155712
10.1109/IROS40897.2019.8968139
10.1007/978-3-319-46475-6_7
10.1186/s40537-016-0043-6
10.1007/s11263-018-1072-8
10.5555/3454287.3455008
10.1109/IROS.2018.8593933
10.1109/IROS.2004.1389727
10.1109/IROS40897.2019.8967622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TRO.2022.3207619
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0468
EndPage 1243
ExternalDocumentID 10_1109_TRO_2022_3207619
9916581
Genre orig-research
GrantInformation_xml – fundername: Development and Innovation Office
– fundername: National Lab for Autonomous Systems
– fundername: Ministry for Innovation and Technology and the National Research
– fundername: Application Domain Specific Highly Reliable IT Solutions
– fundername: Thematic Excellence Programme
  grantid: 2020-4.1.1.-TKP2020
– fundername: Research on prime exploitation of the potential provided by the industrial digitalisation
  grantid: ED_18-2-2018-0006
– fundername: National Challenges Subprogramme
– fundername: National Research, Development and Innovation Fund of Hungary
  grantid: TKP2020-NKA-06
GroupedDBID .DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
VJK
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-8c39e42d676052ee09c896f7ffaed2c86accf1ccd614cd25f454fc3145c78ad3
IEDL.DBID RIE
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000869385100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1552-3098
IngestDate Mon Jun 30 04:55:31 EDT 2025
Tue Nov 18 22:32:09 EST 2025
Sat Nov 29 01:47:30 EST 2025
Wed Aug 27 02:14:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-8c39e42d676052ee09c896f7ffaed2c86accf1ccd614cd25f454fc3145c78ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9438-840X
0000-0002-6450-5193
0000-0002-0169-4791
0000-0002-6573-0659
0000-0002-3531-3803
OpenAccessLink https://ieeexplore.ieee.org/document/9916581
PQID 2795806589
PQPubID 27625
PageCount 19
ParticipantIDs ieee_primary_9916581
proquest_journals_2795806589
crossref_citationtrail_10_1109_TRO_2022_3207619
crossref_primary_10_1109_TRO_2022_3207619
PublicationCentury 2000
PublicationDate 2023-April
2023-4-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-April
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on robotics
PublicationTitleAbbrev TRO
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref11
ref55
ref10
ref54
Tossy (ref76) 2022
ref17
DeVries (ref27) 2017
Wu (ref66) 2019
ref18
Coumans (ref25) 2016
ref51
ref50
(ref72) 2022
James (ref28) 2017
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Matl (ref52) 2022
Kingma (ref16) 2014
ref49
ref7
(ref30) 2022
ref9
ref4
Bochkovskiy (ref8) 2020
ref3
ref6
ref5
ref40
(ref73) 2022
ref35
(ref71) 2022
ref34
ref37
ref36
ref31
ref33
ref32
ref2
ref1
ref38
Angel (ref65) 2014
(ref64) 2022
Simonyan (ref19) 2015
ref70
ref24
ref68
ref23
ref67
ref26
Redmon (ref59) 2018
ref69
ref20
ref22
ref21
ref29
Ordonez (ref75) 2022
Exner (ref74) 2022
ref60
(ref63) 2022
ref62
ref61
Dai (ref39) 2016
References_xml – ident: ref31
  doi: 10.1109/CVPR.2018.00352
– ident: ref49
  doi: 10.1109/IROS.2013.6696520
– ident: ref6
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref55
  doi: 10.1007/978-3-319-10578-9_23
– ident: ref51
  doi: 10.1145/2601097.2601152
– ident: ref3
  doi: 10.1109/TRO.2020.2974099
– ident: ref58
  doi: 10.1109/CVPR.2017.690
– ident: ref56
  doi: 10.1109/ICCV.2015.169
– year: 2015
  ident: ref19
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref70
  doi: 10.1016/j.mfglet.2014.12.001
– year: 2017
  ident: ref27
  article-title: Improved regularization of convolutional neural networks with cutout
– ident: ref38
  doi: 10.1109/CVPR.2012.6248074
– year: 2022
  ident: ref30
  article-title: Unreal engine
– ident: ref45
  doi: 10.1109/CVPR42600.2020.00625
– year: 2022
  ident: ref72
  article-title: ROS wrapper for intel RealSense devices
– year: 2022
  ident: ref71
  article-title: Robotic operating system
– year: 2022
  ident: ref73
  article-title: Universal robots ROS driver
– ident: ref5
  doi: 10.1007/978-3-319-10602-1_48
– ident: ref32
  doi: 10.1109/ICRA.2017.7989092
– ident: ref53
  doi: 10.1109/JPROC.2023.3238524
– year: 2022
  ident: ref64
  article-title: Texture ninja
– ident: ref37
  doi: 10.1109/CVPRW.2018.00143
– ident: ref34
  doi: 10.1109/CVPR.2018.00395
– ident: ref61
  doi: 10.1109/CVPR.2016.90
– ident: ref44
  doi: 10.1109/TPAMI.2022.3158902
– ident: ref48
  doi: 10.1109/ICAR.2015.7251504
– year: 2022
  ident: ref76
  article-title: YOLO V4 for darknet ROS
– ident: ref18
  doi: 10.1177/105971239700600205
– ident: ref69
  doi: 10.1016/j.ifacol.2021.08.068
– volume-title: Proc. 2nd Int. Conf. Learn. Representations
  year: 2014
  ident: ref16
  article-title: Auto-encoding variational Bayes
– ident: ref41
  doi: 10.1007/978-3-030-11009-3_42
– ident: ref14
  doi: 10.1109/IROS.2017.8202133
– ident: ref1
  doi: 10.1016/j.eng.2019.07.015
– ident: ref20
  doi: 10.1109/IROS.2012.6386109
– ident: ref47
  doi: 10.1109/LRA.2021.3063925
– ident: ref9
  doi: 10.1177/0278364917710318
– ident: ref54
  doi: 10.1109/CVPR.2014.81
– year: 2016
  ident: ref25
  article-title: PyBullet, a python module for physics simulation for games, robotics and machine learning
– ident: ref62
  doi: 10.1109/CVPR.2014.461
– year: 2019
  ident: ref66
  article-title: Detectron2
– ident: ref24
  doi: 10.1145/566654.566636
– ident: ref7
  doi: 10.l007/978-3-319-46448-0_2
– ident: ref10
  doi: 10.1109/TKDE.2009.191
– ident: ref17
  doi: 10.1017/9781108891530.013
– ident: ref13
  doi: 10.1109/ICRA.2018.8460875
– ident: ref26
  doi: 10.1007/978-3-540-75538-8_7
– ident: ref42
  doi: 10.1145/360825.360839
– ident: ref29
  doi: 10.1109/TRO.2020.2994002
– ident: ref60
  doi: 10.1109/TPAMI.2018.2858826
– ident: ref2
  doi: 10.1109/TRO.2020.2988642
– ident: ref68
  doi: 10.1109/CVPR.2017.106
– ident: ref35
  doi: 10.1109/CVPR.2016.352
– ident: ref40
  doi: 10.1109/CVPR.2016.470
– ident: ref57
  doi: 10.1109/CVPR.2016.91
– year: 2020
  ident: ref8
  article-title: YOLOv4: Optimal speed and accuracy of object detection
– ident: ref22
  doi: 10.1109/ICARSC.2018.8374189
– start-page: 379
  volume-title: Proc. 30th Int. Conf. Neural Inf. Process. Syst.
  year: 2016
  ident: ref39
  article-title: R-FCN: Object detection via region-based fully convolutional networks
– ident: ref43
  doi: 10.1177/0278364919870227
– ident: ref4
  doi: 10.1007/s11263-015-0816-y
– ident: ref50
  doi: 10.21105/joss.00500
– ident: ref46
  doi: 10.1109/TPAMI.2022.3155712
– ident: ref15
  doi: 10.1109/IROS40897.2019.8968139
– year: 2022
  ident: ref52
  article-title: Pyrender
– year: 2022
  ident: ref75
  article-title: Robotiq 2-Finger grippers
– ident: ref36
  doi: 10.1007/978-3-319-46475-6_7
– year: 2017
  ident: ref28
  article-title: Transferring end-to-end visuomotor control from simulation to real world for a multi-stage task
– year: 2018
  ident: ref59
  article-title: YOLOv3: An incremental improvement
– ident: ref11
  doi: 10.1186/s40537-016-0043-6
– ident: ref33
  doi: 10.1007/s11263-018-1072-8
– year: 2022
  ident: ref63
  article-title: Free stock textures
– year: 2022
  ident: ref74
  article-title: Universal robot
– ident: ref67
  doi: 10.5555/3454287.3455008
– ident: ref21
  doi: 10.1109/IROS.2018.8593933
– ident: ref23
  doi: 10.1109/IROS.2004.1389727
– volume-title: Interactive Computer Graphics: A Top-Down Approach With WebGL
  year: 2014
  ident: ref65
– ident: ref12
  doi: 10.1109/IROS40897.2019.8967622
SSID ssj0024903
Score 2.5993834
Snippet Robots working in unstructured environments must be capable of sensing and interpreting their surroundings. One of the main obstacles of deep-learning-based...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1225
SubjectTerms Adaptation models
Artificial neural networks
Computational modeling
Computer vision for automation
Datasets
Deep learning
deep learning in robotics and automation
Industrial applications
localization
Object detection
Object recognition
Randomization
Robotics
Robots
Service robots
sim2real knowledge transfer
Synthetic data
Task analysis
Training
Title Object Detection Using Sim2Real Domain Randomization for Robotic Applications
URI https://ieeexplore.ieee.org/document/9916581
https://www.proquest.com/docview/2795806589
Volume 39
WOSCitedRecordID wos000869385100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0468
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024903
  issn: 1552-3098
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxQADr4IoFOSBBYn0YSexPVaUigFaVDp0i5yzLVWiCeqD34_tpKUIhEQmD3YUfU5y9_nuvkPoppOSlLvk1tCOLEEBEkgIZSAj625QEytWiCQ9scGATybipYLuNrUwWmuffKabbuhj-SqHlTsqazlfJnJ11juMsaJW60tXT_guyE5RLKBtwdchybZojUdDSwQJaVLiWfs3E-R7qvz4EXvr0j_833MdoYPSi8TdYtuPUUVnJ2h_S1uwhp6HqTtiwT299NlWGfbZAfh1OiMj6x3iXj6T0wyPZKbyWVmNia0Li0d5mtv74u5WbPsUjfsP4_vHoOydEACldBlwoEKHRMXM8hWidVsAF7FhxkitCPBYApgOgLLmGRSJTBiFBmgnjIBxqegZqmZ5ps8RjmOgEKdUcAjtJbm2DIfTUJlUUjBxHbXWaCZQ6oq79hZviecXbZFY_BOHf1LiX0e3mxXvhabGH3NrDu_NvBLqOmqsNywpP7pFQpiIXJyYi4vfV12iPdctvki8aaDqcr7SV2gXPpbTxfzav0-faXzIEw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5EBfXgW1yfOXgRrLubpG1yFB8orquse_BW0kkCC24r6-rvN0m7q6II9pRDUsqXtjNfZuYbgKN2TnPhk1u5GzmCgjRSyFWkYuduMJvotBJJ6qTdrnh6kg8zcDKthTHGhOQzc-qHIZavS3zzR2VN78vEvs56LuactqtqrU9lPRn6IHtNsYi1pJgEJVuy2e_dOypI6Smjgbd_M0Khq8qPX3GwL1cr_3uyVViu_UhyVm38GsyYYh2WvqgLbsDdfe4PWciFGYd8q4KE_ADyOBjSnvMPyUU5VIOC9FShy2Fdj0mcE0t6ZV66-5KzL9HtTehfXfbPr6O6e0KEjLFxJJBJw6lOUsdYqDEtiUImNrVWGU1RJArRthG1M9CoaWx5zC2yNo8xFUqzLZgtysJsA0kSZJjkTArk7lLCOI4jGNc2Vwxt0oDmBM0Ma2Vx3-DiOQsMoyUzh3_m8c9q_BtwPF3xUqlq_DF3w-M9nVdD3YC9yYZl9Wf3mtFUxj5SLOTO76sOYeG6f9fJOjfd211Y9L3jqzScPZgdj97MPszj-3jwOjoI79YH-5jLWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object+Detection+Using+Sim2Real+Domain+Randomization+for+Robotic+Applications&rft.jtitle=IEEE+transactions+on+robotics&rft.au=Horv%C3%A1th%2C+D%C3%A1niel&rft.au=Erd%C5%91s%2C+G%C3%A1bor&rft.au=Istenes%2C+Zolt%C3%A1n&rft.au=Horv%C3%A1th%2C+Tom%C3%A1%C5%A1&rft.date=2023-04-01&rft.issn=1552-3098&rft.eissn=1941-0468&rft.volume=39&rft.issue=2&rft.spage=1225&rft.epage=1243&rft_id=info:doi/10.1109%2FTRO.2022.3207619&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TRO_2022_3207619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-3098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-3098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-3098&client=summon