Parallel algorithm for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems

A parallel iterative scheme for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems with Markovian transitions is introduced. The algorithm is computationally efficient since it operates on reduced-order decoupled algebraic discrete Lyapunov equations. Furthermore, the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & mathematics with applications (1987) Ročník 30; číslo 7; s. 1 - 4
Hlavní autori: Borno, I., Gajic, Z.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Oxford Elsevier Ltd 01.10.1995
Elsevier
Predmet:
ISSN:0898-1221, 1873-7668
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A parallel iterative scheme for solving coupled algebraic Lyapunov equations of discrete-time jump linear systems with Markovian transitions is introduced. The algorithm is computationally efficient since it operates on reduced-order decoupled algebraic discrete Lyapunov equations. Furthermore, the solutions at every iteration are computed by elementary matrix operations. Hence, the number of operations is minimal. Monotonicity of convergence is established under the existence conditions of unique positive solutions.
ISSN:0898-1221
1873-7668
DOI:10.1016/0898-1221(95)00119-J