Asynchronous Optimization Over Graphs: Linear Convergence Under Error Bound Conditions

We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 66; H. 10; S. 4604 - 4619
Hauptverfasser: Cannelli, Loris, Facchinei, Francisco, Scutari, Gesualdo, Kungurtsev, Vyacheslav
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned setting arises in several applications of practical interest. We propose what is, to the best of our knowledge, the first distributed, asynchronous algorithm with rate guarantees for this class of problems. When the objective function is nonconvex, the algorithm provably converges to a stationary solution at a sublinear rate whereas linear rate is achieved under the renowned Luo-Tseng error bound condition (which is less stringent than strong convexity). Numerical results on matrix completion and LASSO problems show the effectiveness of our method.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2020.3033490