Asynchronous Optimization Over Graphs: Linear Convergence Under Error Bound Conditions

We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned se...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on automatic control Ročník 66; číslo 10; s. 4604 - 4619
Hlavní autori: Cannelli, Loris, Facchinei, Francisco, Scutari, Gesualdo, Kungurtsev, Vyacheslav
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.10.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9286, 1558-2523
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned setting arises in several applications of practical interest. We propose what is, to the best of our knowledge, the first distributed, asynchronous algorithm with rate guarantees for this class of problems. When the objective function is nonconvex, the algorithm provably converges to a stationary solution at a sublinear rate whereas linear rate is achieved under the renowned Luo-Tseng error bound condition (which is less stringent than strong convexity). Numerical results on matrix completion and LASSO problems show the effectiveness of our method.
AbstractList We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions, each of which is known only by the associated agent and depends on the variables of that agent and those of a few others. This partitioned setting arises in several applications of practical interest. We propose what is, to the best of our knowledge, the first distributed, asynchronous algorithm with rate guarantees for this class of problems. When the objective function is nonconvex, the algorithm provably converges to a stationary solution at a sublinear rate whereas linear rate is achieved under the renowned Luo-Tseng error bound condition (which is less stringent than strong convexity). Numerical results on matrix completion and LASSO problems show the effectiveness of our method.
Author Scutari, Gesualdo
Facchinei, Francisco
Cannelli, Loris
Kungurtsev, Vyacheslav
Author_xml – sequence: 1
  givenname: Loris
  orcidid: 0000-0002-7161-6414
  surname: Cannelli
  fullname: Cannelli, Loris
  email: loris.cannelli@idsia.ch
  organization: Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), USI/SUPSI, Lugano, Switzerland
– sequence: 2
  givenname: Francisco
  orcidid: 0000-0002-7714-1210
  surname: Facchinei
  fullname: Facchinei, Francisco
  email: facchinei@dis.uniroma1.it
  organization: Department of Computer, Control, and Management Engineering, University of Rome La Sapienza, Rome, Italy
– sequence: 3
  givenname: Gesualdo
  orcidid: 0000-0002-6453-6870
  surname: Scutari
  fullname: Scutari, Gesualdo
  email: gscutari@purdue.edu
  organization: School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
– sequence: 4
  givenname: Vyacheslav
  orcidid: 0000-0003-2229-8824
  surname: Kungurtsev
  fullname: Kungurtsev, Vyacheslav
  email: vyacheslav.kungurtsev@fel.cvut.cz
  organization: Department of Computer Science, Czech Technical University, Prague, Czech Republic
BookMark eNp9kM9LwzAUx4NMcJveBS8Fz5350aSptznmFAa7bF5D2iYuY0tq0grzrzd1w4MHT4_33vfzHnxGYGCdVQDcIjhBCBYP6-lsgiGGEwIJyQp4AYaIUp5iiskADCFEPC0wZ1dgFMIutizL0BC8TcPRVlvvrOtCsmpaczBfsjXOJqtP5ZOFl802PCZLY5X0yczZOH1XtlLJxtYxMPfe-eTJdbbut7Xp2XANLrXcB3VzrmOweZ6vZy_pcrV4nU2XaUUIaVOOGSRUMoVyWuSFxqjGpaZaZxXCkuKK5jnTdclKXZYac8h4iQoCkdQ5YbQmY3B_utt499Gp0Iqd67yNLwWm8SbHlOUxBU-pyrsQvNKi8eYg_VEgKHp7ItoTvT1xthcR9gepTPvjpfXS7P8D706gUUr9_ikw4RnJyDc7iH4L
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_ifacol_2022_07_249
crossref_primary_10_1080_10556788_2021_2023524
crossref_primary_10_1109_TAC_2024_3522188
crossref_primary_10_1109_TCNS_2022_3203366
crossref_primary_10_1109_LCSYS_2023_3270347
crossref_primary_10_1088_1361_6420_acbdb9
crossref_primary_10_1109_LCSYS_2021_3082800
crossref_primary_10_1137_20M1353149
crossref_primary_10_1109_TAC_2020_3033490
crossref_primary_10_1109_TAC_2023_3261465
Cites_doi 10.1109/TAC.2017.2730481
10.1109/GlobalSIP.2018.8646514
10.1109/CDC.2013.6760448
10.1109/CDC.2016.7798262
10.1137/14096668X
10.1109/TAC.2010.2079650
10.1109/TSP.2015.2399858
10.1111/j.2517-6161.1996.tb02080.x
10.1109/TAC.2016.2607023
10.1137/0801036
10.1109/TSP.2016.2537271
10.1137/15M1024950
10.1109/TAC.2015.2512043
10.1109/Allerton.2011.6120272
10.1109/TAC.2020.3033490
10.1109/TSMC.2014.2332306
10.1109/TAC.2020.2977940
10.1109/LSP.2012.2207719
10.1137/140961134
10.1109/TSIPN.2017.2695121
10.1016/j.neucom.2015.12.017
10.1007/s40305-013-0015-x
10.1109/JSTSP.2011.2118740
10.1137/0330025
10.1109/TSP.2014.2385046
10.1007/BF02096261
10.1109/CDC.2013.6760336
10.1109/GlobalSIP.2013.6736937
10.1287/moor.2017.0889
10.1016/j.automatica.2015.11.014
10.1109/TAC.1986.1104412
10.1007/s10107-007-0170-0
10.1109/TSIPN.2016.2593896
10.1007/s10107-019-01408-w
10.1109/TPWRS.2012.2219629
10.1109/ACC.2012.6315289
10.1109/TCNS.2017.2657460
10.1109/HPCC/SmartCity/DSS.2019.00016
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2020.3033490
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4619
ExternalDocumentID 10_1109_TAC_2020_3033490
9238434
Genre orig-research
GrantInformation_xml – fundername: ARO
  grantid: W911NF1810238
– fundername: OP VVV
  grantid: CZ.02.1.01/0.0/0.0/16_019/0000765
– fundername: National Science Foundation; USA NSF
  grantid: CIF 1719205; CMMI 1832688
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-826035a6e175979f21d2bf5ff4c12a52c5776fdb6bfbbf28068b19301af7365d3
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000698859900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:17:49 EDT 2025
Tue Nov 18 20:48:39 EST 2025
Sat Nov 29 05:41:00 EST 2025
Wed Aug 27 02:26:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-826035a6e175979f21d2bf5ff4c12a52c5776fdb6bfbbf28068b19301af7365d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7161-6414
0000-0002-7714-1210
0000-0003-2229-8824
0000-0002-6453-6870
OpenAccessLink https://hdl.handle.net/11573/1474315
PQID 2575982567
PQPubID 85475
PageCount 16
ParticipantIDs proquest_journals_2575982567
ieee_primary_9238434
crossref_citationtrail_10_1109_TAC_2020_3033490
crossref_primary_10_1109_TAC_2020_3033490
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
niu (ref18) 2011
ref10
bof (ref38) 2017
ref50
ref45
doan (ref33) 2017
ref48
ref47
ref42
nedi? (ref23) 2011; 5
ref43
davis (ref16) 2016
ref8
ref7
ref9
ref4
ref3
ref6
ref5
sun (ref11) 2020
nedi? (ref27) 2011; 56
ref35
ref34
ref37
ref36
ref31
ref30
zhu (ref41) 2018
ref32
ref2
ref1
ref39
zhang (ref44) 2014
lian (ref19) 2015
rennie (ref46) 2005
ref24
shah (ref40) 2020
ref26
ref25
ref20
ref22
ref21
ref28
ref29
bertsekas (ref17) 1989; 23
cannelli (ref49) 2017
References_xml – ident: ref25
  doi: 10.1109/TAC.2017.2730481
– ident: ref43
  doi: 10.1109/GlobalSIP.2018.8646514
– ident: ref20
  doi: 10.1109/CDC.2013.6760448
– ident: ref26
  doi: 10.1109/CDC.2016.7798262
– ident: ref12
  doi: 10.1137/14096668X
– year: 2020
  ident: ref11
  article-title: Distributed optimization based on gradient-tracking revisited: Enhancing convergence rate via surrogation
– year: 2017
  ident: ref49
  article-title: Asynchronous parallel algorithms for nonconvex big-data optimization Part II: Complexity and numerical results
– volume: 56
  start-page: 1337
  year: 2011
  ident: ref27
  article-title: Asynchronous broadcast-based convex optimization over a network
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2010.2079650
– ident: ref48
  doi: 10.1109/TSP.2015.2399858
– ident: ref47
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 2719
  year: 2015
  ident: ref19
  article-title: Asynchronous parallel stochastic gradient for nonconvex optimization
  publication-title: Proc Adv Neural Inf Process Syst 28
– ident: ref24
  doi: 10.1109/TAC.2016.2607023
– year: 2020
  ident: ref40
  article-title: Linearly convergent asynchronous distributed ADMM via Markov sampling
– volume: 23
  year: 1989
  ident: ref17
  publication-title: Parallel and Distributed Computation Numerical Methods
– ident: ref6
  doi: 10.1137/0801036
– ident: ref42
  doi: 10.1109/TSP.2016.2537271
– ident: ref37
  doi: 10.1137/15M1024950
– ident: ref22
  doi: 10.1109/TAC.2015.2512043
– ident: ref31
  doi: 10.1109/Allerton.2011.6120272
– ident: ref50
  doi: 10.1109/TAC.2020.3033490
– ident: ref28
  doi: 10.1109/TSMC.2014.2332306
– ident: ref10
  doi: 10.1109/TAC.2020.2977940
– ident: ref3
  doi: 10.1109/LSP.2012.2207719
– ident: ref14
  doi: 10.1137/140961134
– ident: ref36
  doi: 10.1109/TSIPN.2017.2695121
– ident: ref29
  doi: 10.1016/j.neucom.2015.12.017
– ident: ref8
  doi: 10.1007/s40305-013-0015-x
– year: 2017
  ident: ref38
  article-title: Newton-Raphson consensus under asynchronous and lossy communications for peer-to-peer networks
– volume: 5
  start-page: 772
  year: 2011
  ident: ref23
  article-title: Distributed asynchronous constrained stochastic optimization
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2011.2118740
– ident: ref5
  doi: 10.1137/0330025
– ident: ref34
  doi: 10.1109/TSP.2014.2385046
– ident: ref4
  doi: 10.1007/BF02096261
– year: 2018
  ident: ref41
  article-title: A block-wise, asynchronous and distributed ADMM algorithm for general form consensus optimization
– year: 2017
  ident: ref33
  article-title: Impact of communication delays on the convergence rate of distributed optimization algorithms
– ident: ref1
  doi: 10.1109/CDC.2013.6760336
– start-page: 693
  year: 2011
  ident: ref18
  article-title: HOGWILD: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc Adv Neural Inf Process Syst 24
– start-page: 1329
  year: 2005
  ident: ref46
  article-title: Maximum-margin matrix factorization
  publication-title: Proc Adv Neural Inf Process Syst 17
– ident: ref21
  doi: 10.1109/GlobalSIP.2013.6736937
– ident: ref9
  doi: 10.1287/moor.2017.0889
– ident: ref32
  doi: 10.1016/j.automatica.2015.11.014
– ident: ref13
  doi: 10.1109/TAC.1986.1104412
– ident: ref7
  doi: 10.1007/s10107-007-0170-0
– ident: ref35
  doi: 10.1109/TSIPN.2016.2593896
– ident: ref15
  doi: 10.1007/s10107-019-01408-w
– ident: ref2
  doi: 10.1109/TPWRS.2012.2219629
– ident: ref30
  doi: 10.1109/ACC.2012.6315289
– ident: ref39
  doi: 10.1109/TCNS.2017.2657460
– start-page: 226
  year: 2016
  ident: ref16
  article-title: The sound of APALM clapping: Faster nonsmooth nonconvex optimization with stochastic asynchronous PALM
  publication-title: Proc 30th Conf Adv Neural Inf Process Syst 29
– start-page: 1701
  year: 2014
  ident: ref44
  article-title: Asynchronous distributed ADMM for consensus optimization
  publication-title: Proc 31st Int Conf Mach Learn
– ident: ref45
  doi: 10.1109/HPCC/SmartCity/DSS.2019.00016
SSID ssj0016441
Score 2.470869
Snippet We consider convex and nonconvex constrained optimization with a partially separable objective function: Agents minimize the sum of local objective functions,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4604
SubjectTerms Algorithms
Asynchronous algorithms
Convergence
Convexity
Delays
error bounds
Indexes
Linear programming
linear rate
multiagent systems
Nickel
nonconvex optimization
Optimization
Partitioning algorithms
Title Asynchronous Optimization Over Graphs: Linear Convergence Under Error Bound Conditions
URI https://ieeexplore.ieee.org/document/9238434
https://www.proquest.com/docview/2575982567
Volume 66
WOSCitedRecordID wos000698859900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5q8SL4rGK1yh68CMYm2bzWWy2tHqT1UEtvYbMPELSVpBX8985u0lBQBG-B7EKY2Z2ZL_P4AK58qhNlqsRdzaUTxFQ5WchdR1ERcS5EwCxp3_QpHo2S2Yw9N-Cm7oVRStniM3VrHm0uXy7Eyvwq62IwkgQ02IKtOI7KXq06Y2D8eml18QL7SZ2SdFl30usjEPQRn7qUBsb6brggy6nywxBb7zLc_993HcBeFUWSXqn2Q2io-RHsbMwWbMG0V3zNhRl9i9iejNEyvFctl2SMx5c8mEnVxR1BMIqHnfRN9bltxFTEciGRQZ4vcnJvaJfMW1nWdh3Dy3Aw6T86FYmCIyilSwfhg0tDHimME1jMtO9JP9Oh1oHwfB76IkRZaplFmc4ybfKsSYZBnetxHdMolPQEmvPFXJ0CYdLTnkwSHcQ6CKnOQpYIDCAEZ5wx6bahu5ZrKqoJ44bo4i21SMNlKWoiNZpIK0204bre8VFO1_hjbctIvl5XCb0NnbXq0ur6FalvaEcR-0bx2e-7zmHXmIeyDIehL-pAc5mv1AVsi8_la5Ff2tP1DWXczA0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB7qAeqDVxXruQ--CMYmu7nWt1q8sLY-VOlb2OwBgraStoL_3p1tDIIi-BbILoSd2Zn5MscHcEyZSTVWiftGKC9MmPbySPieZjIWQsqQO9K-p07S7aaDAX-owWnVC6O1dsVn-gwfXS5fjeQUf5U1bTCShiycgwVkziq7taqcAXr2md21V5imVVLS581-q22hILUI1WcsRPv7zQk5VpUfptj5l6u1_33ZOqyWcSRpzQS_ATU93ISVb9MF6_DUGn8MJQ6_teie9KxteC2bLknPKjC5xlnV43Ni4ahVd9LG-nPXiqmJY0Mil0UxKsgFEi_hWzWr7tqCx6vLfvvGK2kUPMkYm3gWQPgsErG2kQJPuKGBormJjAllQEVEZZQksVF5nJs8N5hpTXMb1vmBMAmLI8W2YX44GuodIFwFJlBpasLEhBEzecRTaUMIKbjgXPkNaH6daybLGeNIdfGSOazh88xKIkNJZKUkGnBS7Xibzdf4Y20dT75aVx56A_a_RJeVF3CcUSQeteg3TnZ_33UESzf9-07Wue3e7cEyxVIVV6O3D_OTYqoPYFG-T57HxaHTsk_8mc6D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Asynchronous+Optimization+Over+Graphs%3A+Linear+Convergence+Under+Error+Bound+Conditions&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Cannelli%2C+Loris&rft.au=Facchinei%2C+Francisco&rft.au=Scutari%2C+Gesualdo&rft.au=Kungurtsev%2C+Vyacheslav&rft.date=2021-10-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=66&rft.issue=10&rft.spage=4604&rft.epage=4619&rft_id=info:doi/10.1109%2FTAC.2020.3033490&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2020_3033490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon