Back propagation neural network with adaptive differential evolution algorithm for time series forecasting

•We propose a BPNN with adaptive differential evolution (ADE) for time series forecasting.•ADE is used to search for global initial connection weights and thresholds of BPNN.•The proposed ADE–BPNN is effective for improving forecasting accuracy. The back propagation neural network (BPNN) can easily...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 42; H. 2; S. 855 - 863
Hauptverfasser: Wang, Lin, Zeng, Yi, Chen, Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2015
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We propose a BPNN with adaptive differential evolution (ADE) for time series forecasting.•ADE is used to search for global initial connection weights and thresholds of BPNN.•The proposed ADE–BPNN is effective for improving forecasting accuracy. The back propagation neural network (BPNN) can easily fall into the local minimum point in time series forecasting. A hybrid approach that combines the adaptive differential evolution (ADE) algorithm with BPNN, called ADE–BPNN, is designed to improve the forecasting accuracy of BPNN. ADE is first applied to search for the global initial connection weights and thresholds of BPNN. Then, BPNN is employed to thoroughly search for the optimal weights and thresholds. Two comparative real-life series data sets are used to verify the feasibility and effectiveness of the hybrid method. The proposed ADE–BPNN can effectively improve forecasting accuracy relative to basic BPNN, autoregressive integrated moving average model (ARIMA), and other hybrid models.
AbstractList The back propagation neural network (BPNN) can easily fall into the local minimum point in time series forecasting. A hybrid approach that combines the adaptive differential evolution (ADE) algorithm with BPNN, called ADE-BPNN, is designed to improve the forecasting accuracy of BPNN. ADE is first applied to search for the global initial connection weights and thresholds of BPNN. Then, BPNN is employed to thoroughly search for the optimal weights and thresholds. Two comparative real-life series data sets are used to verify the feasibility and effectiveness of the hybrid method. The proposed ADE-BPNN can effectively improve forecasting accuracy relative to basic BPNN, autoregressive integrated moving average model (ARIMA), and other hybrid models.
•We propose a BPNN with adaptive differential evolution (ADE) for time series forecasting.•ADE is used to search for global initial connection weights and thresholds of BPNN.•The proposed ADE–BPNN is effective for improving forecasting accuracy. The back propagation neural network (BPNN) can easily fall into the local minimum point in time series forecasting. A hybrid approach that combines the adaptive differential evolution (ADE) algorithm with BPNN, called ADE–BPNN, is designed to improve the forecasting accuracy of BPNN. ADE is first applied to search for the global initial connection weights and thresholds of BPNN. Then, BPNN is employed to thoroughly search for the optimal weights and thresholds. Two comparative real-life series data sets are used to verify the feasibility and effectiveness of the hybrid method. The proposed ADE–BPNN can effectively improve forecasting accuracy relative to basic BPNN, autoregressive integrated moving average model (ARIMA), and other hybrid models.
Author Zeng, Yi
Chen, Tao
Wang, Lin
Author_xml – sequence: 1
  givenname: Lin
  surname: Wang
  fullname: Wang, Lin
  email: wanglin982@gmail.com
  organization: School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Yi
  surname: Zeng
  fullname: Zeng, Yi
  email: zengy200810@126.com
  organization: School of Management, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Tao
  surname: Chen
  fullname: Chen, Tao
  email: chentao15@163.com
  organization: College of Public Administration, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kDFv2zAQhYnCBeq4_QOdNGaRemdKIglkaY2mCWAgSzsTNHVyacuiS9I28u9L25kyeHo44H0HvO-OTUY_EmNfESoEbL9tKoonU80B6wpkBSg_sClKwctWKD5hU1CNKGsU9Sd2F-MGAAWAmLLND2O3xT74vVmb5PxYjHQIZsiRTj5si5NLfwvTmX1yRyo61_cUaEwuV-joh8OFMcPah1zcFb0PRXI7KiIFR_F8kzUxuXH9mX3szRDpy1vO2J_Hn78XT-Xy5dfz4vuytJzzVErETnbYdEo2orHKKiLAOXBqSLZ9C40iUytRC6PkyvbQ1w3hquVcIYBd8Rm7v_7Nq_4dKCa9c9HSMJiR_CFqbBvkggslc1Veqzb4GAP12rp00ZCCcYNG0Ge9eqPPevVZrwaps96Mzt-h--B2Jrzehh6uEOX9R0dBR-totNS5rCnpzrtb-H_C-JiK
CitedBy_id crossref_primary_10_1016_j_mtcomm_2024_110260
crossref_primary_10_1016_j_eswa_2021_115949
crossref_primary_10_3233_JIFS_16799
crossref_primary_10_1371_journal_pone_0326340
crossref_primary_10_1088_1742_6596_1845_1_012025
crossref_primary_10_1007_s11042_023_16997_0
crossref_primary_10_3390_f14091768
crossref_primary_10_7717_peerj_cs_473
crossref_primary_10_1016_j_bspc_2023_105879
crossref_primary_10_3390_buildings13051228
crossref_primary_10_3390_axioms11040151
crossref_primary_10_1016_j_eswa_2023_120981
crossref_primary_10_1111_1541_4337_12191
crossref_primary_10_3390_s22207935
crossref_primary_10_3389_fdata_2024_1518939
crossref_primary_10_3390_jtaer19010015
crossref_primary_10_1061__ASCE_CO_1943_7862_0001785
crossref_primary_10_1155_2018_9649643
crossref_primary_10_3390_app11167591
crossref_primary_10_1016_j_cageo_2018_02_003
crossref_primary_10_32604_phyton_2025_060152
crossref_primary_10_1016_j_eswa_2021_114842
crossref_primary_10_1364_AO_388959
crossref_primary_10_1016_j_apenergy_2023_122430
crossref_primary_10_3390_pr13010039
crossref_primary_10_3390_w13213128
crossref_primary_10_3390_s16122100
crossref_primary_10_1016_j_optcom_2025_131846
crossref_primary_10_1016_j_eswa_2015_01_048
crossref_primary_10_7189_jogh_08_020504
crossref_primary_10_1016_j_eswa_2025_126864
crossref_primary_10_1108_LHT_10_2017_0211
crossref_primary_10_1016_j_eswa_2015_08_055
crossref_primary_10_4271_05_18_04_0029
crossref_primary_10_3390_sym14091896
crossref_primary_10_1016_j_ins_2019_01_076
crossref_primary_10_1109_TFUZZ_2020_3001667
crossref_primary_10_3390_sym17091567
crossref_primary_10_1016_j_jclepro_2023_139825
crossref_primary_10_1016_j_compag_2024_109158
crossref_primary_10_1007_s13369_016_2279_z
crossref_primary_10_1177_09544062231153552
crossref_primary_10_3390_a11080123
crossref_primary_10_1016_j_comcom_2020_05_028
crossref_primary_10_1007_s00500_022_07161_1
crossref_primary_10_1016_j_ndteint_2020_102339
crossref_primary_10_1016_j_jece_2024_113435
crossref_primary_10_1016_j_compeleceng_2020_106858
crossref_primary_10_1016_j_energy_2025_136309
crossref_primary_10_1007_s11869_023_01463_5
crossref_primary_10_1016_j_compag_2024_109022
crossref_primary_10_3233_AF_180235
crossref_primary_10_1016_j_cja_2018_11_010
crossref_primary_10_2147_HIV_S476371
crossref_primary_10_1080_19386362_2021_1968649
crossref_primary_10_1007_s00500_020_04855_2
crossref_primary_10_3390_en16114390
crossref_primary_10_1007_s11869_024_01680_6
crossref_primary_10_1016_j_agwat_2021_107076
crossref_primary_10_1016_j_cageo_2019_05_004
crossref_primary_10_1002_2050_7038_13189
crossref_primary_10_1109_JSEN_2019_2923982
crossref_primary_10_3390_electronics8101111
crossref_primary_10_1007_s11069_016_2613_5
crossref_primary_10_1007_s00500_018_3199_5
crossref_primary_10_3390_w17010094
crossref_primary_10_1007_s13369_020_05217_8
crossref_primary_10_3390_su131810164
crossref_primary_10_3390_su14105964
crossref_primary_10_1016_j_asoc_2019_02_006
crossref_primary_10_1007_s00202_019_00886_7
crossref_primary_10_1109_TFUZZ_2016_2637369
crossref_primary_10_3390_sym14030447
crossref_primary_10_3390_sym17091557
crossref_primary_10_1108_GS_04_2016_0009
crossref_primary_10_1177_03611981221149434
crossref_primary_10_1016_j_jclepro_2023_137853
crossref_primary_10_1016_j_energy_2025_134557
crossref_primary_10_3390_w11091795
crossref_primary_10_1016_j_psep_2019_01_013
crossref_primary_10_3390_agriculture15141484
crossref_primary_10_3390_electronics10091062
crossref_primary_10_3389_fnhum_2018_00257
crossref_primary_10_1016_j_conbuildmat_2020_119889
crossref_primary_10_3390_su17188512
crossref_primary_10_2106_JBJS_RVW_22_00086
crossref_primary_10_1016_j_asoc_2022_109794
crossref_primary_10_1016_j_asoc_2019_03_059
crossref_primary_10_1177_00037028221139871
crossref_primary_10_3390_en14102972
crossref_primary_10_1002_tee_23787
crossref_primary_10_1109_TITS_2021_3131319
crossref_primary_10_1016_j_cose_2019_101596
crossref_primary_10_1016_j_eswa_2021_115710
crossref_primary_10_1007_s00542_021_05223_2
crossref_primary_10_1111_exsy_12555
crossref_primary_10_1016_j_energy_2022_123225
crossref_primary_10_1016_j_atmosenv_2019_116884
crossref_primary_10_1016_j_engappai_2022_105172
crossref_primary_10_1108_K_05_2024_1228
crossref_primary_10_3390_en17020361
crossref_primary_10_1007_s10586_018_1734_x
crossref_primary_10_1109_ACCESS_2019_2948367
crossref_primary_10_1155_2019_9107167
crossref_primary_10_1007_s12540_025_01909_8
crossref_primary_10_1038_s41598_022_14566_3
crossref_primary_10_1016_j_jhydrol_2019_02_035
crossref_primary_10_1007_s12665_021_09745_w
crossref_primary_10_1080_21642583_2020_1759156
crossref_primary_10_1016_j_advengsoft_2016_03_001
crossref_primary_10_1016_j_oceaneng_2025_121870
crossref_primary_10_1007_s11042_024_18727_6
crossref_primary_10_1016_j_asoc_2024_111408
crossref_primary_10_3390_buildings15081221
crossref_primary_10_1016_j_est_2022_105502
crossref_primary_10_3389_fpls_2025_1547832
crossref_primary_10_3390_su12208555
crossref_primary_10_1145_3604283
crossref_primary_10_3390_s19092021
crossref_primary_10_1016_j_swevo_2020_100816
crossref_primary_10_1016_j_eswa_2021_115534
crossref_primary_10_3390_s21248204
crossref_primary_10_1016_j_mex_2024_103093
crossref_primary_10_1109_ACCESS_2023_3291999
crossref_primary_10_1016_j_saa_2023_123790
crossref_primary_10_1007_s12665_021_09525_6
crossref_primary_10_1016_j_neucom_2020_04_086
crossref_primary_10_1016_j_triboint_2022_107923
crossref_primary_10_1016_j_atmosenv_2020_117434
crossref_primary_10_3390_app14083455
crossref_primary_10_1016_j_clema_2021_100005
crossref_primary_10_1016_j_resourpol_2019_101414
crossref_primary_10_3390_e23030325
crossref_primary_10_1007_s00500_022_07778_2
crossref_primary_10_1002_sta4_70001
crossref_primary_10_1016_j_est_2025_117233
crossref_primary_10_1109_JIOT_2024_3383512
crossref_primary_10_1016_j_indmarman_2019_05_003
crossref_primary_10_1109_ACCESS_2019_2917526
crossref_primary_10_1007_s00521_016_2707_8
crossref_primary_10_1016_j_cie_2025_111461
crossref_primary_10_1007_s11269_015_1222_5
crossref_primary_10_3390_su16156616
crossref_primary_10_1016_j_physa_2025_130839
crossref_primary_10_1016_j_cemconcomp_2023_105073
crossref_primary_10_1109_TIM_2025_3588938
crossref_primary_10_1016_j_energy_2018_04_078
crossref_primary_10_1016_j_jksuci_2018_04_011
crossref_primary_10_3390_app10134416
crossref_primary_10_1016_j_fbio_2023_102890
crossref_primary_10_1016_j_neucom_2017_07_059
crossref_primary_10_1016_j_oceaneng_2022_113018
crossref_primary_10_1016_j_psep_2025_107391
crossref_primary_10_1007_s00521_017_2840_z
crossref_primary_10_1109_ACCESS_2019_2937222
crossref_primary_10_1016_j_energy_2017_03_094
crossref_primary_10_1371_journal_pone_0196871
crossref_primary_10_1007_s11277_017_5138_7
crossref_primary_10_1007_s00521_019_04015_0
crossref_primary_10_1109_JSEN_2016_2533440
crossref_primary_10_1038_s41598_023_37746_1
crossref_primary_10_1016_j_engstruct_2024_119460
crossref_primary_10_1007_s00521_022_07775_4
crossref_primary_10_1016_j_neucom_2022_11_066
crossref_primary_10_1016_j_asoc_2020_106898
crossref_primary_10_3390_rs14205221
crossref_primary_10_1016_j_ijepes_2021_107828
crossref_primary_10_1007_s00500_018_3424_2
crossref_primary_10_1016_j_energy_2018_05_052
crossref_primary_10_1109_ACCESS_2020_3028124
crossref_primary_10_1111_1541_4337_12314
crossref_primary_10_1631_jzus_A2200297
crossref_primary_10_3390_w11010085
crossref_primary_10_1109_TCBB_2020_2986459
crossref_primary_10_1016_j_jobe_2025_112805
crossref_primary_10_5194_acp_20_6159_2020
crossref_primary_10_1109_ACCESS_2019_2913177
crossref_primary_10_1002_tee_23729
crossref_primary_10_1155_2020_6940786
crossref_primary_10_3390_app14188121
crossref_primary_10_1016_j_cose_2019_101610
crossref_primary_10_3390_ijerph18031072
crossref_primary_10_3390_w16010146
crossref_primary_10_1016_j_jmarsys_2021_103573
crossref_primary_10_1016_j_jece_2025_116901
crossref_primary_10_1007_s00521_019_04310_w
crossref_primary_10_1007_s13369_019_04132_x
crossref_primary_10_1016_j_jclepro_2019_118773
crossref_primary_10_23919_PCMP_2023_000524
crossref_primary_10_1016_j_cose_2020_101926
crossref_primary_10_1007_s41066_023_00422_w
crossref_primary_10_1007_s00170_015_8102_2
crossref_primary_10_1016_j_neucom_2017_11_034
crossref_primary_10_26636_jtit_2017_113017
crossref_primary_10_1016_j_enconman_2024_118062
crossref_primary_10_1108_JM2_05_2021_0116
crossref_primary_10_1016_j_jfds_2016_12_002
crossref_primary_10_1016_j_future_2024_107565
crossref_primary_10_1016_j_uclim_2024_102067
crossref_primary_10_3390_atmos13121999
crossref_primary_10_3390_fire4040093
crossref_primary_10_1016_j_energy_2024_132932
crossref_primary_10_1016_j_ptlrs_2025_03_002
crossref_primary_10_3390_app13095475
crossref_primary_10_1007_s00521_023_08471_7
crossref_primary_10_1016_j_energy_2021_121275
crossref_primary_10_1109_TCE_2025_3564731
crossref_primary_10_3390_jmse10070968
crossref_primary_10_1007_s11063_021_10508_8
crossref_primary_10_1016_j_oceaneng_2023_114429
crossref_primary_10_1002_ett_4056
crossref_primary_10_1007_s42461_022_00686_x
crossref_primary_10_3390_s20030610
crossref_primary_10_1016_j_eswa_2014_10_017
crossref_primary_10_1016_j_est_2020_102064
crossref_primary_10_1016_j_optcom_2025_132437
crossref_primary_10_1080_23249935_2025_2477261
crossref_primary_10_1109_TCYB_2018_2870145
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_1016_j_asoc_2018_02_004
crossref_primary_10_1007_s00500_018_3160_7
crossref_primary_10_3390_su162410845
crossref_primary_10_1007_s12145_021_00657_8
crossref_primary_10_1007_s41066_017_0055_4
crossref_primary_10_1016_j_aei_2018_09_005
crossref_primary_10_1007_s43153_020_00058_2
crossref_primary_10_1587_transinf_2016EDP7152
crossref_primary_10_1109_ACCESS_2019_2924557
crossref_primary_10_1016_j_matchar_2024_114011
crossref_primary_10_1016_j_engappai_2018_01_010
crossref_primary_10_1007_s12351_017_0297_6
crossref_primary_10_1016_j_jhazmat_2022_129623
crossref_primary_10_1049_iet_gtd_2017_0517
crossref_primary_10_1109_ACCESS_2020_2968473
crossref_primary_10_1179_1743284715Y_0000000071
crossref_primary_10_1016_j_eswa_2023_122128
crossref_primary_10_1080_09715010_2018_1481462
crossref_primary_10_1016_j_neucom_2017_05_003
crossref_primary_10_3389_fenrg_2023_1298088
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1016_j_renene_2017_09_089
crossref_primary_10_1029_2023JD040392
crossref_primary_10_1016_j_measurement_2020_108468
crossref_primary_10_1016_j_asoc_2018_11_008
crossref_primary_10_1109_ACCESS_2020_2972621
crossref_primary_10_1016_j_heliyon_2024_e24183
crossref_primary_10_1007_s00500_023_07899_2
crossref_primary_10_1007_s12665_025_12224_1
crossref_primary_10_1016_j_eswa_2025_127383
crossref_primary_10_1109_ACCESS_2020_2991482
crossref_primary_10_2166_nh_2021_030
crossref_primary_10_1016_j_eswa_2020_113704
crossref_primary_10_1109_ACCESS_2019_2903634
crossref_primary_10_3390_jrfm13020023
crossref_primary_10_1016_j_resourpol_2020_101806
crossref_primary_10_3390_computers14040125
crossref_primary_10_1016_j_fss_2019_07_012
crossref_primary_10_1016_j_eswa_2014_11_025
crossref_primary_10_2166_ws_2024_221
crossref_primary_10_1007_s11356_023_29190_5
crossref_primary_10_1007_s00500_017_2522_x
crossref_primary_10_1109_JTEHM_2019_2948604
crossref_primary_10_1007_s12517_021_08775_9
crossref_primary_10_1002_for_2682
crossref_primary_10_1007_s00500_016_2442_1
crossref_primary_10_1016_j_ins_2017_09_067
crossref_primary_10_3390_math8010069
crossref_primary_10_1002_adma_202413430
crossref_primary_10_1016_j_applthermaleng_2018_12_142
crossref_primary_10_1016_j_ijforecast_2021_07_010
crossref_primary_10_3390_biom13101548
crossref_primary_10_1007_s11036_020_01550_2
crossref_primary_10_1177_14759217231184276
crossref_primary_10_1016_j_applthermaleng_2019_113761
crossref_primary_10_3390_agriculture13081499
crossref_primary_10_1016_j_ecoinf_2018_08_008
crossref_primary_10_1016_j_asoc_2025_113229
crossref_primary_10_1016_j_eswa_2015_04_061
crossref_primary_10_1016_j_eswa_2018_03_005
crossref_primary_10_1016_j_mechatronics_2018_01_010
crossref_primary_10_1016_j_eswa_2017_10_053
crossref_primary_10_1177_1354816619872592
crossref_primary_10_3390_rs10040532
crossref_primary_10_1007_s40430_019_1778_8
crossref_primary_10_3390_app8091613
crossref_primary_10_1109_ACCESS_2022_3157598
crossref_primary_10_1155_2022_5382153
crossref_primary_10_1007_s11517_020_02236_3
crossref_primary_10_1007_s11227_019_03064_5
crossref_primary_10_1016_j_buildenv_2021_108101
crossref_primary_10_1007_s42417_021_00286_x
crossref_primary_10_1016_j_anucene_2015_06_009
crossref_primary_10_3390_info11060332
crossref_primary_10_1109_ACCESS_2020_3040083
crossref_primary_10_1155_2019_7057612
crossref_primary_10_3390_ijgi12010025
crossref_primary_10_1007_s11063_020_10363_z
crossref_primary_10_1002_for_2872
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_3390_rs11070846
crossref_primary_10_1016_j_asoc_2023_110374
crossref_primary_10_1016_j_eswa_2021_116345
crossref_primary_10_1007_s11042_021_11029_1
crossref_primary_10_1016_j_engappai_2019_02_009
crossref_primary_10_1017_S0373463317000601
crossref_primary_10_1007_s12065_024_00909_8
crossref_primary_10_1016_j_asoc_2020_106347
crossref_primary_10_1371_journal_pone_0239141
crossref_primary_10_1007_s00521_024_10910_y
crossref_primary_10_1016_j_ccst_2025_100374
crossref_primary_10_1186_s12859_020_03906_7
crossref_primary_10_3390_axioms11080396
crossref_primary_10_1016_j_renene_2019_10_113
crossref_primary_10_1016_j_knosys_2017_07_014
crossref_primary_10_1016_j_swevo_2017_04_006
crossref_primary_10_3390_app132011449
crossref_primary_10_31875_2409_9848_2021_08_8
crossref_primary_10_1520_ACEM20200026
crossref_primary_10_1007_s10489_020_01802_4
crossref_primary_10_1016_j_ijleo_2018_06_007
crossref_primary_10_1007_s13369_020_04403_y
crossref_primary_10_3390_knowledge5030017
crossref_primary_10_1007_s00500_024_09765_1
crossref_primary_10_1007_s10586_017_0895_3
crossref_primary_10_1016_j_energy_2025_137162
crossref_primary_10_1016_j_knosys_2023_110274
crossref_primary_10_1088_1361_665X_ad6c05
crossref_primary_10_1155_2024_5876051
crossref_primary_10_1002_cem_3505
crossref_primary_10_1002_fes3_477
crossref_primary_10_1002_tee_24230
crossref_primary_10_1109_TIE_2019_2926050
crossref_primary_10_1007_s13369_019_04200_2
crossref_primary_10_1109_TCYB_2019_2919648
crossref_primary_10_1186_s12880_022_00755_z
crossref_primary_10_12677_MOS_2024_131049
crossref_primary_10_1007_s11263_022_01619_3
crossref_primary_10_1016_j_tourman_2018_03_006
crossref_primary_10_1016_j_polar_2017_07_001
crossref_primary_10_1109_TDSC_2020_3014872
crossref_primary_10_4018_IJSDS_2019040105
crossref_primary_10_1016_j_neucom_2015_07_035
crossref_primary_10_1007_s11063_019_10172_z
crossref_primary_10_1177_14759217231162264
crossref_primary_10_1007_s10916_016_0454_0
crossref_primary_10_4316_AECE_2020_02005
crossref_primary_10_3390_app15010250
crossref_primary_10_1155_2022_3672905
crossref_primary_10_1007_s10664_020_09906_8
crossref_primary_10_1108_IJICC_10_2018_0145
crossref_primary_10_3390_math9050569
crossref_primary_10_1088_1757_899X_662_2_022048
crossref_primary_10_1016_j_ijleo_2016_06_017
crossref_primary_10_1631_2023_A2200297
crossref_primary_10_1016_j_eswa_2020_114529
crossref_primary_10_1155_2023_5983284
crossref_primary_10_1016_j_ijepes_2019_06_010
crossref_primary_10_1016_j_neucom_2019_12_044
crossref_primary_10_1016_j_eswa_2016_04_024
crossref_primary_10_1016_j_coldregions_2020_103119
crossref_primary_10_1016_j_eswa_2022_117302
crossref_primary_10_1088_1742_6596_1703_1_012030
crossref_primary_10_1088_1361_6501_ad6e14
crossref_primary_10_3390_mi14112047
crossref_primary_10_1088_1555_6611_ad3cc9
crossref_primary_10_1016_j_energy_2019_02_141
crossref_primary_10_1016_j_eswa_2021_114938
crossref_primary_10_1007_s13369_022_06586_y
crossref_primary_10_1016_j_optlastec_2018_12_025
crossref_primary_10_1016_j_jestch_2020_07_001
crossref_primary_10_3390_fractalfract8110616
crossref_primary_10_1108_K_04_2024_0982
crossref_primary_10_3390_sym13061092
crossref_primary_10_1016_j_neucom_2019_05_050
crossref_primary_10_1109_ACCESS_2018_2884877
crossref_primary_10_1007_s12065_021_00680_0
crossref_primary_10_1007_s11356_021_18355_9
crossref_primary_10_1016_j_neucom_2018_10_090
crossref_primary_10_1155_2017_4730253
crossref_primary_10_1071_EN14264
crossref_primary_10_1038_s41598_024_69325_3
crossref_primary_10_1007_s12040_019_1306_3
crossref_primary_10_1177_0142331216658948
crossref_primary_10_3390_su15129623
crossref_primary_10_1109_ACCESS_2022_3192849
crossref_primary_10_3390_technologies13070287
crossref_primary_10_3390_rs14153750
crossref_primary_10_1016_j_ijpe_2024_109182
crossref_primary_10_1016_j_istruc_2022_03_068
crossref_primary_10_1016_j_molliq_2019_112142
crossref_primary_10_1016_j_jclepro_2020_121787
crossref_primary_10_1016_j_engappai_2023_106266
crossref_primary_10_1080_17538947_2025_2548378
crossref_primary_10_1631_jzus_A1500156
crossref_primary_10_1016_j_jobe_2025_112696
crossref_primary_10_1007_s40815_019_00783_y
crossref_primary_10_3390_a17100446
crossref_primary_10_1016_j_isatra_2020_03_001
crossref_primary_10_1007_s10489_021_02442_y
crossref_primary_10_1007_s00500_019_03901_y
crossref_primary_10_1007_s11356_021_14591_1
crossref_primary_10_23919_JSEE_2022_000130
crossref_primary_10_1016_j_eswa_2018_06_016
crossref_primary_10_3233_JIFS_190548
crossref_primary_10_1016_j_envsoft_2019_05_006
crossref_primary_10_1016_j_neucom_2017_02_077
crossref_primary_10_1038_s41598_025_17813_5
crossref_primary_10_3390_data9010013
crossref_primary_10_3390_sym17030465
crossref_primary_10_1007_s13042_019_00994_7
crossref_primary_10_1007_s13198_023_02177_8
crossref_primary_10_1063_5_0053107
crossref_primary_10_1016_j_jretconser_2016_03_008
crossref_primary_10_1155_2023_6590979
crossref_primary_10_3390_agriculture14091592
crossref_primary_10_1049_iet_sen_2019_0254
Cites_doi 10.1016/j.eswa.2011.02.046
10.1016/S0305-0548(99)00123-9
10.1016/j.enpol.2006.05.009
10.1016/j.ejor.2003.08.037
10.1155/2014/614342
10.1108/MD-08-2013-0430
10.1155/2013/270249
10.1155/2013/125893
10.1016/S0045-7825(01)00372-3
10.2307/2345277
10.1016/j.ijproman.2014.01.012
10.1016/j.phrp.2013.10.009
10.1016/j.fuel.2014.02.034
10.1155/2013/309750
10.1016/j.eswa.2013.08.078
10.1016/j.eswa.2012.08.012
10.1016/S0925-2312(01)00702-0
10.1016/S0169-2070(97)00044-7
10.1016/j.medengphy.2005.06.006
10.1016/j.neucom.2008.04.017
10.1080/18756891.2013.809937
10.1007/11758501_97
10.1016/j.apenergy.2012.01.063
10.1002/for.1218
10.1016/j.ejor.2004.08.043
10.1016/j.energy.2012.07.006
10.1016/j.eswa.2013.04.013
10.1016/j.enpol.2009.06.046
10.1198/073500102753410444
10.1155/2014/675721
10.1016/j.apm.2013.05.016
10.1016/j.eswa.2011.09.157
10.1007/s10462-009-9137-2
10.1016/j.amc.2006.07.025
10.1016/j.tourman.2007.04.003
10.1016/S0925-2312(99)00127-7
10.1023/A:1008202821328
10.1111/j.1468-0394.2011.00594.x
10.1016/j.enpol.2009.04.049
10.1016/j.dss.2009.02.001
10.1080/10629360600564874
10.1016/j.enconman.2005.02.004
10.1016/j.knosys.2013.09.013
10.1016/S0003-682X(98)00078-4
10.1016/j.eswa.2011.09.116
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.08.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 863
ExternalDocumentID 10_1016_j_eswa_2014_08_018
S0957417414004941
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-811d8d15d98575c9c9ee01203e5e86f6059ea49747a98bcf0f45e1b6339100cb3
ISICitedReferencesCount 504
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000343854900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Thu Oct 02 19:10:37 EDT 2025
Sat Nov 29 07:07:35 EST 2025
Tue Nov 18 22:35:04 EST 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Time series forecasting
Back propagation neural network
Differential evolution algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-811d8d15d98575c9c9ee01203e5e86f6059ea49747a98bcf0f45e1b6339100cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1651373798
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1651373798
crossref_citationtrail_10_1016_j_eswa_2014_08_018
crossref_primary_10_1016_j_eswa_2014_08_018
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_08_018
PublicationCentury 2000
PublicationDate 2015-02-01
2015-02-00
20150201
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Diebold, Mariano (b0045) 2002; 20
Kumar, Jain (b0090) 1999; 58
Chen, Fu, Liang, Sema, Li, Tontiwachwuthikul (b0030) 2014; 126
Bennett, Stewart, Beal (b0015) 2013; 40
Ticknor (b0150) 2013; 40
Wang, Fu, Zeng (b0165) 2012; 39
Neri, Tirronen (b0125) 2010; 33
Irani, Nasimi (b0065) 2011; 38
Lu, Lee, Chiu (b0115) 2009; 47
Pai, Hong (b0135) 2005; 46
Cui, Wang, Deng, Zhang (b9000) 2013; 2013
Wang, Qu, Chen, Yan (b0175) 2013; 2013
Adebiyi, Adewumi, Ayo (b0005) 2014; 2
Box, Jenkins (b0020) 1976
Cui, Wang, Deng (b0040) 2014; 41
Zhang, Patuwo, Hu (b0225) 2001; 28
Matias, Reboredo (b0120) 2012; 31
Yam, Chow (b0195) 2000; 30
Wang (b0160) 2013; 29
Ediger, Akar (b0050) 2007; 35
Liu, Wang (b0105) 2014; 32
Lee, Tong (b0095) 2012; 94
Wang, Zhu, Zhang, Sun (b0190) 2009; 37
Li, Guo, Wang, Fu (b0100) 2013; 2013
Hosseini, Luo, Reynolds (b0060) 2006; 28
Zhang, Patuwo, Hu (b0220) 1998; 14
Khashei, Bijari (b0075) 2012; 39
Liu, Wang (b0110) 2014; 52
Zhang, Zhang, Lok, Lyu (b0240) 2007; 185
Aslanargun, Mammadov, Yazici, Yolacan (b0010) 2007; 77
Ju, Hong (b0070) 2013; 37
Khashei, Rafiei, Bijari (b0085) 2013; 6
Onwubolu, Davendra (b0130) 2006; 171
Zeng, Wang, Xu, Fu (b0205) 2014; 2014
Zhang (b0210) 2003; 50
Qu, Wang, Zeng (b0140) 2013; 54
Storn, Price (b0145) 1997; 11
Wang, Qu, Liu, Chen (b0180) 2014; 2014
Campbell, Walker (b0025) 1977; 140
Khashei, Bijari, Ardali (b0080) 2009; 72
Chu (b0035) 2008; 29
Wang, Zeng, Zhang, Huang, Bao (b0185) 2006; 3991
Geem, Roper (b0055) 2009; 37
Vesterstrom, Thomsen (b0155) 2004; 2
Zhang, Hong, Dong, Tsai, Sung, Fan (b0215) 2012; 45
Yu, Kim, Kim (b0200) 2013; 4
Zhang, Subbarayan (b0235) 2002; 191
Wang, He, Zeng (b0170) 2012; 29
Zhang, Qi (b0230) 2005; 160
Adebiyi (10.1016/j.eswa.2014.08.018_b0005) 2014; 2
Neri (10.1016/j.eswa.2014.08.018_b0125) 2010; 33
Pai (10.1016/j.eswa.2014.08.018_b0135) 2005; 46
Zhang (10.1016/j.eswa.2014.08.018_b0215) 2012; 45
Matias (10.1016/j.eswa.2014.08.018_b0120) 2012; 31
Qu (10.1016/j.eswa.2014.08.018_b0140) 2013; 54
Irani (10.1016/j.eswa.2014.08.018_b0065) 2011; 38
Liu (10.1016/j.eswa.2014.08.018_b0105) 2014; 32
Box (10.1016/j.eswa.2014.08.018_b0020) 1976
Lu (10.1016/j.eswa.2014.08.018_b0115) 2009; 47
Cui (10.1016/j.eswa.2014.08.018_b0040) 2014; 41
Li (10.1016/j.eswa.2014.08.018_b0100) 2013; 2013
Ediger (10.1016/j.eswa.2014.08.018_b0050) 2007; 35
Wang (10.1016/j.eswa.2014.08.018_b0185) 2006; 3991
Liu (10.1016/j.eswa.2014.08.018_b0110) 2014; 52
Wang (10.1016/j.eswa.2014.08.018_b0170) 2012; 29
Wang (10.1016/j.eswa.2014.08.018_b0160) 2013; 29
Zhang (10.1016/j.eswa.2014.08.018_b0225) 2001; 28
Onwubolu (10.1016/j.eswa.2014.08.018_b0130) 2006; 171
Vesterstrom (10.1016/j.eswa.2014.08.018_b0155) 2004; 2
Wang (10.1016/j.eswa.2014.08.018_b0180) 2014; 2014
Aslanargun (10.1016/j.eswa.2014.08.018_b0010) 2007; 77
Storn (10.1016/j.eswa.2014.08.018_b0145) 1997; 11
Zhang (10.1016/j.eswa.2014.08.018_b0230) 2005; 160
Geem (10.1016/j.eswa.2014.08.018_b0055) 2009; 37
Chen (10.1016/j.eswa.2014.08.018_b0030) 2014; 126
Zhang (10.1016/j.eswa.2014.08.018_b0210) 2003; 50
Khashei (10.1016/j.eswa.2014.08.018_b0085) 2013; 6
Lee (10.1016/j.eswa.2014.08.018_b0095) 2012; 94
Yam (10.1016/j.eswa.2014.08.018_b0195) 2000; 30
Zhang (10.1016/j.eswa.2014.08.018_b0240) 2007; 185
Zhang (10.1016/j.eswa.2014.08.018_b0220) 1998; 14
Zhang (10.1016/j.eswa.2014.08.018_b0235) 2002; 191
Zeng (10.1016/j.eswa.2014.08.018_b0205) 2014; 2014
Wang (10.1016/j.eswa.2014.08.018_b0190) 2009; 37
Kumar (10.1016/j.eswa.2014.08.018_b0090) 1999; 58
Yu (10.1016/j.eswa.2014.08.018_b0200) 2013; 4
Diebold (10.1016/j.eswa.2014.08.018_b0045) 2002; 20
Khashei (10.1016/j.eswa.2014.08.018_b0080) 2009; 72
Campbell (10.1016/j.eswa.2014.08.018_b0025) 1977; 140
Chu (10.1016/j.eswa.2014.08.018_b0035) 2008; 29
Bennett (10.1016/j.eswa.2014.08.018_b0015) 2013; 40
Ticknor (10.1016/j.eswa.2014.08.018_b0150) 2013; 40
Ju (10.1016/j.eswa.2014.08.018_b0070) 2013; 37
Cui (10.1016/j.eswa.2014.08.018_b9000) 2013; 2013
Khashei (10.1016/j.eswa.2014.08.018_b0075) 2012; 39
Hosseini (10.1016/j.eswa.2014.08.018_b0060) 2006; 28
Wang (10.1016/j.eswa.2014.08.018_b0165) 2012; 39
Wang (10.1016/j.eswa.2014.08.018_b0175) 2013; 2013
References_xml – volume: 2014
  start-page: 1
  year: 2014
  end-page: 13
  ident: b0205
  article-title: Optimizing the joint replenishment and delivery scheduling problem under fuzzy environment using inverse weight fuzzy nonlinear programming method
  publication-title: Abstract and Applied Analysis
– volume: 32
  year: 2014
  ident: b0105
  article-title: Understanding the impact of risks on performance in internal and outsourced information technology projects: The role of strategic importance
  publication-title: International Journal of Project Management
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: b0210
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 29
  start-page: 79
  year: 2008
  end-page: 88
  ident: b0035
  article-title: A fractionally integrated autoregressive moving average approach to forecasting tourism demand
  publication-title: Tourism Management
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0100
  article-title: A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under E-supply chain environment
  publication-title: The Scientific World Journal
– volume: 171
  start-page: 674
  year: 2006
  end-page: 692
  ident: b0130
  article-title: Scheduling flow shops using differential evolution algorithm
  publication-title: European Journal of Operational Research
– volume: 30
  start-page: 219
  year: 2000
  end-page: 232
  ident: b0195
  article-title: A weight initialization method for improving training speed in feedforward neural network
  publication-title: Neurocomputing
– volume: 37
  start-page: 4049
  year: 2009
  end-page: 4054
  ident: b0055
  article-title: Energy demand estimation of South Korea using artificial neural network
  publication-title: Energy Policy
– volume: 29
  start-page: 429
  year: 2012
  end-page: 441
  ident: b0170
  article-title: A differential evolution algorithm for joint replenishment problem using direct grouping and its application
  publication-title: Expert Systems
– volume: 45
  start-page: 850
  year: 2012
  end-page: 858
  ident: b0215
  article-title: Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
  publication-title: Energy
– volume: 33
  start-page: 61
  year: 2010
  end-page: 106
  ident: b0125
  article-title: Recent advances in differential evolution: A survey and experimental analysis
  publication-title: Artificial Intelligence Review
– volume: 54
  start-page: 207
  year: 2013
  end-page: 215
  ident: b0140
  article-title: Modeling and optimization for the joint replenishment and delivery problem with heterogeneous items
  publication-title: Knowledge-Based Systems
– volume: 94
  start-page: 251
  year: 2012
  end-page: 256
  ident: b0095
  article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
  publication-title: Applied Energy
– volume: 77
  start-page: 29
  year: 2007
  end-page: 53
  ident: b0010
  article-title: Comparison of ARIMA, neural networks and hybrid models in time series: Tourist arrival forecasting
  publication-title: Journal of Statistical Computation and Simulation
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0145
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
– volume: 29
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0160
  article-title: Optimized light guide plate optical brightness parameter: integrating back-propagation neural network (BPN) and revised genetic algorithm (GA)
  publication-title: Materials and Manufacturing
– volume: 20
  start-page: 134
  year: 2002
  end-page: 144
  ident: b0045
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
– year: 1976
  ident: b0020
  article-title: Time series analysis: Forecasting and control
– volume: 140
  start-page: 411
  year: 1977
  end-page: 431
  ident: b0025
  article-title: A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis
  publication-title: Journal of the Royal Statistical Society (Series A)
– volume: 37
  start-page: 4901
  year: 2009
  end-page: 4909
  ident: b0190
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
– volume: 47
  start-page: 115
  year: 2009
  end-page: 125
  ident: b0115
  article-title: Financial time series forecasting using independent component analysis and support vector regression
  publication-title: Decision Support Systems
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: b0220
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: International Journal of Forecasting
– volume: 160
  start-page: 501
  year: 2005
  end-page: 514
  ident: b0230
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: European Journal of Operational Research
– volume: 39
  start-page: 4181
  year: 2012
  end-page: 4189
  ident: b0165
  article-title: Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations
  publication-title: Expert Systems with Applications
– volume: 6
  start-page: 954
  year: 2013
  end-page: 968
  ident: b0085
  article-title: Hybrid fuzzy auto-regressive integrated moving average (FARIMAH) model for forecasting the foreign exchange markets
  publication-title: International Journal of Computational Intelligence Systems
– volume: 40
  start-page: 5501
  year: 2013
  end-page: 5506
  ident: b0150
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 9862
  year: 2011
  end-page: 9866
  ident: b0065
  article-title: Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 4344
  year: 2012
  end-page: 4357
  ident: b0075
  article-title: A new class of hybrid models for time series forecasting
  publication-title: Expert Systems with Applications
– volume: 41
  start-page: 1792
  year: 2014
  end-page: 1805
  ident: b0040
  article-title: RFID technology investment evaluation model for the stochastic joint replenishment and delivery problem
  publication-title: Expert Systems with Applications
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 17
  ident: b9000
  article-title: A new improv ed quantum evolution algorithm with local search procedure for capacitated vehicle routing problem
  publication-title: Mathematical Problems in Engineering
– volume: 191
  start-page: 2873
  year: 2002
  end-page: 2886
  ident: b0235
  article-title: An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I. Training procedures
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 2
  start-page: 1980
  year: 2004
  end-page: 1987
  ident: b0155
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Proceedings of IEEE Congress on Evolutionary Computation
– volume: 185
  start-page: 1026
  year: 2007
  end-page: 1037
  ident: b0240
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Applied Mathematics and Computation
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 12
  ident: b0180
  article-title: Optimizing the joint replenishment and channel coordination problem under supply chain environment using a simple and effective differential evolution algorithm
  publication-title: Discrete Dynamics in Nature and Society
– volume: 40
  start-page: 1014
  year: 2013
  end-page: 1023
  ident: b0015
  article-title: ANN-based residential water end-use demand forecasting model
  publication-title: Expert Systems with Applications
– volume: 46
  start-page: 2669
  year: 2005
  end-page: 2688
  ident: b0135
  article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting
  publication-title: Energy Conversion and Management
– volume: 126
  start-page: 202
  year: 2014
  end-page: 212
  ident: b0030
  article-title: The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process
  publication-title: Fuel
– volume: 58
  start-page: 283
  year: 1999
  end-page: 294
  ident: b0090
  article-title: Autoregressive integrated moving averages (ARIMA) modeling of a traffic noise time series
  publication-title: Applied Acoustics
– volume: 3991
  start-page: 728
  year: 2006
  end-page: 735
  ident: b0185
  article-title: The criticality of spare parts evaluating model using an artificial neural network approach
  publication-title: Lecture Notes in Computer Science
– volume: 28
  start-page: 372
  year: 2006
  end-page: 378
  ident: b0060
  article-title: The comparison of different feed forward neural network architectures for ECG signal diagnosis
  publication-title: Medical Engineering and Physics
– volume: 28
  start-page: 381
  year: 2001
  end-page: 396
  ident: b0225
  article-title: A simulation study of artificial neural networks for nonlinear time-series forecasting
  publication-title: Computers & Operations Research
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0175
  article-title: An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain
  publication-title: The Scientific World Journal
– volume: 35
  start-page: 1701
  year: 2007
  end-page: 1708
  ident: b0050
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
– volume: 4
  start-page: 358
  year: 2013
  end-page: 362
  ident: b0200
  article-title: Forecasting the number of human immunodeficiency virus infections in the Korean population using the autoregressive integrated moving average model
  publication-title: Osong Public Health and Research Perspectives
– volume: 2
  start-page: 1
  year: 2014
  end-page: 7
  ident: b0005
  article-title: Comparison of ARIMA and artificial neural networks models for stock price prediction
  publication-title: Journal of Applied Mathematics
– volume: 37
  start-page: 9643
  year: 2013
  end-page: 9651
  ident: b0070
  article-title: Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting
  publication-title: Applied Mathematical Modeling
– volume: 31
  start-page: 172
  year: 2012
  end-page: 188
  ident: b0120
  article-title: Forecasting performance of nonlinear models for intraday stock returns
  publication-title: Journal of Forecasting
– volume: 72
  start-page: 956
  year: 2009
  end-page: 967
  ident: b0080
  article-title: Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
  publication-title: Neurocomputing
– volume: 52
  start-page: 1148
  year: 2014
  end-page: 1173
  ident: b0110
  article-title: User liaisons’ perspective on behavior and outcome control in IT projects: Role of IT experience, behavior observability, and outcome measurability
  publication-title: Management Decision
– volume: 38
  start-page: 9862
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2014.08.018_b0065
  article-title: Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.046
– volume: 28
  start-page: 381
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2014.08.018_b0225
  article-title: A simulation study of artificial neural networks for nonlinear time-series forecasting
  publication-title: Computers & Operations Research
  doi: 10.1016/S0305-0548(99)00123-9
– volume: 35
  start-page: 1701
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2014.08.018_b0050
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.05.009
– volume: 160
  start-page: 501
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2014.08.018_b0230
  article-title: Neural network forecasting for seasonal and trend time series
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2003.08.037
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0005
  article-title: Comparison of ARIMA and artificial neural networks models for stock price prediction
  publication-title: Journal of Applied Mathematics
  doi: 10.1155/2014/614342
– volume: 52
  start-page: 1148
  issue: 6
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0110
  article-title: User liaisons’ perspective on behavior and outcome control in IT projects: Role of IT experience, behavior observability, and outcome measurability
  publication-title: Management Decision
  doi: 10.1108/MD-08-2013-0430
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0175
  article-title: An effective hybrid self-adapting differential evolution algorithm for the joint replenishment and location-inventory problem in a three-level supply chain
  publication-title: The Scientific World Journal
  doi: 10.1155/2013/270249
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0100
  article-title: A hybrid genetic-simulated annealing algorithm for the location-inventory-routing problem considering returns under E-supply chain environment
  publication-title: The Scientific World Journal
  doi: 10.1155/2013/125893
– volume: 191
  start-page: 2873
  issue: 25
  year: 2002
  ident: 10.1016/j.eswa.2014.08.018_b0235
  article-title: An evaluation of back-propagation neural networks for the optimal design of structural systems: Part I. Training procedures
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(01)00372-3
– volume: 140
  start-page: 411
  issue: 4
  year: 1977
  ident: 10.1016/j.eswa.2014.08.018_b0025
  article-title: A survey of statistical work on the Mackenzie River series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis
  publication-title: Journal of the Royal Statistical Society (Series A)
  doi: 10.2307/2345277
– year: 1976
  ident: 10.1016/j.eswa.2014.08.018_b0020
– volume: 32
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0105
  article-title: Understanding the impact of risks on performance in internal and outsourced information technology projects: The role of strategic importance
  publication-title: International Journal of Project Management
  doi: 10.1016/j.ijproman.2014.01.012
– volume: 4
  start-page: 358
  issue: 6
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0200
  article-title: Forecasting the number of human immunodeficiency virus infections in the Korean population using the autoregressive integrated moving average model
  publication-title: Osong Public Health and Research Perspectives
  doi: 10.1016/j.phrp.2013.10.009
– volume: 126
  start-page: 202
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0030
  article-title: The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.02.034
– volume: 2013
  start-page: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b9000
  article-title: A new improv ed quantum evolution algorithm with local search procedure for capacitated vehicle routing problem
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/309750
– volume: 41
  start-page: 1792
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0040
  article-title: RFID technology investment evaluation model for the stochastic joint replenishment and delivery problem
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.078
– volume: 40
  start-page: 1014
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0015
  article-title: ANN-based residential water end-use demand forecasting model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.012
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.eswa.2014.08.018_b0210
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2014.08.018_b0220
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 28
  start-page: 372
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2014.08.018_b0060
  article-title: The comparison of different feed forward neural network architectures for ECG signal diagnosis
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2005.06.006
– volume: 72
  start-page: 956
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2014.08.018_b0080
  article-title: Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs)
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.04.017
– volume: 6
  start-page: 954
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0085
  article-title: Hybrid fuzzy auto-regressive integrated moving average (FARIMAH) model for forecasting the foreign exchange markets
  publication-title: International Journal of Computational Intelligence Systems
  doi: 10.1080/18756891.2013.809937
– volume: 3991
  start-page: 728
  year: 2006
  ident: 10.1016/j.eswa.2014.08.018_b0185
  article-title: The criticality of spare parts evaluating model using an artificial neural network approach
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11758501_97
– volume: 94
  start-page: 251
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0095
  article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2012.01.063
– volume: 31
  start-page: 172
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0120
  article-title: Forecasting performance of nonlinear models for intraday stock returns
  publication-title: Journal of Forecasting
  doi: 10.1002/for.1218
– volume: 29
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0160
  article-title: Optimized light guide plate optical brightness parameter: integrating back-propagation neural network (BPN) and revised genetic algorithm (GA)
  publication-title: Materials and Manufacturing
– volume: 171
  start-page: 674
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2014.08.018_b0130
  article-title: Scheduling flow shops using differential evolution algorithm
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2004.08.043
– volume: 45
  start-page: 850
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0215
  article-title: Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2012.07.006
– volume: 40
  start-page: 5501
  issue: 14
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0150
  article-title: A Bayesian regularized artificial neural network for stock market forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.04.013
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0205
  article-title: Optimizing the joint replenishment and delivery scheduling problem under fuzzy environment using inverse weight fuzzy nonlinear programming method
  publication-title: Abstract and Applied Analysis
– volume: 37
  start-page: 4901
  issue: 11
  year: 2009
  ident: 10.1016/j.eswa.2014.08.018_b0190
  article-title: A trend fixed on firstly and seasonal adjustment model combined with the ε-SVR for short-term forecasting of electricity demand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.06.046
– volume: 20
  start-page: 134
  issue: 1
  year: 2002
  ident: 10.1016/j.eswa.2014.08.018_b0045
  article-title: Comparing predictive accuracy
  publication-title: Journal of Business & Economic Statistics
  doi: 10.1198/073500102753410444
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.eswa.2014.08.018_b0180
  article-title: Optimizing the joint replenishment and channel coordination problem under supply chain environment using a simple and effective differential evolution algorithm
  publication-title: Discrete Dynamics in Nature and Society
  doi: 10.1155/2014/675721
– volume: 37
  start-page: 9643
  issue: 23
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0070
  article-title: Application of seasonal SVR with chaotic gravitational search algorithm in electricity forecasting
  publication-title: Applied Mathematical Modeling
  doi: 10.1016/j.apm.2013.05.016
– volume: 39
  start-page: 4344
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0075
  article-title: A new class of hybrid models for time series forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.157
– volume: 33
  start-page: 61
  issue: 1–2
  year: 2010
  ident: 10.1016/j.eswa.2014.08.018_b0125
  article-title: Recent advances in differential evolution: A survey and experimental analysis
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-009-9137-2
– volume: 185
  start-page: 1026
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.08.018_b0240
  article-title: A hybrid particle swarm optimization-back-propagation algorithm for feedforward neural network training
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2006.07.025
– volume: 29
  start-page: 79
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2014.08.018_b0035
  article-title: A fractionally integrated autoregressive moving average approach to forecasting tourism demand
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2007.04.003
– volume: 30
  start-page: 219
  issue: 1
  year: 2000
  ident: 10.1016/j.eswa.2014.08.018_b0195
  article-title: A weight initialization method for improving training speed in feedforward neural network
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(99)00127-7
– volume: 2
  start-page: 1980
  year: 2004
  ident: 10.1016/j.eswa.2014.08.018_b0155
  article-title: A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems
  publication-title: Proceedings of IEEE Congress on Evolutionary Computation
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.eswa.2014.08.018_b0145
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1008202821328
– volume: 29
  start-page: 429
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0170
  article-title: A differential evolution algorithm for joint replenishment problem using direct grouping and its application
  publication-title: Expert Systems
  doi: 10.1111/j.1468-0394.2011.00594.x
– volume: 37
  start-page: 4049
  issue: 10
  year: 2009
  ident: 10.1016/j.eswa.2014.08.018_b0055
  article-title: Energy demand estimation of South Korea using artificial neural network
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.049
– volume: 47
  start-page: 115
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2014.08.018_b0115
  article-title: Financial time series forecasting using independent component analysis and support vector regression
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2009.02.001
– volume: 77
  start-page: 29
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.08.018_b0010
  article-title: Comparison of ARIMA, neural networks and hybrid models in time series: Tourist arrival forecasting
  publication-title: Journal of Statistical Computation and Simulation
  doi: 10.1080/10629360600564874
– volume: 46
  start-page: 2669
  issue: 17
  year: 2005
  ident: 10.1016/j.eswa.2014.08.018_b0135
  article-title: Support vector machines with simulated annealing algorithms in electricity load forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2005.02.004
– volume: 54
  start-page: 207
  year: 2013
  ident: 10.1016/j.eswa.2014.08.018_b0140
  article-title: Modeling and optimization for the joint replenishment and delivery problem with heterogeneous items
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.09.013
– volume: 58
  start-page: 283
  issue: 3
  year: 1999
  ident: 10.1016/j.eswa.2014.08.018_b0090
  article-title: Autoregressive integrated moving averages (ARIMA) modeling of a traffic noise time series
  publication-title: Applied Acoustics
  doi: 10.1016/S0003-682X(98)00078-4
– volume: 39
  start-page: 4181
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2014.08.018_b0165
  article-title: Continuous review inventory models with a mixture of backorders and lost sales under fuzzy demand and different decision situations
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.09.116
SSID ssj0017007
Score 2.6180608
Snippet •We propose a BPNN with adaptive differential evolution (ADE) for time series forecasting.•ADE is used to search for global initial connection weights and...
The back propagation neural network (BPNN) can easily fall into the local minimum point in time series forecasting. A hybrid approach that combines the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 855
SubjectTerms Adaptive algorithms
Artificial neural networks
Back propagation
Back propagation neural network
Differential evolution algorithm
Forecasting
Mathematical models
Neural networks
Searching
Thresholds
Time series forecasting
Title Back propagation neural network with adaptive differential evolution algorithm for time series forecasting
URI https://dx.doi.org/10.1016/j.eswa.2014.08.018
https://www.proquest.com/docview/1651373798
Volume 42
WOSCitedRecordID wos000343854900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMX3ojlJSNxq4LqOA_7uKBFgFYrDkUqXCzHmaB2u2nVZsse-emMYzsNRbtiD1yiyLItt9-XmbE9D0LeiFjzONdFhMraREmC-xRRQRqBTYKaVjimaKuWnOSnp2I6lV8Gg18hFma7yOtaXF7K1X-FGtsQbBs6ewO4u0mxAd8RdHwi7Pj8J-DfaXNm3a5QUjhwbcpKBKJ2Dt8-mq3Uq9ZpKBRIaezJOWz9ykZ68WO5xo7nzg1xdg4ju3hoszeA0ZsmqLx558sH68Ynhg4hc73L8d3BvRMuJ7OOld_BNX2b7XwNnDCc6GX_VIKlwZG5d7yYRwlzFXiCpE3iHqPintgULlVv0MBO5P0l3N05w_wtbH7ajFEsaZOvevH9RybtPQ3X-R0Gl7a5snMoO4eyVTiZuEUO4jyVYkgOjj4dTz93N1H52IXch9_jA6-cj-D-Sq4ybvbUfGu7TO6Tu37TQY8cWR6QAdQPyb1Q0IN6-f6IzC13aI871HGHeu5QCysN3KF97tCOO7TjDkWuUMsd6rhDe9x5TL5-OJ68_xj5YhyR4Zw3kWCsFCVLS2lruhppJIANvOaQgsgq3BVL0IndnWopClONqyQFVmSco0E6NgV_Qob1soanhGas0kUGcgzYySSZLI0GkBnu3UUhdXFIWPgXlfGZ6m3BlIW6Gr9DMurGrFyelmt7pwEc5S1NZ0Eq5Nq1414HJBWKYXu3pmtYXmwUy1LGc55L8exGK3lO7uw-nxdk2Kwv4CW5bbbNbLN-5cn4GzhtsZM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+propagation+neural+network+with+adaptive+differential+evolution+algorithm+for+time+series+forecasting&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Lin&rft.au=Zeng%2C+Yi&rft.au=Chen%2C+Tao&rft.date=2015-02-01&rft.issn=0957-4174&rft.volume=42&rft.issue=2&rft.spage=855&rft.epage=863&rft_id=info:doi/10.1016%2Fj.eswa.2014.08.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2014_08_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon