Learning Optimal Impedance Control During Complex 3D Arm Movements

Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 6; no. 2; pp. 1248 - 1255
Main Authors: Naceri, Abdeldjallil, Schumacher, Tobias, Li, Qiang, Calinon, Sylvain, Ritter, Helge
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by external 2D force patterns. In this work, we will employ a more advanced, compliant robot arm to extend previous work to a more realistic 3D-setting. We study the adaptive mechanism and use machine learning to capture the human adaptation behavior. In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm. The arm is force controlled and the human is required to navigate the handle inside a non-visible, virtual maze and explore it only through robot force feedback when contacting maze virtual walls. By sampling the hand's position and force data, a computational model based on a combination of model predictive control and nonlinear regression is used to predict participants' successful trials. Our study shows that participants selectively increased the stiffness within the axis direction of uncertainty to compensate for instability caused by a divergent external force field. The learned controller was able to successfully mimic this behavior. When it is deployed on the robot for the navigation task, the robot arm successfully adapt to the unstable dynamics in the virtual maze, in a similar manner as observed in the participants' adaptation skill.
AbstractList Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by external 2D force patterns. In this work, we will employ a more advanced, compliant robot arm to extend previous work to a more realistic 3D-setting. We study the adaptive mechanism and use machine learning to capture the human adaptation behavior. In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm. The arm is force controlled and the human is required to navigate the handle inside a non-visible, virtual maze and explore it only through robot force feedback when contacting maze virtual walls. By sampling the hand's position and force data, a computational model based on a combination of model predictive control and nonlinear regression is used to predict participants' successful trials. Our study shows that participants selectively increased the stiffness within the axis direction of uncertainty to compensate for instability caused by a divergent external force field. The learned controller was able to successfully mimic this behavior. When it is deployed on the robot for the navigation task, the robot arm successfully adapt to the unstable dynamics in the virtual maze, in a similar manner as observed in the participants’ adaptation skill.
Author Li, Qiang
Ritter, Helge
Naceri, Abdeldjallil
Schumacher, Tobias
Calinon, Sylvain
Author_xml – sequence: 1
  givenname: Abdeldjallil
  orcidid: 0000-0002-8832-0978
  surname: Naceri
  fullname: Naceri, Abdeldjallil
  email: Abdeldjallil.Naceri@iit.it
  organization: Munich School of Robotics and Machine Intelligence — MSRMTechnical University of Munich - TUM
– sequence: 2
  givenname: Tobias
  surname: Schumacher
  fullname: Schumacher, Tobias
  email: Tobias.Schumacher1993@googlemail.com
  organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany
– sequence: 3
  givenname: Qiang
  orcidid: 0000-0002-4315-0864
  surname: Li
  fullname: Li, Qiang
  email: qli@techfak.uni-bielefeld.de
  organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany
– sequence: 4
  givenname: Sylvain
  orcidid: 0000-0002-9036-6799
  surname: Calinon
  fullname: Calinon, Sylvain
  email: sylvain.calinon@idiap.ch
  organization: Idiap Research Institute, Martigny, Switzerland
– sequence: 5
  givenname: Helge
  surname: Ritter
  fullname: Ritter, Helge
  email: helge@techfak.uni-bielefeld.de
  organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany
BookMark eNp9kN9LwzAQx4NMcM69C74UfO5Mck2yPM7OH4PKQPQ5hPYqHW1S0070v7dlQ8QHn3LkPt877nNOJs47JOSS0QVjVN9kz6sFp5wtgAoJip2QKQelYlBSTn7VZ2TedTtKKRNcgRZTcpuhDa5yb9G27avG1tGmabGwLsco9a4Pvo7W-zACqW_aGj8jWEer0ERP_gMbdH13QU5LW3c4P74z8np_95I-xtn2YZOusjgHgD5WmOui1AXlIik5A8GUlUIVIIVNrC11qaQYPiBhSMuCFVZrJZdKDB0AVDAj14e5bfDve-x6s_P74IaVhieaL4VcUjZQ8kDlwXddwNLkVW_7arzFVrVh1IzKzKDMjMrMUdkQpH-CbRiEhK__IleHSIWIP7iGRKilgG_KH3Y9
CODEN IRALC6
CitedBy_id crossref_primary_10_3390_fractalfract8100579
crossref_primary_10_1109_TMECH_2021_3109160
crossref_primary_10_3390_act12030112
crossref_primary_10_1109_THMS_2022_3231703
crossref_primary_10_3390_act14070323
crossref_primary_10_3390_biomimetics10040194
crossref_primary_10_1007_s10846_023_01999_9
crossref_primary_10_1145_3577010
crossref_primary_10_1109_LRA_2023_3296349
crossref_primary_10_1016_j_robot_2023_104431
crossref_primary_10_1109_TCDS_2024_3480854
crossref_primary_10_1109_TRO_2025_3576950
Cites_doi 10.1523/JNEUROSCI.05-10-02732.1985
10.1109/ICRA.2016.7487171
10.18637/jss.v067.i01
10.1007/978-94-007-6046-2_68
10.1523/JNEUROSCI.14-05-03208.1994
10.1523/JNEUROSCI.0968-07.2007
10.1523/JNEUROSCI.6525-10.2011
10.1007/978-3-319-60916-4_7
10.1109/TNSRE.2007.903913
10.1109/TBME.2012.2192437
10.1007/978-1-4419-0318-1
10.23919/ACC.1984.4788393
10.1016/j.tree.2008.10.008
10.1152/jn.01112.2002
10.1038/srep45722
10.1007/s00221-004-1864-7
10.1109/TRO.2011.2158251
10.1109/TMECH.2014.2361925
10.1038/35106566
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2021.3056371
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 1255
ExternalDocumentID 10_1109_LRA_2021_3056371
9345785
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: 410916101
  funderid: 10.13039/501100001659
– fundername: Cluster of Excellence
  grantid: EXC277
– fundername: European Commission's Horizon 2020 Programme
  grantid: 820767
– fundername: German Research Foundation
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-7ec9df9d0254f213517a657d365a4aaf9f765657341e0fd1da9976875f9f33e73
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621399900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Sun Nov 09 07:35:53 EST 2025
Sat Nov 29 06:03:09 EST 2025
Tue Nov 18 22:12:09 EST 2025
Wed Aug 27 02:44:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-7ec9df9d0254f213517a657d365a4aaf9f765657341e0fd1da9976875f9f33e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4315-0864
0000-0002-8832-0978
0000-0002-9036-6799
OpenAccessLink https://zenodo.org/record/5596119
PQID 2492856801
PQPubID 4437225
PageCount 8
ParticipantIDs proquest_journals_2492856801
crossref_primary_10_1109_LRA_2021_3056371
crossref_citationtrail_10_1109_LRA_2021_3056371
ieee_primary_9345785
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
bischoff (ref11) 0
jaquier (ref26) 0
ref10
van der smagt (ref8) 0
ref2
ref17
ref16
ref19
ref18
steinbeck (ref7) 2016
ref24
ref23
ref25
ref20
ref22
colgate (ref1) 0; 58
ref21
patel (ref6) 0
ref9
ref4
ref3
ref5
References_xml – ident: ref12
  doi: 10.1523/JNEUROSCI.05-10-02732.1985
– ident: ref18
  doi: 10.1109/ICRA.2016.7487171
– ident: ref14
  doi: 10.18637/jss.v067.i01
– ident: ref10
  doi: 10.1007/978-94-007-6046-2_68
– volume: 58
  start-page: 433
  year: 0
  ident: ref1
  article-title: Cobots: Robots for collaboration with human operators
  publication-title: Proc ASME Dyn Syst Control Division
– ident: ref5
  doi: 10.1523/JNEUROSCI.14-05-03208.1994
– ident: ref20
  doi: 10.1523/JNEUROSCI.0968-07.2007
– ident: ref19
  doi: 10.1523/JNEUROSCI.6525-10.2011
– ident: ref9
  doi: 10.1007/978-3-319-60916-4_7
– ident: ref2
  doi: 10.1109/TNSRE.2007.903913
– ident: ref25
  doi: 10.1109/TBME.2012.2192437
– ident: ref15
  doi: 10.1007/978-1-4419-0318-1
– ident: ref17
  doi: 10.1523/JNEUROSCI.05-10-02732.1985
– year: 0
  ident: ref8
  article-title: Human arm impedance and emg in 3 d
  publication-title: Proc SKILLS Int Conf Multimodal Interfaces Skills Transfer
– ident: ref21
  doi: 10.23919/ACC.1984.4788393
– ident: ref16
  doi: 10.1016/j.tree.2008.10.008
– year: 0
  ident: ref6
  article-title: Regulation of 3 d human arm impedance through muscle co-contraction
  publication-title: Proc Dyn Syst Control Conf
– ident: ref22
  doi: 10.1152/jn.01112.2002
– ident: ref24
  doi: 10.1038/srep45722
– ident: ref23
  doi: 10.1007/s00221-004-1864-7
– start-page: 11 131
  year: 0
  ident: ref26
  article-title: Analysis and transfer of human movement manipulability in industry-like activities
  publication-title: Proc IEEE/RSJ Intl Conf Intell Robots Syst
– start-page: 1
  year: 0
  ident: ref11
  article-title: The kuka-dlr lightweight robot arm-a new reference platform for robotics research and manufacturing
  publication-title: Proc ISR (41st Int Symp Robot) ROBOTIK 2010
– ident: ref3
  doi: 10.1109/TRO.2011.2158251
– ident: ref13
  doi: 10.1109/TMECH.2014.2361925
– year: 2016
  ident: ref7
  article-title: Learning optimal impedance during arm movements in three dimensional space
– ident: ref4
  doi: 10.1038/35106566
SSID ssj0001527395
Score 2.278233
Snippet Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1248
SubjectTerms Adaptation
Control stability
Dynamics
End effectors
Force
Human stiffness learning
human-centered robotics
Machine learning
machine learning for robot control
model learning for control
modeling and simulating humans
Nonlinear control
Perturbation methods
Predictive control
Robot arms
Robots
Stiffness
Task analysis
Three-dimensional displays
Title Learning Optimal Impedance Control During Complex 3D Arm Movements
URI https://ieeexplore.ieee.org/document/9345785
https://www.proquest.com/docview/2492856801
Volume 6
WOSCitedRecordID wos000621399900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrSUHL4Lb7jabzeZY-0DBVhGF3pY0DxH6kHYrnvztJtltVRTB28JOwjKTnUdm5huAM6qFr0aUekoH2gtFU3lcj2IPk5EMfaGJFtmwCToYxMMhuyvAxboXRinlis9U3T66XL6ciaW9KmswHFpsliIUKaVZr9bnfYpFEmNklYn0WePmvmXiv2ZQt14ypsE3y-NGqfzQv86o9Hb-9zm7sJ07j6iVSXsPCmq6D1tfIAXLcJkDpj6hW6MMJob62jjG0soWtbOydNRxrYnIqoKxekO4Y3acoP7MQYeniwN47HUf2ldePifBExjj1KNKMKmZtI3tumlH7lEeESpxRHjIuWaaRja7aQyW8rUMJGfGCTGBinmDsaL4EErT2VQdAfIDbgyUIhHTMgw0j7EgnGkdcxYwrUYVaKx4mIgcRNzOshgnLpjwWWK4nliuJznXK3C-XvGSAWj8QVu2XF7T5QyuQHUlpiT_wxaJRTqMSWQM7PHvq05g0-6dVdlUoZTOl-oUNsRr-ryY16DYf-_W3BH6AA5iw_o
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgRTBtks1ms8faWlpsq0iF3sJmHyL0IW0q_nx3k7QqiuAtkNkkzGzmsTPzDcAlUdyRMSG2VK6yfe5Jm6k4tBGOhe9whRXPhk2Qfj8cDulDAa5XvTBSyrT4TFbNZZrLF1O-MEdlNYp8g82yBuvY9z0369b6PFExWGIUL3ORDq11H-s6AvTcqvGTEXG_2Z50mMoPDZyaldbu_z5oD3Zy99GqZ_Leh4KcHMD2F1DBEtzkkKnP1r1WB2NN3dGusTDStRpZYbrVTJsTLaMMRvLdQk39xLHVm6bg4cn8EJ5at4NG284nJdgcIZTYRHIqFBWmtV15ZugeYQEmAgWY-Ywpqkhg8pvaZElHCVcwqt0QHaroOwhJgo6gOJlO5DFYjsu0iZI4oEr4rmIh4phRpUJGXapkXIbakocRz2HEzTSLUZSGEw6NNNcjw_Uo53oZrlYrXjMIjT9oS4bLK7qcwWWoLMUU5f_YPDJYhyEOtIk9-X3VBWy2B71u1O30705hy7wnq7mpQDGZLeQZbPC35GU-O0830gfIOMYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Optimal+Impedance+Control+During+Complex+3D+Arm+Movements&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Naceri%2C+Abdeldjallil&rft.au=Schumacher%2C+Tobias&rft.au=Li%2C+Qiang&rft.au=Calinon%2C+Sylvain&rft.date=2021-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=2&rft.spage=1248&rft.epage=1255&rft_id=info:doi/10.1109%2FLRA.2021.3056371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3056371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon