Learning Optimal Impedance Control During Complex 3D Arm Movements
Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar...
Saved in:
| Published in: | IEEE robotics and automation letters Vol. 6; no. 2; pp. 1248 - 1255 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2377-3766, 2377-3766 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by external 2D force patterns. In this work, we will employ a more advanced, compliant robot arm to extend previous work to a more realistic 3D-setting. We study the adaptive mechanism and use machine learning to capture the human adaptation behavior. In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm. The arm is force controlled and the human is required to navigate the handle inside a non-visible, virtual maze and explore it only through robot force feedback when contacting maze virtual walls. By sampling the hand's position and force data, a computational model based on a combination of model predictive control and nonlinear regression is used to predict participants' successful trials. Our study shows that participants selectively increased the stiffness within the axis direction of uncertainty to compensate for instability caused by a divergent external force field. The learned controller was able to successfully mimic this behavior. When it is deployed on the robot for the navigation task, the robot arm successfully adapt to the unstable dynamics in the virtual maze, in a similar manner as observed in the participants' adaptation skill. |
|---|---|
| AbstractList | Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can adapt their movements to the external unstable dynamics. The underlying adaptive mechanism has been investigated, employing a simple planar device perturbed by external 2D force patterns. In this work, we will employ a more advanced, compliant robot arm to extend previous work to a more realistic 3D-setting. We study the adaptive mechanism and use machine learning to capture the human adaptation behavior. In order to model human's stiffness adaptive skill, we give human subjects the task to reach for a target by moving a handle assembled on the end-effector of a compliant robotic arm. The arm is force controlled and the human is required to navigate the handle inside a non-visible, virtual maze and explore it only through robot force feedback when contacting maze virtual walls. By sampling the hand's position and force data, a computational model based on a combination of model predictive control and nonlinear regression is used to predict participants' successful trials. Our study shows that participants selectively increased the stiffness within the axis direction of uncertainty to compensate for instability caused by a divergent external force field. The learned controller was able to successfully mimic this behavior. When it is deployed on the robot for the navigation task, the robot arm successfully adapt to the unstable dynamics in the virtual maze, in a similar manner as observed in the participants’ adaptation skill. |
| Author | Li, Qiang Ritter, Helge Naceri, Abdeldjallil Schumacher, Tobias Calinon, Sylvain |
| Author_xml | – sequence: 1 givenname: Abdeldjallil orcidid: 0000-0002-8832-0978 surname: Naceri fullname: Naceri, Abdeldjallil email: Abdeldjallil.Naceri@iit.it organization: Munich School of Robotics and Machine Intelligence — MSRMTechnical University of Munich - TUM – sequence: 2 givenname: Tobias surname: Schumacher fullname: Schumacher, Tobias email: Tobias.Schumacher1993@googlemail.com organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany – sequence: 3 givenname: Qiang orcidid: 0000-0002-4315-0864 surname: Li fullname: Li, Qiang email: qli@techfak.uni-bielefeld.de organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany – sequence: 4 givenname: Sylvain orcidid: 0000-0002-9036-6799 surname: Calinon fullname: Calinon, Sylvain email: sylvain.calinon@idiap.ch organization: Idiap Research Institute, Martigny, Switzerland – sequence: 5 givenname: Helge surname: Ritter fullname: Ritter, Helge email: helge@techfak.uni-bielefeld.de organization: Neuroinformatics Group & CITEC headed by Prof. Helge Ritter, Bielefeld University, Bielefeld, Germany |
| BookMark | eNp9kN9LwzAQx4NMcM69C74UfO5Mck2yPM7OH4PKQPQ5hPYqHW1S0070v7dlQ8QHn3LkPt877nNOJs47JOSS0QVjVN9kz6sFp5wtgAoJip2QKQelYlBSTn7VZ2TedTtKKRNcgRZTcpuhDa5yb9G27avG1tGmabGwLsco9a4Pvo7W-zACqW_aGj8jWEer0ERP_gMbdH13QU5LW3c4P74z8np_95I-xtn2YZOusjgHgD5WmOui1AXlIik5A8GUlUIVIIVNrC11qaQYPiBhSMuCFVZrJZdKDB0AVDAj14e5bfDve-x6s_P74IaVhieaL4VcUjZQ8kDlwXddwNLkVW_7arzFVrVh1IzKzKDMjMrMUdkQpH-CbRiEhK__IleHSIWIP7iGRKilgG_KH3Y9 |
| CODEN | IRALC6 |
| CitedBy_id | crossref_primary_10_3390_fractalfract8100579 crossref_primary_10_1109_TMECH_2021_3109160 crossref_primary_10_3390_act12030112 crossref_primary_10_1109_THMS_2022_3231703 crossref_primary_10_3390_act14070323 crossref_primary_10_3390_biomimetics10040194 crossref_primary_10_1007_s10846_023_01999_9 crossref_primary_10_1145_3577010 crossref_primary_10_1109_LRA_2023_3296349 crossref_primary_10_1016_j_robot_2023_104431 crossref_primary_10_1109_TCDS_2024_3480854 crossref_primary_10_1109_TRO_2025_3576950 |
| Cites_doi | 10.1523/JNEUROSCI.05-10-02732.1985 10.1109/ICRA.2016.7487171 10.18637/jss.v067.i01 10.1007/978-94-007-6046-2_68 10.1523/JNEUROSCI.14-05-03208.1994 10.1523/JNEUROSCI.0968-07.2007 10.1523/JNEUROSCI.6525-10.2011 10.1007/978-3-319-60916-4_7 10.1109/TNSRE.2007.903913 10.1109/TBME.2012.2192437 10.1007/978-1-4419-0318-1 10.23919/ACC.1984.4788393 10.1016/j.tree.2008.10.008 10.1152/jn.01112.2002 10.1038/srep45722 10.1007/s00221-004-1864-7 10.1109/TRO.2011.2158251 10.1109/TMECH.2014.2361925 10.1038/35106566 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/LRA.2021.3056371 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2377-3766 |
| EndPage | 1255 |
| ExternalDocumentID | 10_1109_LRA_2021_3056371 9345785 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: 410916101 funderid: 10.13039/501100001659 – fundername: Cluster of Excellence grantid: EXC277 – fundername: European Commission's Horizon 2020 Programme grantid: 820767 – fundername: German Research Foundation |
| GroupedDBID | 0R~ 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF KQ8 M43 M~E O9- OCL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-7ec9df9d0254f213517a657d365a4aaf9f765657341e0fd1da9976875f9f33e73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000621399900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2377-3766 |
| IngestDate | Sun Nov 09 07:35:53 EST 2025 Sat Nov 29 06:03:09 EST 2025 Tue Nov 18 22:12:09 EST 2025 Wed Aug 27 02:44:32 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-7ec9df9d0254f213517a657d365a4aaf9f765657341e0fd1da9976875f9f33e73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4315-0864 0000-0002-8832-0978 0000-0002-9036-6799 |
| OpenAccessLink | https://zenodo.org/record/5596119 |
| PQID | 2492856801 |
| PQPubID | 4437225 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_2492856801 crossref_primary_10_1109_LRA_2021_3056371 crossref_citationtrail_10_1109_LRA_2021_3056371 ieee_primary_9345785 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE robotics and automation letters |
| PublicationTitleAbbrev | LRA |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 bischoff (ref11) 0 jaquier (ref26) 0 ref10 van der smagt (ref8) 0 ref2 ref17 ref16 ref19 ref18 steinbeck (ref7) 2016 ref24 ref23 ref25 ref20 ref22 colgate (ref1) 0; 58 ref21 patel (ref6) 0 ref9 ref4 ref3 ref5 |
| References_xml | – ident: ref12 doi: 10.1523/JNEUROSCI.05-10-02732.1985 – ident: ref18 doi: 10.1109/ICRA.2016.7487171 – ident: ref14 doi: 10.18637/jss.v067.i01 – ident: ref10 doi: 10.1007/978-94-007-6046-2_68 – volume: 58 start-page: 433 year: 0 ident: ref1 article-title: Cobots: Robots for collaboration with human operators publication-title: Proc ASME Dyn Syst Control Division – ident: ref5 doi: 10.1523/JNEUROSCI.14-05-03208.1994 – ident: ref20 doi: 10.1523/JNEUROSCI.0968-07.2007 – ident: ref19 doi: 10.1523/JNEUROSCI.6525-10.2011 – ident: ref9 doi: 10.1007/978-3-319-60916-4_7 – ident: ref2 doi: 10.1109/TNSRE.2007.903913 – ident: ref25 doi: 10.1109/TBME.2012.2192437 – ident: ref15 doi: 10.1007/978-1-4419-0318-1 – ident: ref17 doi: 10.1523/JNEUROSCI.05-10-02732.1985 – year: 0 ident: ref8 article-title: Human arm impedance and emg in 3 d publication-title: Proc SKILLS Int Conf Multimodal Interfaces Skills Transfer – ident: ref21 doi: 10.23919/ACC.1984.4788393 – ident: ref16 doi: 10.1016/j.tree.2008.10.008 – year: 0 ident: ref6 article-title: Regulation of 3 d human arm impedance through muscle co-contraction publication-title: Proc Dyn Syst Control Conf – ident: ref22 doi: 10.1152/jn.01112.2002 – ident: ref24 doi: 10.1038/srep45722 – ident: ref23 doi: 10.1007/s00221-004-1864-7 – start-page: 11 131 year: 0 ident: ref26 article-title: Analysis and transfer of human movement manipulability in industry-like activities publication-title: Proc IEEE/RSJ Intl Conf Intell Robots Syst – start-page: 1 year: 0 ident: ref11 article-title: The kuka-dlr lightweight robot arm-a new reference platform for robotics research and manufacturing publication-title: Proc ISR (41st Int Symp Robot) ROBOTIK 2010 – ident: ref3 doi: 10.1109/TRO.2011.2158251 – ident: ref13 doi: 10.1109/TMECH.2014.2361925 – year: 2016 ident: ref7 article-title: Learning optimal impedance during arm movements in three dimensional space – ident: ref4 doi: 10.1038/35106566 |
| SSID | ssj0001527395 |
| Score | 2.278233 |
| Snippet | Humans use their limbs to perform various movements to interact with an external environment. Thanks to limb's variable and adaptive stiffness, humans can... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1248 |
| SubjectTerms | Adaptation Control stability Dynamics End effectors Force Human stiffness learning human-centered robotics Machine learning machine learning for robot control model learning for control modeling and simulating humans Nonlinear control Perturbation methods Predictive control Robot arms Robots Stiffness Task analysis Three-dimensional displays |
| Title | Learning Optimal Impedance Control During Complex 3D Arm Movements |
| URI | https://ieeexplore.ieee.org/document/9345785 https://www.proquest.com/docview/2492856801 |
| Volume | 6 |
| WOSCitedRecordID | wos000621399900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: RIE dateStart: 20160101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2377-3766 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001527395 issn: 2377-3766 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB7a4kEPvqpYrSUHL4Lb7jabzeZY-0DBVhGF3pY0DxH6kHYrnvztJtltVRTB28JOwjKTnUdm5huAM6qFr0aUekoH2gtFU3lcj2IPk5EMfaGJFtmwCToYxMMhuyvAxboXRinlis9U3T66XL6ciaW9KmswHFpsliIUKaVZr9bnfYpFEmNklYn0WePmvmXiv2ZQt14ypsE3y-NGqfzQv86o9Hb-9zm7sJ07j6iVSXsPCmq6D1tfIAXLcJkDpj6hW6MMJob62jjG0soWtbOydNRxrYnIqoKxekO4Y3acoP7MQYeniwN47HUf2ldePifBExjj1KNKMKmZtI3tumlH7lEeESpxRHjIuWaaRja7aQyW8rUMJGfGCTGBinmDsaL4EErT2VQdAfIDbgyUIhHTMgw0j7EgnGkdcxYwrUYVaKx4mIgcRNzOshgnLpjwWWK4nliuJznXK3C-XvGSAWj8QVu2XF7T5QyuQHUlpiT_wxaJRTqMSWQM7PHvq05g0-6dVdlUoZTOl-oUNsRr-ryY16DYf-_W3BH6AA5iw_o |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5qFdSDrypWq-bgRTBtks1ms8faWlpsq0iF3sJmHyL0IW0q_nx3k7QqiuAtkNkkzGzmsTPzDcAlUdyRMSG2VK6yfe5Jm6k4tBGOhe9whRXPhk2Qfj8cDulDAa5XvTBSyrT4TFbNZZrLF1O-MEdlNYp8g82yBuvY9z0369b6PFExWGIUL3ORDq11H-s6AvTcqvGTEXG_2Z50mMoPDZyaldbu_z5oD3Zy99GqZ_Leh4KcHMD2F1DBEtzkkKnP1r1WB2NN3dGusTDStRpZYbrVTJsTLaMMRvLdQk39xLHVm6bg4cn8EJ5at4NG284nJdgcIZTYRHIqFBWmtV15ZugeYQEmAgWY-Ywpqkhg8pvaZElHCVcwqt0QHaroOwhJgo6gOJlO5DFYjsu0iZI4oEr4rmIh4phRpUJGXapkXIbakocRz2HEzTSLUZSGEw6NNNcjw_Uo53oZrlYrXjMIjT9oS4bLK7qcwWWoLMUU5f_YPDJYhyEOtIk9-X3VBWy2B71u1O30705hy7wnq7mpQDGZLeQZbPC35GU-O0830gfIOMYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Optimal+Impedance+Control+During+Complex+3D+Arm+Movements&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Naceri%2C+Abdeldjallil&rft.au=Schumacher%2C+Tobias&rft.au=Li%2C+Qiang&rft.au=Calinon%2C+Sylvain&rft.date=2021-04-01&rft.issn=2377-3766&rft.eissn=2377-3766&rft.volume=6&rft.issue=2&rft.spage=1248&rft.epage=1255&rft_id=info:doi/10.1109%2FLRA.2021.3056371&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LRA_2021_3056371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon |