Temporal Parallelization of Inference in Hidden Markov Models
This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements...
Uloženo v:
| Vydáno v: | IEEE transactions on signal processing Ročník 69; s. 4875 - 4887 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements and operators to pose these inference problems as all-prefix-sums computations and parallelize them using the parallel-scan algorithm. The advantage of the proposed algorithms is that they are computationally efficient in HMM inference problems with long time horizons. We empirically compare the performance of the proposed methods to classical methods on a highly parallel graphics processing unit (GPU). |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2021.3103338 |