Temporal Parallelization of Inference in Hidden Markov Models

This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 69; s. 4875 - 4887
Hlavní autori: Hassan, Sakira, Sarkka, Simo, Garcia-Fernandez, Angel
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements and operators to pose these inference problems as all-prefix-sums computations and parallelize them using the parallel-scan algorithm. The advantage of the proposed algorithms is that they are computationally efficient in HMM inference problems with long time horizons. We empirically compare the performance of the proposed methods to classical methods on a highly parallel graphics processing unit (GPU).
AbstractList This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements and operators to pose these inference problems as all-prefix-sums computations and parallelize them using the parallel-scan algorithm. The advantage of the proposed algorithms is that they are computationally efficient in HMM inference problems with long time horizons. We empirically compare the performance of the proposed methods to classical methods on a highly parallel graphics processing unit (GPU).
Author Hassan, Sakira
Garcia-Fernandez, Angel
Sarkka, Simo
Author_xml – sequence: 1
  givenname: Sakira
  orcidid: 0000-0001-6838-474X
  surname: Hassan
  fullname: Hassan, Sakira
  email: syeda.s.hassan@aalto.fi
  organization: Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
– sequence: 2
  givenname: Simo
  orcidid: 0000-0002-7031-9354
  surname: Sarkka
  fullname: Sarkka, Simo
  email: simo.sarkka@aalto.fi
  organization: Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
– sequence: 3
  givenname: Angel
  orcidid: 0000-0002-6471-8455
  surname: Garcia-Fernandez
  fullname: Garcia-Fernandez, Angel
  email: angel.f.garcia.fernandez@gmail.com
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, U.K
BookMark eNp9kM1LAzEQxYNUsK3eBS8LnrdOPnaze_AgRW2hxYIVvIV0M4HUbVKzW0H_ere2ePDgZWYO7_dm5g1IzwePhFxSGFEK5c3yeTFiwOiIU-CcFyekT0tBUxAy73UzZDzNCvl6RgZNswagQpR5n9wucbMNUdfJQne1xtp96dYFnwSbTL3FiL7CxPlk4oxBn8x1fAsfyTwYrJtzcmp13eDFsQ_Jy8P9cjxJZ0-P0_HdLK26U9pUrgAzwzS3VS4LZg12VhKl4CAApSygNBSkrSSYQq-MzQtmDEchqCnKFedDcn3w3cbwvsOmVeuwi75bqViWF1JKlu1V-UFVxdA0Ea2qXPvzTBu1qxUFtY9KdVGpfVTqGFUHwh9wG91Gx8__kKsD4hDxV15mlPFS8m_GTXWZ
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LSP_2024_3519258
crossref_primary_10_1109_TAC_2024_3518309
crossref_primary_10_1109_TAI_2024_3358261
crossref_primary_10_1137_23M156121X
crossref_primary_10_1109_ACCESS_2025_3562686
crossref_primary_10_1109_TAC_2022_3147017
crossref_primary_10_21105_joss_07069
crossref_primary_10_1016_j_csda_2024_107955
Cites_doi 10.1109/TSP.2017.2713759
10.1109/MICRO.2012.48
10.1007/s00453-007-9128-0
10.7551/mitpress/3348.001.0001
10.1109/PDMC-HiBi.2010.24
10.1109/TSP.2013.2277833
10.1109/TAC.1966.1098348
10.1109/TSP.2019.2941064
10.1111/j.2517-6161.1977.tb01600.x
10.1109/MASSP.1986.1165342
10.1109/ICISE.2009.265
10.1017/CBO9781139344203
10.1109/TSP.2018.2869119
10.1007/s11831-020-09422-4
10.1145/322217.322232
10.1007/BF01531015
10.1162/089976600300015880
10.1109/TAC.2020.2976316
10.1109/TSP.2011.2167616
10.1109/5.18626
10.1117/12.707333
10.1109/IPDPS.2011.181
10.1145/2692916.2555264
10.1145/3079856.3080246
10.1080/00401706.1991.10484833
10.1006/jmbi.2000.4315
10.1109/JPROC.2008.917757
10.1109/TSP.2015.2461518
10.1109/TIT.1967.1054010
10.1214/aoms/1177697196
10.1109/12.42122
10.1109/ISBI.2008.4541126
10.1109/TSP.2013.2256905
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2021.3103338
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals (WRLC)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4887
ExternalDocumentID 10_1109_TSP_2021_3103338
9512397
Genre orig-research
GrantInformation_xml – fundername: Academy of Finland
  funderid: 10.13039/501100002341
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-7b0e5d2a3fc6782fdedde7e743040e77809d107fc70d8abdf682dd3e441d89b33
IEDL.DBID RIE
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692231000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:20:10 EDT 2025
Tue Nov 18 22:31:04 EST 2025
Sat Nov 29 04:10:54 EST 2025
Wed Aug 27 02:27:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-7b0e5d2a3fc6782fdedde7e743040e77809d107fc70d8abdf682dd3e441d89b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6838-474X
0000-0002-6471-8455
0000-0002-7031-9354
OpenAccessLink https://ieeexplore.ieee.org/document/9512397
PQID 2568777253
PQPubID 85478
PageCount 13
ParticipantIDs proquest_journals_2568777253
crossref_citationtrail_10_1109_TSP_2021_3103338
ieee_primary_9512397
crossref_primary_10_1109_TSP_2021_3103338
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref15
ref36
ref14
ref30
ref11
ref32
ref10
blelloch (ref25) 1990
ref1
ref38
ref16
ref19
cappé (ref2) 2006
cowell (ref40) 2006
pearl (ref37) 1988
hymel (ref29) 2011
abadi (ref46) 2015
koller (ref33) 2009
bishop (ref39) 2006
ref24
chatterjee (ref17) 2011
ref45
ref23
li (ref26) 2009; 4
ref20
ref42
ref41
ref22
ref44
du (ref18) 2010
ref21
ref43
ref28
yaghoobi (ref31) 2021
ref8
ref7
ref9
ref4
ref3
liu (ref27) 2009
ref6
ref5
References_xml – year: 1990
  ident: ref25
  article-title: Prefix sums and their applications
– ident: ref34
  doi: 10.1109/TSP.2017.2713759
– ident: ref21
  doi: 10.1109/MICRO.2012.48
– ident: ref14
  doi: 10.1007/s00453-007-9128-0
– ident: ref41
  doi: 10.7551/mitpress/3348.001.0001
– ident: ref15
  doi: 10.1109/PDMC-HiBi.2010.24
– ident: ref3
  doi: 10.1109/TSP.2013.2277833
– year: 2009
  ident: ref33
  publication-title: Probabilistic Graphical Models Principles and Techniques
– ident: ref43
  doi: 10.1109/TAC.1966.1098348
– year: 2006
  ident: ref2
  publication-title: Inference in Hidden Markov Models
– ident: ref12
  doi: 10.1109/TSP.2019.2941064
– year: 2015
  ident: ref46
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– ident: ref45
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref36
  doi: 10.1109/MASSP.1986.1165342
– start-page: 1
  year: 2010
  ident: ref18
  article-title: A tile-based parallel Viterbi algorithm for biological sequence alignment on GPU with CUDA
  publication-title: Proc IEEE Int Symp Parallel Distrib Process Workshops PhD Forum
– ident: ref28
  doi: 10.1109/ICISE.2009.265
– ident: ref32
  doi: 10.1017/CBO9781139344203
– ident: ref10
  doi: 10.1109/TSP.2018.2869119
– ident: ref5
  doi: 10.1007/s11831-020-09422-4
– ident: ref42
  doi: 10.1145/322217.322232
– ident: ref38
  doi: 10.1007/BF01531015
– ident: ref35
  doi: 10.1162/089976600300015880
– start-page: 96
  year: 2011
  ident: ref17
  article-title: A temporally abstracted Viterbi algorithm
  publication-title: Proc Conf Uncertainty of Artificial Intelligence
– ident: ref30
  doi: 10.1109/TAC.2020.2976316
– ident: ref11
  doi: 10.1109/TSP.2011.2167616
– year: 2009
  ident: ref27
  article-title: cuHMM: A CUDA implementation of hidden markov model training and classification
– year: 2011
  ident: ref29
  article-title: Massively parallel hidden Markov models for wireless applications
– ident: ref1
  doi: 10.1109/5.18626
– ident: ref7
  doi: 10.1117/12.707333
– ident: ref16
  doi: 10.1109/IPDPS.2011.181
– ident: ref19
  doi: 10.1145/2692916.2555264
– ident: ref22
  doi: 10.1145/3079856.3080246
– ident: ref6
  doi: 10.1080/00401706.1991.10484833
– ident: ref8
  doi: 10.1006/jmbi.2000.4315
– year: 2006
  ident: ref39
  publication-title: Pattern Recognition and Machine Learning
– volume: 4
  start-page: 426
  year: 2009
  ident: ref26
  article-title: The fast evaluation of hidden Markov models on GPU
  publication-title: Proc IEEE Int Conf Intell Comput Intell Syst
– start-page: 5350
  year: 2021
  ident: ref31
  article-title: Parallel iterated extended and sigma-point Kalman smoothers
  publication-title: Proc ICASSP IEEE Int Conf Acoustics Speech Signal Process
– ident: ref20
  doi: 10.1109/JPROC.2008.917757
– year: 2006
  ident: ref40
  publication-title: Probabilistic Networks and Expert Systems Exact Computational Methods for Bayesian Networks
– ident: ref9
  doi: 10.1109/TSP.2015.2461518
– ident: ref13
  doi: 10.1109/TIT.1967.1054010
– ident: ref44
  doi: 10.1214/aoms/1177697196
– ident: ref24
  doi: 10.1109/12.42122
– year: 1988
  ident: ref37
  publication-title: Probabilistic Reasoning in Intelligent Systems Networks of Plausible Inference
– ident: ref23
  doi: 10.1109/ISBI.2008.4541126
– ident: ref4
  doi: 10.1109/TSP.2013.2256905
SSID ssj0014496
Score 2.4479463
Snippet This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4875
SubjectTerms Algorithms
Graphics processing units
Hidden Markov models
Inference
Inference algorithms
Markov chains
Parallel forward-backward algorithm
parallel max-product algorithm
Parallel processing
parallel sum-product algorithm
parallel Viterbi algorithm
Polytopes
Signal processing algorithms
Sum product algorithm
Task analysis
Viterbi algorithm
Title Temporal Parallelization of Inference in Hidden Markov Models
URI https://ieeexplore.ieee.org/document/9512397
https://www.proquest.com/docview/2568777253
Volume 69
WOSCitedRecordID wos000692231000008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KEd-kpL0xcauhSqRJHsSB46lNKQLiHQFLIZW5IhYOyS1-_vyS8CLYVuHiRjf7LuvtP57gN4GHoJSzwZUI2GgHpDpakShtPY-sxDh6mZHxViE3I6VYtFMGvBU1MLY60tfj6zfXdZ5PJNrrfuqGyAbICj_2xDW0pZ1mo1GQPPK7S4kC4I6iu5qFOSLBjMP2YYCPJh32lqCVeJsueCCk2VH4a48C7jk_891ykcVyySvJTLfgYtm53D0V5vwS48z8umUymZRSsnmJJWFZckT8h7XeZHlhmZuC4iGXFVO_mOOHG0dH0Bn-O3-euEVloJVOMrbaiMmfUNj0Si0f3wxFicKi3yA9ylVkrFAoORXqIlMyqKTTJS3BhhkQ0ZFcRCXEInyzN7BQQjjpgHJhih_fES5UUMOcnIYhzILTdS9GBQwxfqqpG407NIwyKgYEGIgIcO8LACvAePzYyvsonGH2O7DuBmXIVtD27rFQqrXbYOka65dobcF9e_z7qBQ3fv8sjkFjqb1dbewYHebZbr1X3xAX0DsEnBWA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKagHf01xOjUHL4LdsiRd0oMHEceGcwycsFtpkxQGo5P9-vt9absxUARvPSS0_dK89728vvcB3DdFQhMhA0-jIfBEU2lPccO82PpUoMPU1I8ysQnZ76vRKBiU4HFTC2OtzX4-s3V3meXyzVQv3VFZA9kAQ_-5A7u-EKyZV2ttcgZCZGpcSBi45ys5WicladAYfgwwFGTNulPV4q4WZcsJZaoqP0xx5l_ax_97shM4Kngkec4X_hRKNj2Dw63ughV4GuZtpyZkEM2cZMqkqLkk04R014V-ZJySjusjkhJXtzNdESePNpmfw2f7dfjS8Qq1BE_jKy08GVPrGxbxRKMDYomxOFVaZAi4T62UigYGY71ES2pUFJukpZgx3CIfMiqIOb-AcjpN7SUQjDliFpighRZIJEpEFFlJy2IkyCwzklehsYYv1EUrcadoMQmzkIIGIQIeOsDDAvAqPGxmfOVtNP4YW3EAb8YV2Fahtl6hsNhn8xAJm2toyHx-9fusO9jvDN97Ya_bf7uGA3ef_AClBuXFbGlvYE-vFuP57Db7mL4B7LLEnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+Parallelization+of+Inference+in+Hidden+Markov+Models&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Hassan%2C+Sakira&rft.au=Sarkka%2C+Simo&rft.au=Garcia-Fernandez%2C+Angel&rft.date=2021&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=69&rft.spage=4875&rft.epage=4887&rft_id=info:doi/10.1109%2FTSP.2021.3103338&rft.externalDocID=9512397
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon