A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders

Time-series forecasting is applied to many areas of smart factories, including machine health monitoring, predictive maintenance, and production scheduling. In smart factories, machine speed prediction can be used to dynamically adjust production processes based on different system conditions, optim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics Vol. 16; no. 9; pp. 6069 - 6078
Main Authors: Essien, Aniekan, Giannetti, Cinzia
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1551-3203, 1941-0050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Time-series forecasting is applied to many areas of smart factories, including machine health monitoring, predictive maintenance, and production scheduling. In smart factories, machine speed prediction can be used to dynamically adjust production processes based on different system conditions, optimize production throughput, and minimize energy consumption. However, making accurate data-driven machine speed forecasts is challenging. Given the complex nature of industrial manufacturing process data, predictive models that are robust to noise and can capture the temporal and spatial distributions of input time-series signals are prerequisites for accurate forecasting. Motivated by recent deep learning studies in smart manufacturing, in this article, we propose an end-to-end model for multistep machine speed prediction. The model comprises a deep convolutional LSTM encoder-decoder architecture. Extensive empirical analyses using real-world data obtained from a metal packaging plant in the United Kingdom demonstrate the value of the proposed method when compared with the state-of-the-art predictive models.
AbstractList Time-series forecasting is applied to many areas of smart factories, including machine health monitoring, predictive maintenance, and production scheduling. In smart factories, machine speed prediction can be used to dynamically adjust production processes based on different system conditions, optimize production throughput, and minimize energy consumption. However, making accurate data-driven machine speed forecasts is challenging. Given the complex nature of industrial manufacturing process data, predictive models that are robust to noise and can capture the temporal and spatial distributions of input time-series signals are prerequisites for accurate forecasting. Motivated by recent deep learning studies in smart manufacturing, in this article, we propose an end-to-end model for multistep machine speed prediction. The model comprises a deep convolutional LSTM encoder–decoder architecture. Extensive empirical analyses using real-world data obtained from a metal packaging plant in the United Kingdom demonstrate the value of the proposed method when compared with the state-of-the-art predictive models.
Author Giannetti, Cinzia
Essien, Aniekan
Author_xml – sequence: 1
  givenname: Aniekan
  orcidid: 0000-0001-9501-0647
  surname: Essien
  fullname: Essien, Aniekan
  email: a.e.essien@swansea.ac.uk
  organization: Future Manufacturing Research Institute, College of Engineering, Swansea University, Swansea, UK
– sequence: 2
  givenname: Cinzia
  orcidid: 0000-0003-0339-5872
  surname: Giannetti
  fullname: Giannetti, Cinzia
  email: c.giannetti@swansea.ac.uk
  organization: Future Manufacturing Research Institute, College of Engineering, Swansea University, Swansea, UK
BookMark eNp9kLtPwzAQxi1UJNrCjsRiiTnFjziJx6q8KqVlaDtHTnJBKcEutgPiv8dRKwYGlruTvvvu8ZugkTYaELqmZEYpkXfb5XLGCCMzJpNUiOQMjamMaUSIIKNQC0Ejzgi_QBPn9oTwlHA5RuUc3wMccA7K6la_4pWpocONsXjzrqzHK6X7RlW-t4O6c0NcGP1put63RqsO55vtCq-ht6Feg_8y9g3Pe29AV2GWdZfovFGdg6tTnqLd48N28RzlL0_LxTyPKs65j1LZZFVSl6KRgqYMMlJxVZc0q5OS8bpUaSZjYDEkEENdCZ5QlZaMiYyoulacT9Htce7Bmo8enC_2prfhQlewmEieCZbI0EWOXZU1zlloioNtw6ffBSXFQLIIJIuBZHEiGSzJH0vVejV8761qu_-MN0djCwC_e7KgBv78B-rRgrk
CODEN ITIICH
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108354
crossref_primary_10_3390_s23021009
crossref_primary_10_1016_j_ress_2024_110365
crossref_primary_10_1002_cae_70048
crossref_primary_10_3390_s23115010
crossref_primary_10_1016_j_compind_2021_103548
crossref_primary_10_1002_pen_26866
crossref_primary_10_1109_TEM_2023_3274544
crossref_primary_10_1109_JIOT_2021_3139827
crossref_primary_10_1109_JSEN_2022_3186505
crossref_primary_10_3390_electronics12224636
crossref_primary_10_1016_j_jmatprotec_2022_117540
crossref_primary_10_1109_JIOT_2021_3097269
crossref_primary_10_1109_TII_2024_3363189
crossref_primary_10_1109_TPEL_2024_3495214
crossref_primary_10_1007_s00202_023_02220_8
crossref_primary_10_1088_1742_6596_2999_1_012004
crossref_primary_10_53314_ELS2529003H
crossref_primary_10_1109_TII_2023_3295428
crossref_primary_10_1016_j_iswa_2024_200331
crossref_primary_10_1089_3dp_2023_0182
crossref_primary_10_1109_ACCESS_2023_3246029
crossref_primary_10_1109_TIM_2025_3563039
crossref_primary_10_1002_itl2_326
crossref_primary_10_1109_ACCESS_2022_3140373
crossref_primary_10_1109_ACCESS_2023_3251733
crossref_primary_10_1016_j_engappai_2023_106893
crossref_primary_10_3390_electronics14112287
crossref_primary_10_1007_s10666_023_09902_4
crossref_primary_10_1016_j_jhydrol_2025_132697
crossref_primary_10_1109_JESTIE_2022_3185558
crossref_primary_10_3390_ai4010010
crossref_primary_10_1016_j_compind_2024_104228
crossref_primary_10_1016_j_aei_2024_102403
crossref_primary_10_1109_TETC_2025_3546244
crossref_primary_10_1016_j_apm_2024_04_034
crossref_primary_10_1016_j_memsci_2021_120080
crossref_primary_10_1007_s10845_024_02536_7
crossref_primary_10_1109_TIFS_2024_3356821
crossref_primary_10_3390_brainsci12121601
crossref_primary_10_1108_GS_04_2021_0049
crossref_primary_10_4018_JGIM_361589
crossref_primary_10_1109_TGRS_2023_3302316
crossref_primary_10_1109_JIOT_2021_3051414
crossref_primary_10_1088_1757_899X_1235_1_012076
crossref_primary_10_1109_TII_2024_3397344
crossref_primary_10_1007_s00158_022_03425_4
crossref_primary_10_1016_j_ijepes_2022_108612
crossref_primary_10_1109_TASE_2021_3127995
crossref_primary_10_1109_TII_2022_3143148
crossref_primary_10_3390_su15129272
crossref_primary_10_1111_exsy_12741
crossref_primary_10_1016_j_bspc_2020_102225
crossref_primary_10_1177_14759217241282876
crossref_primary_10_1109_TII_2024_3424214
crossref_primary_10_1109_TII_2020_3039272
crossref_primary_10_3390_app122010426
crossref_primary_10_3390_app13158776
crossref_primary_10_1016_j_iot_2024_101086
crossref_primary_10_1016_j_comcom_2021_05_026
crossref_primary_10_1016_j_eswa_2023_121136
crossref_primary_10_1109_JAS_2022_105464
crossref_primary_10_1016_j_eswa_2024_124681
crossref_primary_10_3390_s20195500
crossref_primary_10_1109_JAS_2024_124962
crossref_primary_10_1016_j_cis_2024_103360
crossref_primary_10_1016_j_dsp_2023_104156
crossref_primary_10_1016_j_cie_2024_110106
crossref_primary_10_1007_s00170_025_15642_4
crossref_primary_10_1109_TII_2023_3321026
crossref_primary_10_1109_TII_2020_3036693
crossref_primary_10_1109_TII_2022_3199268
crossref_primary_10_1007_s11227_021_03903_4
crossref_primary_10_1016_j_aei_2023_102324
crossref_primary_10_3390_ijgi13100351
crossref_primary_10_1007_s10845_022_01963_8
crossref_primary_10_1007_s10845_022_02003_1
crossref_primary_10_1016_j_rineng_2025_105137
crossref_primary_10_1080_0305215X_2024_2434201
crossref_primary_10_1016_j_asoc_2023_110347
crossref_primary_10_1016_j_procs_2022_09_161
crossref_primary_10_1109_ACCESS_2021_3094374
crossref_primary_10_1109_ACCESS_2021_3128701
crossref_primary_10_1108_IJCHM_09_2021_1176
crossref_primary_10_3390_pr10040755
crossref_primary_10_1007_s10845_023_02303_0
crossref_primary_10_1109_TII_2021_3107781
crossref_primary_10_1007_s00158_022_03485_6
crossref_primary_10_1109_TII_2024_3477561
crossref_primary_10_3390_en14216958
crossref_primary_10_1109_TNNLS_2023_3261363
crossref_primary_10_1016_j_procs_2022_12_285
crossref_primary_10_1016_j_aei_2024_102438
crossref_primary_10_1109_TPEL_2025_3557288
crossref_primary_10_1016_j_iot_2024_101386
crossref_primary_10_3390_app15147884
crossref_primary_10_1177_00219983221108445
crossref_primary_10_1109_ACCESS_2022_3173157
crossref_primary_10_1016_j_comnet_2024_110286
crossref_primary_10_1016_j_engappai_2023_107540
crossref_primary_10_3390_smartcities4020024
crossref_primary_10_3390_fi13100264
crossref_primary_10_1109_TII_2022_3188361
crossref_primary_10_3390_en14237943
crossref_primary_10_1016_j_jmsy_2021_12_002
crossref_primary_10_1016_j_jprocont_2024_103320
crossref_primary_10_1108_LHT_03_2020_0057
crossref_primary_10_1109_TNSM_2023_3295748
crossref_primary_10_1038_s41598_023_40710_8
crossref_primary_10_1007_s10845_021_01804_0
crossref_primary_10_1007_s11227_022_04833_5
crossref_primary_10_1016_j_ifacol_2022_09_550
crossref_primary_10_1016_j_engappai_2023_106610
crossref_primary_10_3390_s22134943
crossref_primary_10_1016_j_engappai_2025_111806
crossref_primary_10_1109_TIM_2022_3141154
crossref_primary_10_1109_ACCESS_2024_3425582
crossref_primary_10_1109_TII_2022_3198670
crossref_primary_10_1109_TII_2024_3366251
crossref_primary_10_1109_TAI_2024_3351116
crossref_primary_10_1108_IMDS_02_2025_0133
crossref_primary_10_1007_s00170_023_12356_3
crossref_primary_10_1016_j_procs_2023_10_211
crossref_primary_10_1016_j_compind_2021_103509
crossref_primary_10_1080_00207543_2021_2017055
crossref_primary_10_1007_s00170_024_13214_6
crossref_primary_10_3390_s22072817
crossref_primary_10_1109_TII_2021_3056993
crossref_primary_10_1007_s11227_021_03811_7
crossref_primary_10_1109_ACCESS_2021_3082934
crossref_primary_10_1007_s13201_025_02575_2
crossref_primary_10_1016_j_procir_2021_11_195
crossref_primary_10_1109_TNNLS_2023_3262277
crossref_primary_10_1007_s10845_025_02671_9
crossref_primary_10_1016_j_procir_2022_05_124
crossref_primary_10_1016_j_suscom_2023_100869
crossref_primary_10_3390_electronics13112117
crossref_primary_10_1016_j_jocs_2023_101956
crossref_primary_10_2478_adms_2024_0020
crossref_primary_10_1142_S0218126625502433
crossref_primary_10_1016_j_ceja_2025_100799
crossref_primary_10_1108_IJLSS_08_2022_0191
crossref_primary_10_1109_TIE_2023_3294645
crossref_primary_10_2174_1574893618666230818121046
crossref_primary_10_1016_j_eswa_2023_121177
crossref_primary_10_1109_JSEN_2025_3526362
crossref_primary_10_3390_su141711086
crossref_primary_10_1016_j_jmsy_2025_01_014
crossref_primary_10_3390_logistics6020035
crossref_primary_10_3390_f12111495
crossref_primary_10_1007_s13198_025_02846_w
crossref_primary_10_1016_j_jmsy_2022_05_015
crossref_primary_10_3390_s22010291
crossref_primary_10_3390_s21216979
crossref_primary_10_1007_s10489_021_02587_w
crossref_primary_10_1093_biomethods_bpaf045
crossref_primary_10_1016_j_dajour_2025_100573
crossref_primary_10_1109_TIM_2021_3058367
crossref_primary_10_1109_TII_2021_3136167
crossref_primary_10_1145_3532090
crossref_primary_10_3390_app11136101
crossref_primary_10_1109_TII_2022_3178418
crossref_primary_10_3390_machines11080796
crossref_primary_10_1007_s10489_025_06617_9
crossref_primary_10_1016_j_jmsy_2023_09_006
crossref_primary_10_1109_ACCESS_2025_3606910
crossref_primary_10_4218_etrij_2024_0429
crossref_primary_10_1002_dac_5432
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_1109_TCPMT_2024_3502137
crossref_primary_10_1109_TII_2023_3249751
crossref_primary_10_3390_pr12030452
crossref_primary_10_1002_tee_24243
crossref_primary_10_1016_j_knosys_2023_110790
Cites_doi 10.1109/TII.2015.2462296
10.1016/j.compind.2013.02.009
10.1016/j.cie.2014.03.017
10.1007/s40684-016-0015-5
10.1007/978-3-319-98812-2_36
10.1016/j.ins.2018.05.020
10.1109/INISTA.2019.8778417
10.1109/TII.2019.2907373
10.1109/TII.2016.2607179
10.1109/TII.2017.2695583
10.1016/j.cie.2016.08.002
10.1016/j.compind.2018.12.001
10.1155/2014/879736
10.1080/21693277.2016.1192517
10.1145/3219819.3219922
10.1109/TII.2017.2730846
10.1016/j.jmsy.2018.01.003
10.1007/978-3-642-35289-8_3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.2967556
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals - NZ
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 6078
ExternalDocumentID 10_1109_TII_2020_2967556
8967003
Genre orig-research
GrantInformation_xml – fundername: European Regional Development Funds
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S001387/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-79f8c6db5f95172e80c3adb18d6b23dba7894e24e6e4edc5361a7b22580adda33
IEDL.DBID RIE
ISICitedReferencesCount 210
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542966300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1551-3203
IngestDate Mon Jun 30 10:21:14 EDT 2025
Tue Nov 18 22:25:23 EST 2025
Sat Nov 29 04:16:51 EST 2025
Wed Aug 27 02:39:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-79f8c6db5f95172e80c3adb18d6b23dba7894e24e6e4edc5361a7b22580adda33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0339-5872
0000-0001-9501-0647
OpenAccessLink https://ieeexplore.ieee.org/document/8967003
PQID 2409385269
PQPubID 85507
PageCount 10
ParticipantIDs proquest_journals_2409385269
crossref_primary_10_1109_TII_2020_2967556
ieee_primary_8967003
crossref_citationtrail_10_1109_TII_2020_2967556
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref11
goodfellow (ref12) 2016; 13
zaytar (ref19) 2016; 143
ref10
wootton (ref18) 1994
ref2
ref1
ref16
shi (ref17) 2015
kingma (ref28) 0
bergstra (ref24) 2012; 13
tieleman (ref25) 2012; 4
duchi (ref26) 2011; 12
ref23
ref20
ref22
schaul (ref27) 2013
hochreiter (ref21) 2001
ref29
wu (ref9) 2003
ref8
giannetti (ref30) 2019
ref7
ref4
ref3
ref6
ref5
References_xml – start-page: 802
  year: 2015
  ident: ref17
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Proc 28th Int Conf Neural Inf Process Syst
– ident: ref8
  doi: 10.1109/TII.2015.2462296
– ident: ref3
  doi: 10.1016/j.compind.2013.02.009
– ident: ref2
  doi: 10.1016/j.cie.2014.03.017
– ident: ref1
  doi: 10.1007/s40684-016-0015-5
– volume: 13
  year: 2016
  ident: ref12
  publication-title: Deep Learning
– ident: ref10
  doi: 10.1007/978-3-319-98812-2_36
– ident: ref13
  doi: 10.1016/j.ins.2018.05.020
– ident: ref16
  doi: 10.1109/INISTA.2019.8778417
– start-page: 343
  year: 2013
  ident: ref27
  article-title: No more pesky learning rates
  publication-title: Proc 30th Int Conf Mach Learn
– ident: ref15
  doi: 10.1109/TII.2019.2907373
– volume: 4
  start-page: 26
  year: 2012
  ident: ref25
  article-title: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
  publication-title: COURSERA Neural Netw Mach Learn
– ident: ref4
  doi: 10.1109/TII.2016.2607179
– ident: ref5
  doi: 10.1109/TII.2017.2695583
– volume: 143
  start-page: 975
  year: 2016
  ident: ref19
  article-title: Sequence to sequence weather forecasting with long short-term memory recurrent neural networks
  publication-title: Int J Comput Appl
– year: 2019
  ident: ref30
  article-title: A novel deep learning approach for event detection in smart manufacturing
  publication-title: Proc 49th Int Conf Comput Ind Eng
– ident: ref6
  doi: 10.1016/j.cie.2016.08.002
– year: 0
  ident: ref28
  article-title: Adam: A method for stochastic optimization
– ident: ref14
  doi: 10.1016/j.compind.2018.12.001
– start-page: 1438
  year: 2003
  ident: ref9
  article-title: Travel time prediction with support vector regression
  publication-title: Proc IEEE Int Conf Intell Transp Syst
– volume: 13
  start-page: 281
  year: 2012
  ident: ref24
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
– year: 2001
  ident: ref21
  article-title: Gradient flow in recurrent nets: The difficulty of learning long-term dependencies
  publication-title: A Field Guide to Dynamical Recurrent Neural Networks
– ident: ref20
  doi: 10.1155/2014/879736
– ident: ref7
  doi: 10.1080/21693277.2016.1192517
– ident: ref22
  doi: 10.1145/3219819.3219922
– ident: ref29
  doi: 10.1109/TII.2017.2730846
– volume: 12
  start-page: 2121
  year: 2011
  ident: ref26
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J Mach Learn Res
– year: 1994
  ident: ref18
  article-title: TALAT lecture 3710 case study on can making
– ident: ref11
  doi: 10.1016/j.jmsy.2018.01.003
– ident: ref23
  doi: 10.1007/978-3-642-35289-8_3
SSID ssj0037039
Score 2.649036
Snippet Time-series forecasting is applied to many areas of smart factories, including machine health monitoring, predictive maintenance, and production scheduling. In...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6069
SubjectTerms Coders
Convolution
Convolutional long short-term memory (ConvLSTM)
Deep learning
deep learning (DL)
Empirical analysis
Energy conservation
Energy consumption
Factories
Forecasting
Industrial plants
industry 4.0
Logic gates
Machine learning
Manufacturing
Manufacturing processes
Mathematical models
Neural networks
Noise prediction
Prediction models
Predictive maintenance
Predictive models
Production scheduling
Smart manufacturing
Spatial distribution
stacked autoencoders
time-series forecasting
Title A Deep Learning Model for Smart Manufacturing Using Convolutional LSTM Neural Network Autoencoders
URI https://ieeexplore.ieee.org/document/8967003
https://www.proquest.com/docview/2409385269
Volume 16
WOSCitedRecordID wos000542966300044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6seNCDryrWFzl4Edx2m-zmcSw-UGiL0Cq9LdnNrAh1K_bx-02y21JQBG85JCHsN5nHZuYbgKvUmiGmKQtEyPMginIeKC5owLUUEgXX1LPzv3ZFvy9HI_W8ATerWhhE9Mln2HRD_5ZvJtnc_SprSeWKSlgNakLwslZrqXWZlVzluVHjdsBoyJZPkqFqDZ-ebCBIwya162PXqnrNBPmeKj8UsbcuD3v_O9c-7FZeJOmUsB_ABhaHsLPGLViHtEPuED9JRaD6RlzXszGxPioZfFh5IT1dzF1Zg69TJD51gNxOikUli3b77mDYI469w477Zbo46cxnE8d96fKfj-Dl4X54-xhUDRWCjDE2C4TKZcZNGufWrxIUZZgxbdK2NDylzKRaSBUhjZBjhCaLGW9rkdobL0OrBjVjx7BZTAo8AZIbG-pY502nVEeCShnHghqkVluaGLlsQGv5jZOsYht3TS_GiY86QpVYVBKHSlKh0oDr1YrPkmnjj7l1h8JqXgVAA86XMCbVVZwm1mVRTLpG6qe_rzqDbbd3mTh2DpuzrzlewFa2mL1Pvy69lH0D0EHOxw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7oFNQH7-K85sEXwbouaXN5HOrYcBuCU3wraXMqgnai236_SdoNQRF8y0OSln4n59Kc8x2As9SaIaYpC0TI8yCKch4oLmjAtRQSBdfUs_M_9sRgIJ-e1N0CXMxrYRDRJ5_hpRv6u3wzyibuV1lDKldUwhZhKY4iGpbVWjO9y6zsKs-OGjcDRkM2u5QMVWPY7dpQkIaX1O4Qu2bV34yQ76ryQxV7-9Le-N-bbcJ65UeSVgn8FixgsQ1r39gFdyBtkWvEd1JRqD4T1_fslVgvldy_WYkhfV1MXGGDr1QkPnmAXI2KaSWNdvve_bBPHH-HHQ_KhHHSmoxHjv3SZUDvwkP7ZnjVCaqWCkHGGBsHQuUy4yaNc-tZCYoyzJg2aVManlJmUi2kipBGyDFCk8WMN7VI7ZmXoVWEmrE9qBWjAveB5MYGO9Z90ynVkaBSxrGgBqnVlyZGLuvQmH3jJKv4xl3bi9fExx2hSiwqiUMlqVCpw_l8xXvJtfHH3B2HwnxeBUAdjmYwJtVh_Eys06KYdK3UD35fdQornWG_l_S6g9tDWHXPKdPIjqA2_pjgMSxn0_HL58eJl7gvubzSDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Model+for+Smart+Manufacturing+Using+Convolutional+LSTM+Neural+Network+Autoencoders&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Essien%2C+Aniekan&rft.au=Giannetti%2C+Cinzia&rft.date=2020-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=16&rft.issue=9&rft.spage=6069&rft_id=info:doi/10.1109%2FTII.2020.2967556&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon