Energy Management System With PV Power Forecast to Optimally Charge EVs at the Workplace

This paper presents the design of an energy management system (EMS) capable of forecasting photovoltaic (PV) power production and optimizing power flows between PV system, grid, and battery electric vehicles (BEVs) at the workplace. The aim is to minimize charging cost while reducing energy demand f...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on industrial informatics Ročník 14; číslo 1; s. 311 - 320
Hlavní autori: van der Meer, Dennis, Mouli, Gautham Ram Chandra, Mouli, German Morales-Espana, Ramirez Elizondo, Laura, Bauer, Pavol
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1551-3203, 1941-0050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper presents the design of an energy management system (EMS) capable of forecasting photovoltaic (PV) power production and optimizing power flows between PV system, grid, and battery electric vehicles (BEVs) at the workplace. The aim is to minimize charging cost while reducing energy demand from the grid by increasing PV self-consumption and consequently increasing sustainability of the BEV fleet. The developed EMS consists of two components: An autoregressive integrated moving average model to predict PV power production and a mixed-integer linear programming framework that optimally allocates power to minimize charging cost. The results show that the developed EMS is able to reduce charging cost significantly, while increasing PV self-consumption and reducing energy consumption from the grid. Furthermore, during a case study analogous to one repeatedly considered in the literature, i.e., dynamic purchase tariff and dynamic feed-in tariff, the EMS reduces charging cost by 118.44% and 427.45% in case of one and two charging points, respectively, when compared to an uncontrolled charging policy.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2016.2634624