Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks

•A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems with applications Ročník 55; s. 313 - 328
Hlavní autoři: Zahedi, Zeynab Molay, Akbari, Reza, Shokouhifar, Mohammad, Safaei, Farshad, Jalali, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.08.2016
Témata:
ISSN:0957-4174, 1873-6793
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks.•Results show that our methodology outperforms the compared routing protocols. Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime.
AbstractList •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks.•Results show that our methodology outperforms the compared routing protocols. Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime.
Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime.
Author Jalali, Ali
Zahedi, Zeynab Molay
Safaei, Farshad
Akbari, Reza
Shokouhifar, Mohammad
Author_xml – sequence: 1
  givenname: Zeynab Molay
  surname: Zahedi
  fullname: Zahedi, Zeynab Molay
  email: f_zahedi2008@yahoo.com
  organization: Department of Computer Engineering, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran
– sequence: 2
  givenname: Reza
  surname: Akbari
  fullname: Akbari, Reza
  email: akbari@sutech.ac.ir
  organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran
– sequence: 3
  givenname: Mohammad
  surname: Shokouhifar
  fullname: Shokouhifar, Mohammad
  email: m_shokouhifar@sbu.ac.ir
  organization: Department of Electrical Engineering, Shahid Beheshti University G.C., Tehran, Iran
– sequence: 4
  givenname: Farshad
  surname: Safaei
  fullname: Safaei, Farshad
  email: f_safaei@sbu.ac.ir
  organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C., Evin 1983963113, Tehran, Iran
– sequence: 5
  givenname: Ali
  surname: Jalali
  fullname: Jalali, Ali
  email: a_jalali@sbu.ac.ir
  organization: Department of Electrical Engineering, Shahid Beheshti University G.C., Tehran, Iran
BookMark eNp9kE9v3CAQxVGVSt2k-QI5-diL3QGMYaVeqqj_pEg5pM0VYTyO2HohZXBXyacPq-2ph5weGt5vNO-ds7OYIjJ2xaHjwIePuw7p4DpR3x2IrsobtuFGy3bQW3nGNrBVuu257t-xc6IdANcAesPu7w4u75sQCy5LeMDosRkd4dTM6_PzU5PTWkJ8aB5zKsmnpZlTbvyyUsFcTYeQcUGihjBS_YlYDin_pvfs7ewWwst_esF-ff3y8_p7e3P77cf155vWSylLq4dBCe34CAZ0z8HManbeSeOMQeWnQYFSfU0loI4AzTgKp1D2IwzIp15esA-nvfW-PytSsftAvkZxEdNKlhuh-mErpKhWc7L6nIgyztaH4kpIsWQXFsvBHqu0O3us0h6rtCBslYqK_9DHHPYuP70OfTpBWPP_DZgt-XDsd6qd-WKnFF7DXwD_BZCx
CitedBy_id crossref_primary_10_1016_j_cie_2021_107142
crossref_primary_10_1016_j_jnca_2019_04_021
crossref_primary_10_1007_s00521_021_06059_7
crossref_primary_10_1007_s11277_019_06497_6
crossref_primary_10_1016_j_knosys_2023_111109
crossref_primary_10_1016_j_cosrev_2024_100684
crossref_primary_10_1109_ACCESS_2022_3197877
crossref_primary_10_1007_s10699_019_09593_9
crossref_primary_10_1007_s40747_021_00629_x
crossref_primary_10_1109_ACCESS_2025_3583922
crossref_primary_10_1007_s11277_021_08598_7
crossref_primary_10_1007_s11277_017_4937_1
crossref_primary_10_1109_ACCESS_2023_3332914
crossref_primary_10_1016_j_matpr_2020_12_623
crossref_primary_10_1016_j_aeue_2018_06_003
crossref_primary_10_1016_j_eswa_2022_116767
crossref_primary_10_1007_s12083_016_0532_6
crossref_primary_10_1016_j_asoc_2018_07_012
crossref_primary_10_1108_IJPCC_09_2021_0229
crossref_primary_10_1007_s11227_024_06556_1
crossref_primary_10_21307_ijssis_2017_916
crossref_primary_10_1002_dac_4375
crossref_primary_10_4018_IJSIR_2020040101
crossref_primary_10_1016_j_eneco_2024_108096
crossref_primary_10_1007_s10586_018_2339_0
crossref_primary_10_1016_j_ecolind_2018_07_011
crossref_primary_10_1109_ACCESS_2020_3035624
crossref_primary_10_1016_j_cie_2020_107050
crossref_primary_10_1007_s11276_018_1696_1
crossref_primary_10_1007_s11227_025_07525_y
crossref_primary_10_1016_j_comcom_2022_02_016
crossref_primary_10_1016_j_asoc_2022_108427
crossref_primary_10_3390_s17112654
crossref_primary_10_1007_s11277_020_07705_4
crossref_primary_10_1016_j_asoc_2020_106923
crossref_primary_10_1016_j_simpat_2017_09_004
crossref_primary_10_1016_j_engappai_2017_01_007
crossref_primary_10_1007_s11277_021_08312_7
crossref_primary_10_1007_s12530_021_09405_1
crossref_primary_10_1016_j_vlsi_2016_08_004
crossref_primary_10_1109_ACCESS_2019_2891590
crossref_primary_10_1007_s10479_023_05745_0
crossref_primary_10_1016_j_eswa_2022_117524
crossref_primary_10_1016_j_jnca_2018_06_005
crossref_primary_10_3390_s18061950
crossref_primary_10_1016_j_asoc_2022_108477
crossref_primary_10_1007_s10479_022_04883_1
crossref_primary_10_1109_ACCESS_2017_2730233
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1016_j_eswa_2022_118619
crossref_primary_10_1016_j_eswa_2017_09_008
crossref_primary_10_1007_s12065_019_00308_4
crossref_primary_10_1007_s41870_019_00391_x
crossref_primary_10_1016_j_asoc_2020_106115
crossref_primary_10_1016_j_eswa_2020_113748
crossref_primary_10_1155_2018_3052852
crossref_primary_10_1155_2022_6508895
crossref_primary_10_1007_s00500_016_2220_0
crossref_primary_10_1016_j_ijpe_2023_108772
crossref_primary_10_1007_s11277_019_06537_1
crossref_primary_10_1007_s13369_020_04616_1
crossref_primary_10_1038_s41598_024_83005_2
crossref_primary_10_1002_dac_4949
crossref_primary_10_1016_j_eswa_2022_118365
crossref_primary_10_2478_mspe_2021_0006
crossref_primary_10_1049_wss2_70011
crossref_primary_10_3390_s23031466
crossref_primary_10_1007_s11227_017_2153_0
crossref_primary_10_1016_j_eswa_2019_112968
crossref_primary_10_3390_electronics13244952
crossref_primary_10_1007_s00500_023_09316_0
crossref_primary_10_3390_s19020322
crossref_primary_10_1007_s10696_023_09502_0
crossref_primary_10_1007_s12652_019_01186_5
crossref_primary_10_3390_math8040583
crossref_primary_10_1007_s11277_017_5010_9
crossref_primary_10_58564_IJSER_2_2_2023_65
crossref_primary_10_1186_s13638_020_01721_5
crossref_primary_10_1007_s11227_018_2261_5
crossref_primary_10_1002_dac_3921
crossref_primary_10_1049_iet_net_2018_5102
crossref_primary_10_3390_electronics9101630
crossref_primary_10_3390_s19245526
crossref_primary_10_1016_j_jksuci_2024_101919
crossref_primary_10_1007_s42835_019_00216_8
crossref_primary_10_1080_1448837X_2024_2309424
crossref_primary_10_1109_ACCESS_2020_3041118
crossref_primary_10_1007_s42979_021_00665_x
crossref_primary_10_1155_2022_2538115
crossref_primary_10_1007_s11227_023_05091_9
crossref_primary_10_1016_j_engappai_2025_111700
crossref_primary_10_3390_electronics12051171
crossref_primary_10_1016_j_asoc_2019_01_034
Cites_doi 10.1016/S0019-9958(65)90241-X
10.1109/LCOMM.2012.073112.120450
10.1016/j.eswa.2014.09.030
10.1109/JSEN.2012.2204737
10.1126/science.220.4598.671
10.1016/j.jnca.2012.03.004
10.1016/S1389-1286(01)00302-4
10.1016/j.eswa.2014.11.015
10.1016/S0020-7373(75)80002-2
10.1002/dac.843
10.1109/TSMC.1985.6313399
10.1016/j.asoc.2011.04.007
10.1016/j.asoc.2014.08.064
10.1016/j.aeue.2014.10.023
10.1109/98.878532
10.1016/j.comnet.2008.04.002
10.1016/j.asoc.2012.12.029
10.1016/j.asoc.2014.11.063
10.1007/978-3-642-04944-6_14
10.1109/TWC.2002.804190
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2016.02.016
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 328
ExternalDocumentID 10_1016_j_eswa_2016_02_016
S0957417416300471
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-766527a1b08074108f5faca38a88e5cd650554201208a80e8bb2a5e34b06e1d43
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374811000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 12:33:49 EST 2025
Tue Nov 18 20:42:36 EST 2025
Sat Nov 29 04:44:45 EST 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless sensor networks
Fuzzy inference system
Fuzzy c-means algorithm
Clustering
Firefly algorithm
Simulated annealing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-766527a1b08074108f5faca38a88e5cd650554201208a80e8bb2a5e34b06e1d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825469232
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_1825469232
crossref_citationtrail_10_1016_j_eswa_2016_02_016
crossref_primary_10_1016_j_eswa_2016_02_016
elsevier_sciencedirect_doi_10_1016_j_eswa_2016_02_016
PublicationCentury 2000
PublicationDate 2016-08-15
PublicationDateYYYYMMDD 2016-08-15
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References UCLA Computer Science Department.
Bagci, Yazici (bib0003) 2013; 13
Kang, Nguyen (bib0016) 2012; 16
Lee, Cheng (bib0020) 2012; 12
Jain, Reddy (bib0013) 2015; 42
Ran, Zhang, Gong (bib0024) 2010; 7
Heinzelman, Chandrakasan, Balakrishnan (bib0007) 2000
Intanagonwiwat, Govindan, Estrin (bib0012) 2000
Shokouhifar, Hassanzadeh (bib0027) 2014; 8
Hussain, Islam, Matin (bib0011) 2007
Soro, Heinzelman (bib0031) 2005
Shokouhifar, Jalali (bib0029) 2015; 42
Akyildiz, Su, Sankarasubramaniam, Cayirci (bib0001) 2002; 38
Ross (bib0025) 2004
Tsukamoto (bib0033) 1979
Ming, Wong (bib0022) 2007; 20
Xu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks. In
Bezdek (bib0004) 1981
Kim, Park, Han, Chung (bib0017) 2008
Jin, Zhou, Wu (bib0015) 2003
Zungeru, Ang, Seng (bib0040) 2012; 35
Hussain, Matin, Islam (bib0010) 2007; 2
Mudundi, Ali (bib0023) 2007
Jia, He, Kuang, Mu (bib0014) 2010
Vlajic, Xia (bib0034) 2006
Heinzelman, Chandrakasan, Balakrishnan (bib0008) 2002; 1
Mamdani, Assilian (bib0021) 1975; 7
Sohrabi, Gao, Ailawadhi, Pottie (bib0030) 2000; 7
Chong, Kumar (bib0005) 2003
Zhang, Sun, Zhang (bib0039) 2014
Zadeh (bib0038) 1965; 8
Sert, Bagci, Yazici (bib0026) 2015; 30
Yick, Mukherjee, Ghosal (bib0037) 2008; 52
Gupta, Riordan, Sampalli (bib0006) 2005
Kuila, Jana (bib0019) 2014; 25
Takagi, Sugeno (bib0032) 1985; 15
Shokouhifar, Jalali (bib0028) 2015; 69
Yang (bib0036) 2009; 5792
Attea, Khalil (bib0002) 2012; 12
Hussain, Matin (bib0009) 2006
Kirkpatrick, Gelatt, Vecchi (bib0018) 1983; 220
Zungeru (10.1016/j.eswa.2016.02.016_bib0040) 2012; 35
Kuila (10.1016/j.eswa.2016.02.016_bib0019) 2014; 25
Shokouhifar (10.1016/j.eswa.2016.02.016_bib0029) 2015; 42
Hussain (10.1016/j.eswa.2016.02.016_bib0010) 2007; 2
Ming (10.1016/j.eswa.2016.02.016_bib0022) 2007; 20
Takagi (10.1016/j.eswa.2016.02.016_bib0032) 1985; 15
Attea (10.1016/j.eswa.2016.02.016_bib0002) 2012; 12
Lee (10.1016/j.eswa.2016.02.016_bib0020) 2012; 12
Yick (10.1016/j.eswa.2016.02.016_bib0037) 2008; 52
Hussain (10.1016/j.eswa.2016.02.016_bib0011) 2007
10.1016/j.eswa.2016.02.016_bib0035
Kirkpatrick (10.1016/j.eswa.2016.02.016_bib0018) 1983; 220
Ross (10.1016/j.eswa.2016.02.016_bib0025) 2004
Zadeh (10.1016/j.eswa.2016.02.016_bib0038) 1965; 8
Hussain (10.1016/j.eswa.2016.02.016_bib0009) 2006
Mudundi (10.1016/j.eswa.2016.02.016_bib0023) 2007
Jia (10.1016/j.eswa.2016.02.016_bib0014) 2010
Shokouhifar (10.1016/j.eswa.2016.02.016_bib0027) 2014; 8
Soro (10.1016/j.eswa.2016.02.016_bib0031) 2005
Gupta (10.1016/j.eswa.2016.02.016_bib0006) 2005
Jain (10.1016/j.eswa.2016.02.016_bib0013) 2015; 42
Yang (10.1016/j.eswa.2016.02.016_bib0036) 2009; 5792
Akyildiz (10.1016/j.eswa.2016.02.016_bib0001) 2002; 38
Ran (10.1016/j.eswa.2016.02.016_bib0024) 2010; 7
Shokouhifar (10.1016/j.eswa.2016.02.016_bib0028) 2015; 69
Bagci (10.1016/j.eswa.2016.02.016_bib0003) 2013; 13
Heinzelman (10.1016/j.eswa.2016.02.016_bib0007) 2000
Bezdek (10.1016/j.eswa.2016.02.016_bib0004) 1981
Heinzelman (10.1016/j.eswa.2016.02.016_bib0008) 2002; 1
Zhang (10.1016/j.eswa.2016.02.016_bib0039) 2014
Jin (10.1016/j.eswa.2016.02.016_bib0015) 2003
Chong (10.1016/j.eswa.2016.02.016_bib0005) 2003
Mamdani (10.1016/j.eswa.2016.02.016_bib0021) 1975; 7
Tsukamoto (10.1016/j.eswa.2016.02.016_bib0033) 1979
Kang (10.1016/j.eswa.2016.02.016_bib0016) 2012; 16
Intanagonwiwat (10.1016/j.eswa.2016.02.016_bib0012) 2000
Sert (10.1016/j.eswa.2016.02.016_bib0026) 2015; 30
Kim (10.1016/j.eswa.2016.02.016_bib0017) 2008
Vlajic (10.1016/j.eswa.2016.02.016_bib0034) 2006
Sohrabi (10.1016/j.eswa.2016.02.016_bib0030) 2000; 7
References_xml – start-page: 1
  year: 2010
  end-page: 4
  ident: bib0014
  article-title: An energy consumption balanced clustering algorithm for wireless sensor network
  publication-title: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing
– volume: 12
  start-page: 2891
  year: 2012
  end-page: 2897
  ident: bib0020
  article-title: Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication
  publication-title: IEEE Sensors Journal
– volume: 42
  start-page: 1189
  year: 2015
  end-page: 1201
  ident: bib0029
  article-title: An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing
  publication-title: Expert Systems with Applications
– volume: 7
  start-page: 767
  year: 2010
  end-page: 775
  ident: bib0024
  article-title: Improving on LEACH protocol of wireless sensor networks using fuzzy logic
  publication-title: J. Inf. Computational. Sci
– volume: 15
  start-page: 116
  year: 1985
  end-page: 132
  ident: bib0032
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 2
  start-page: 87
  year: 2007
  end-page: 97
  ident: bib0010
  article-title: Genetic algorithm for hierarchical wireless sensor networks
  publication-title: Journal of Networks
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bib0018
  article-title: Optimization by simulated annealing
  publication-title: Science
– start-page: 147
  year: 2007
  end-page: 154
  ident: bib0011
  article-title: Genetic algorithm for energy efficient clusters in wireless sensor networks
  publication-title: Proceedings of the 4th International Conference on Information Technology: New Generations
– volume: 25
  start-page: 414
  year: 2014
  end-page: 425
  ident: bib0019
  article-title: A novel differential evolution based clustering algorithm for wireless sensor networks
  publication-title: Applied soft computing
– year: 2003
  ident: bib0015
  article-title: Sensor network optimization using a genetic algorithm
  publication-title: Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics
– start-page: 1
  year: 2006
  end-page: 2
  ident: bib0009
  article-title: Hierarchical cluster-based routing in wireless sensor networks
  publication-title: Proceedings of IEEE/ACM International Conference on Information Processing in Sensor Networks
– start-page: 1
  year: 2000
  end-page: 10
  ident: bib0007
  article-title: Energy-efficient communication protocol for wireless microsensor networks
  publication-title: Proceedings of the 33rd International Conference on System Science,
– volume: 8
  start-page: 86
  year: 2014
  end-page: 93
  ident: bib0027
  article-title: An energy efficient routing protocol in wireless sensor networks using genetic algorithm
  publication-title: Advances in Environmrntal Biology
– volume: 13
  start-page: 1741
  year: 2013
  end-page: 1749
  ident: bib0003
  article-title: An energy aware fuzzy approach to unequal clustering in wireless sensor networks
  publication-title: Applied Soft Computing
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib0038
  article-title: Fuzzy sets
  publication-title: Information control
– volume: 12
  start-page: 1950
  year: 2012
  end-page: 1957
  ident: bib0002
  article-title: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks
  publication-title: Applied Soft Computing
– year: 2007
  ident: bib0023
  article-title: A new robust genetic algorithm for dynamic cluster formation in wireless sensor networks
  publication-title: Proceedings of Wireless and Optical Communications,
– volume: 5792
  start-page: 169
  year: 2009
  end-page: 178
  ident: bib0036
  article-title: Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications
  publication-title: Lecture Notes in Computer Sciences
– volume: 69
  start-page: 432
  year: 2015
  end-page: 441
  ident: bib0028
  article-title: A new evolutionary based application specific routing protocol for clustered wireless sensor networks
  publication-title: AEU-International Journal of Electronics and Communications
– start-page: 8
  year: 2005
  ident: bib0031
  article-title: Prolonging the lifetime of wireless sensor networks via unequal clustering
  publication-title: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
– start-page: 1060
  year: 2014
  end-page: 1067
  ident: bib0039
  article-title: A clustering routing protocol for wireless sensor networks based on type-2 fuzzy logic and ACO
  publication-title: IEEE International Conference on Fuzzy Systems
– year: 1981
  ident: bib0004
  article-title: Pattern recognition with fuzzy objective function algorithms
– start-page: 1247
  year: 2003
  end-page: 1256
  ident: bib0005
  article-title: Sensor networks: evolution, opportunities, and challenges
  publication-title: Proceedings of IEEE
– volume: 7
  start-page: 1
  year: 1975
  end-page: 13
  ident: bib0021
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International journal of man-machine studies
– start-page: 255
  year: 2005
  end-page: 260
  ident: bib0006
  article-title: Cluster-head election using fuzzy logic for wireless sensor networks
  publication-title: Proceeding of the 3rd Annual Conference on Communication Networks and Services Research
– start-page: 137
  year: 1979
  end-page: 149
  ident: bib0033
  article-title: An approach to fuzzy reasoning method
  publication-title: Advances in Fuzzy Set Theory and Applications,
– start-page: 56
  year: 2000
  end-page: 67
  ident: bib0012
  article-title: Directed diffusion: a scalable and robust communication paradigm for sensor networks
  publication-title: Proceedings of ACM MobiCom,
– start-page: 258
  year: 2006
  end-page: 268
  ident: bib0034
  article-title: Wireless sensor networks: To cluster or not to cluster
  publication-title: Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks
– volume: 7
  start-page: 16
  year: 2000
  end-page: 27
  ident: bib0030
  article-title: Protocols for self-organization of a wireless sensor network
  publication-title: IEEE Personal Communications
– volume: 35
  start-page: 1508
  year: 2012
  end-page: 1536
  ident: bib0040
  article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison
  publication-title: Journal of Network and Computer Applications
– reference: , UCLA Computer Science Department.
– volume: 16
  start-page: 1396
  year: 2012
  end-page: 1399
  ident: bib0016
  article-title: Distance based thresholds for cluster head selection in wireless sensor networks
  publication-title: IEEE Communications Letters
– start-page: 654
  year: 2008
  end-page: 659
  ident: bib0017
  article-title: CHEF: cluster head election mechanism using fuzzy logic in wireless sensor networks
  publication-title: Proceeding of the 10th International Conference on Advanced Communication Technology
– reference: Xu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks. In
– year: 2004
  ident: bib0025
  publication-title: Fuzzy logic with engineering applications
– volume: 1
  start-page: 660
  year: 2002
  end-page: 670
  ident: bib0008
  article-title: An application-specific protocol architecture for wireless microsensor networks
  publication-title: IEEE Transaction on Wireless Communications
– volume: 20
  start-page: 747
  year: 2007
  end-page: 766
  ident: bib0022
  article-title: An energy-efficient multipath routing protocol for wireless sensor networks
  publication-title: International Journal of Communication Systems
– volume: 30
  start-page: 151
  year: 2015
  end-page: 165
  ident: bib0026
  article-title: MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks
  publication-title: Applied Soft Computing
– volume: 38
  start-page: 393
  year: 2002
  end-page: 422
  ident: bib0001
  article-title: Wireless sensor networks: a survey
  publication-title: Computer Networks
– volume: 52
  start-page: 2292
  year: 2008
  end-page: 2330
  ident: bib0037
  article-title: Wireless sensor network survey
  publication-title: Computer Networks
– volume: 42
  start-page: 2657
  year: 2015
  end-page: 2669
  ident: bib0013
  article-title: Eigenvector centrality based cluster size control in randomly deployed wireless sensor networks
  publication-title: Expert Systems with Applications
– start-page: 1247
  year: 2003
  ident: 10.1016/j.eswa.2016.02.016_bib0005
  article-title: Sensor networks: evolution, opportunities, and challenges
– start-page: 255
  year: 2005
  ident: 10.1016/j.eswa.2016.02.016_bib0006
  article-title: Cluster-head election using fuzzy logic for wireless sensor networks
– ident: 10.1016/j.eswa.2016.02.016_bib0035
– start-page: 8
  year: 2005
  ident: 10.1016/j.eswa.2016.02.016_bib0031
  article-title: Prolonging the lifetime of wireless sensor networks via unequal clustering
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.eswa.2016.02.016_bib0038
  article-title: Fuzzy sets
  publication-title: Information control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 16
  start-page: 1396
  issue: 9
  year: 2012
  ident: 10.1016/j.eswa.2016.02.016_bib0016
  article-title: Distance based thresholds for cluster head selection in wireless sensor networks
  publication-title: IEEE Communications Letters
  doi: 10.1109/LCOMM.2012.073112.120450
– volume: 42
  start-page: 1189
  issue: 3
  year: 2015
  ident: 10.1016/j.eswa.2016.02.016_bib0029
  article-title: An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.09.030
– volume: 12
  start-page: 2891
  year: 2012
  ident: 10.1016/j.eswa.2016.02.016_bib0020
  article-title: Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication
  publication-title: IEEE Sensors Journal
  doi: 10.1109/JSEN.2012.2204737
– start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2016.02.016_bib0009
  article-title: Hierarchical cluster-based routing in wireless sensor networks
– start-page: 147
  year: 2007
  ident: 10.1016/j.eswa.2016.02.016_bib0011
  article-title: Genetic algorithm for energy efficient clusters in wireless sensor networks
– start-page: 258
  year: 2006
  ident: 10.1016/j.eswa.2016.02.016_bib0034
  article-title: Wireless sensor networks: To cluster or not to cluster
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.eswa.2016.02.016_bib0018
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 7
  start-page: 767
  year: 2010
  ident: 10.1016/j.eswa.2016.02.016_bib0024
  article-title: Improving on LEACH protocol of wireless sensor networks using fuzzy logic
  publication-title: J. Inf. Computational. Sci
– volume: 35
  start-page: 1508
  year: 2012
  ident: 10.1016/j.eswa.2016.02.016_bib0040
  article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2012.03.004
– start-page: 56
  year: 2000
  ident: 10.1016/j.eswa.2016.02.016_bib0012
  article-title: Directed diffusion: a scalable and robust communication paradigm for sensor networks
– volume: 38
  start-page: 393
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2016.02.016_bib0001
  article-title: Wireless sensor networks: a survey
  publication-title: Computer Networks
  doi: 10.1016/S1389-1286(01)00302-4
– start-page: 654
  year: 2008
  ident: 10.1016/j.eswa.2016.02.016_bib0017
  article-title: CHEF: cluster head election mechanism using fuzzy logic in wireless sensor networks
– volume: 42
  start-page: 2657
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2016.02.016_bib0013
  article-title: Eigenvector centrality based cluster size control in randomly deployed wireless sensor networks
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.11.015
– volume: 8
  start-page: 86
  issue: 21
  year: 2014
  ident: 10.1016/j.eswa.2016.02.016_bib0027
  article-title: An energy efficient routing protocol in wireless sensor networks using genetic algorithm
  publication-title: Advances in Environmrntal Biology
– volume: 7
  start-page: 1
  year: 1975
  ident: 10.1016/j.eswa.2016.02.016_bib0021
  article-title: An experiment in linguistic synthesis with a fuzzy logic controller
  publication-title: International journal of man-machine studies
  doi: 10.1016/S0020-7373(75)80002-2
– year: 2003
  ident: 10.1016/j.eswa.2016.02.016_bib0015
  article-title: Sensor network optimization using a genetic algorithm
– volume: 20
  start-page: 747
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2016.02.016_bib0022
  article-title: An energy-efficient multipath routing protocol for wireless sensor networks
  publication-title: International Journal of Communication Systems
  doi: 10.1002/dac.843
– volume: 15
  start-page: 116
  issue: 1
  year: 1985
  ident: 10.1016/j.eswa.2016.02.016_bib0032
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMC.1985.6313399
– start-page: 1060
  year: 2014
  ident: 10.1016/j.eswa.2016.02.016_bib0039
  article-title: A clustering routing protocol for wireless sensor networks based on type-2 fuzzy logic and ACO
– volume: 2
  start-page: 87
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2016.02.016_bib0010
  article-title: Genetic algorithm for hierarchical wireless sensor networks
  publication-title: Journal of Networks
– year: 2004
  ident: 10.1016/j.eswa.2016.02.016_bib0025
– volume: 12
  start-page: 1950
  issue: 7
  year: 2012
  ident: 10.1016/j.eswa.2016.02.016_bib0002
  article-title: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2011.04.007
– volume: 25
  start-page: 414
  year: 2014
  ident: 10.1016/j.eswa.2016.02.016_bib0019
  article-title: A novel differential evolution based clustering algorithm for wireless sensor networks
  publication-title: Applied soft computing
  doi: 10.1016/j.asoc.2014.08.064
– volume: 69
  start-page: 432
  issue: 1
  year: 2015
  ident: 10.1016/j.eswa.2016.02.016_bib0028
  article-title: A new evolutionary based application specific routing protocol for clustered wireless sensor networks
  publication-title: AEU-International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2014.10.023
– volume: 7
  start-page: 16
  year: 2000
  ident: 10.1016/j.eswa.2016.02.016_bib0030
  article-title: Protocols for self-organization of a wireless sensor network
  publication-title: IEEE Personal Communications
  doi: 10.1109/98.878532
– volume: 52
  start-page: 2292
  year: 2008
  ident: 10.1016/j.eswa.2016.02.016_bib0037
  article-title: Wireless sensor network survey
  publication-title: Computer Networks
  doi: 10.1016/j.comnet.2008.04.002
– volume: 13
  start-page: 1741
  issue: 4
  year: 2013
  ident: 10.1016/j.eswa.2016.02.016_bib0003
  article-title: An energy aware fuzzy approach to unequal clustering in wireless sensor networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.12.029
– start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2016.02.016_bib0014
  article-title: An energy consumption balanced clustering algorithm for wireless sensor network
– volume: 30
  start-page: 151
  year: 2015
  ident: 10.1016/j.eswa.2016.02.016_bib0026
  article-title: MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2014.11.063
– volume: 5792
  start-page: 169
  year: 2009
  ident: 10.1016/j.eswa.2016.02.016_bib0036
  article-title: Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications
  publication-title: Lecture Notes in Computer Sciences
  doi: 10.1007/978-3-642-04944-6_14
– start-page: 1
  year: 2000
  ident: 10.1016/j.eswa.2016.02.016_bib0007
  article-title: Energy-efficient communication protocol for wireless microsensor networks
– year: 2007
  ident: 10.1016/j.eswa.2016.02.016_bib0023
  article-title: A new robust genetic algorithm for dynamic cluster formation in wireless sensor networks
– year: 1981
  ident: 10.1016/j.eswa.2016.02.016_bib0004
– volume: 1
  start-page: 660
  issue: 4
  year: 2002
  ident: 10.1016/j.eswa.2016.02.016_bib0008
  article-title: An application-specific protocol architecture for wireless microsensor networks
  publication-title: IEEE Transaction on Wireless Communications
  doi: 10.1109/TWC.2002.804190
– start-page: 137
  year: 1979
  ident: 10.1016/j.eswa.2016.02.016_bib0033
  article-title: An approach to fuzzy reasoning method
SSID ssj0017007
Score 2.5175297
Snippet •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm...
Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 313
SubjectTerms Algorithms
Clustering
Clusters
Computer networks
Firefly algorithm
Fuzzy
Fuzzy c-means algorithm
Fuzzy inference system
Networks
Remote sensors
Routing (telecommunications)
Simulated annealing
Swarm intelligence
Wireless sensor networks
Title Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks
URI https://dx.doi.org/10.1016/j.eswa.2016.02.016
https://www.proquest.com/docview/1825469232
Volume 55
WOSCitedRecordID wos000374811000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLS0biVmWVxHHsHiu0K0BiheiCeovsxFF3t01WTbKP_hf-K-NXWopYARKXtLKb1PJ8GY_HM98g9JYLlSeA3oBzooKExDIQeVgEoAml5AVXTNhiE-z4mM9m48-DwXefC3O5YFXFr6_HF_9V1NAGwtaps38h7v6h0ADfQehwBbHD9Y8EP70Sq6WhgeipNvVSVYzKbr2-Ga3qrrUZ6HVbAwpMnGG-6DRhgglF11VUQPs1sL-FnsqGiTc_efA1PXLrSKB9etzWQXjvjBZzWBrN8Ye6qYQEBbLYxOxMzqWwae5f1LpfHKbz-rzu5qelDfz-VM_FcimKvluUQpmbjmBHPncdzmsRpdoNa_M2rSvNp9NsYpesT5IFSWTL9hwoq5E5I0HKbBlFr7Ip3dK5xCazuuWb2FzzX1YG66Q4O1DNlaabilJD1Rrt0HCbhX2qx6GHERk-Ms1QsBczOuZDtDf5cDj72B9TsdDm4_txu6wsG0C4-0-_s3x2bABj2Jw8QPfcjgRPLJIeooGqHqH7vtoHdsr_MfpmgIW3gYUNsLABFnbAwh5YGICFe2BhDyxsgYU9sJ6gr0eHJ-_eB64qR5ATQtqApSmN4Q2WoeZRikJe0lLkgnDBuaJ5ASY_mKixTsqGplBxKWNBFUlkmKqoSMhTNKzqSj1DuAhDVcSSyliViWJKwmafCQo2sIzynKb7KPIzluWOsl5XTllkPjbxLNOznOlZzsI4g499NOrvubCELbf-mnpBZM7ktKZkBri59b43XmoZ6GN9yCYqVXdNFpkKE7Btip__47NfoLubN-YlGrarTr1Cd_LL9rRZvXYQ_AE8b7dc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+intelligence+based+fuzzy+routing+protocol+for+clustered+wireless+sensor+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Zahedi%2C+Zeynab+Molay&rft.au=Akbari%2C+Reza&rft.au=Shokouhifar%2C+Mohammad&rft.au=Safaei%2C+Farshad&rft.date=2016-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=55&rft.spage=313&rft.epage=328&rft_id=info:doi/10.1016%2Fj.eswa.2016.02.016&rft.externalDocID=S0957417416300471
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon