Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks
•A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 55; s. 313 - 328 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.08.2016
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks.•Results show that our methodology outperforms the compared routing protocols.
Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime. |
|---|---|
| AbstractList | •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm intelligence algorithm is utilized to optimize fuzzy rule table.•Proposed routing protocol is successfully tested on 10 heterogeneous networks.•Results show that our methodology outperforms the compared routing protocols.
Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime. Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered and may be used in dangerous or inaccessible environments, it is difficult to replace or recharge their power supplies. Clustering is an effective approach to achieve energy efficiency in wireless sensor networks. In clustering-based routing protocols, cluster heads are selected among all sensor nodes within the network, and then clusters are formed by simply assigning each node to the nearest cluster head. The main drawback is that there is no control on the distribution of cluster heads over the network. In addition to the problem of generating unbalanced clusters, almost all routing protocols are designed for a certain application scope, and could not cover all applications. In this paper, we propose a swarm intelligence based fuzzy routing protocol (named SIF), in order to overcome the mentioned drawbacks. In SIF, fuzzy c-means clustering algorithm is utilized to cluster all sensor nodes into balanced clusters, and then appropriate cluster heads are selected via Mamdani fuzzy inference system. This strategy not only guarantees to generate balanced clusters over the network, but also has the ability to determine the precise number of clusters. In fuzzy-based routing protocols in literature, the fuzzy rule base table is defined manually, which is not optimal for all applications. Since tuning the fuzzy rules very affects on the performance of the fuzzy system, we utilize a hybrid swarm intelligence algorithm based on firefly algorithm and simulated annealing to optimize the fuzzy rule base table of SIF. The fitness function can be defined according to the application specifications. Unlike other routing protocols which have been designed for a certain application scope, the main objective of our methodology is to prolong the network lifetime based on the application specifications. In other words, SIF not only prolongs the network lifetime, but also is applicable to any kind of application. Obtained simulation results over 10 heterogeneous networks show that SIF outperforms the existing clustering-based protocols in terms of generating balanced clusters and prolonging the network lifetime. |
| Author | Jalali, Ali Zahedi, Zeynab Molay Safaei, Farshad Akbari, Reza Shokouhifar, Mohammad |
| Author_xml | – sequence: 1 givenname: Zeynab Molay surname: Zahedi fullname: Zahedi, Zeynab Molay email: f_zahedi2008@yahoo.com organization: Department of Computer Engineering, Fars Science and Research Branch, Islamic Azad University, Shiraz, Iran – sequence: 2 givenname: Reza surname: Akbari fullname: Akbari, Reza email: akbari@sutech.ac.ir organization: Department of Computer Engineering and Information Technology, Shiraz University of Technology, Shiraz, Iran – sequence: 3 givenname: Mohammad surname: Shokouhifar fullname: Shokouhifar, Mohammad email: m_shokouhifar@sbu.ac.ir organization: Department of Electrical Engineering, Shahid Beheshti University G.C., Tehran, Iran – sequence: 4 givenname: Farshad surname: Safaei fullname: Safaei, Farshad email: f_safaei@sbu.ac.ir organization: Faculty of Computer Science and Engineering, Shahid Beheshti University G.C., Evin 1983963113, Tehran, Iran – sequence: 5 givenname: Ali surname: Jalali fullname: Jalali, Ali email: a_jalali@sbu.ac.ir organization: Department of Electrical Engineering, Shahid Beheshti University G.C., Tehran, Iran |
| BookMark | eNp9kE9v3CAQxVGVSt2k-QI5-diL3QGMYaVeqqj_pEg5pM0VYTyO2HohZXBXyacPq-2ph5weGt5vNO-ds7OYIjJ2xaHjwIePuw7p4DpR3x2IrsobtuFGy3bQW3nGNrBVuu257t-xc6IdANcAesPu7w4u75sQCy5LeMDosRkd4dTM6_PzU5PTWkJ8aB5zKsmnpZlTbvyyUsFcTYeQcUGihjBS_YlYDin_pvfs7ewWwst_esF-ff3y8_p7e3P77cf155vWSylLq4dBCe34CAZ0z8HManbeSeOMQeWnQYFSfU0loI4AzTgKp1D2IwzIp15esA-nvfW-PytSsftAvkZxEdNKlhuh-mErpKhWc7L6nIgyztaH4kpIsWQXFsvBHqu0O3us0h6rtCBslYqK_9DHHPYuP70OfTpBWPP_DZgt-XDsd6qd-WKnFF7DXwD_BZCx |
| CitedBy_id | crossref_primary_10_1016_j_cie_2021_107142 crossref_primary_10_1016_j_jnca_2019_04_021 crossref_primary_10_1007_s00521_021_06059_7 crossref_primary_10_1007_s11277_019_06497_6 crossref_primary_10_1016_j_knosys_2023_111109 crossref_primary_10_1016_j_cosrev_2024_100684 crossref_primary_10_1109_ACCESS_2022_3197877 crossref_primary_10_1007_s10699_019_09593_9 crossref_primary_10_1007_s40747_021_00629_x crossref_primary_10_1109_ACCESS_2025_3583922 crossref_primary_10_1007_s11277_021_08598_7 crossref_primary_10_1007_s11277_017_4937_1 crossref_primary_10_1109_ACCESS_2023_3332914 crossref_primary_10_1016_j_matpr_2020_12_623 crossref_primary_10_1016_j_aeue_2018_06_003 crossref_primary_10_1016_j_eswa_2022_116767 crossref_primary_10_1007_s12083_016_0532_6 crossref_primary_10_1016_j_asoc_2018_07_012 crossref_primary_10_1108_IJPCC_09_2021_0229 crossref_primary_10_1007_s11227_024_06556_1 crossref_primary_10_21307_ijssis_2017_916 crossref_primary_10_1002_dac_4375 crossref_primary_10_4018_IJSIR_2020040101 crossref_primary_10_1016_j_eneco_2024_108096 crossref_primary_10_1007_s10586_018_2339_0 crossref_primary_10_1016_j_ecolind_2018_07_011 crossref_primary_10_1109_ACCESS_2020_3035624 crossref_primary_10_1016_j_cie_2020_107050 crossref_primary_10_1007_s11276_018_1696_1 crossref_primary_10_1007_s11227_025_07525_y crossref_primary_10_1016_j_comcom_2022_02_016 crossref_primary_10_1016_j_asoc_2022_108427 crossref_primary_10_3390_s17112654 crossref_primary_10_1007_s11277_020_07705_4 crossref_primary_10_1016_j_asoc_2020_106923 crossref_primary_10_1016_j_simpat_2017_09_004 crossref_primary_10_1016_j_engappai_2017_01_007 crossref_primary_10_1007_s11277_021_08312_7 crossref_primary_10_1007_s12530_021_09405_1 crossref_primary_10_1016_j_vlsi_2016_08_004 crossref_primary_10_1109_ACCESS_2019_2891590 crossref_primary_10_1007_s10479_023_05745_0 crossref_primary_10_1016_j_eswa_2022_117524 crossref_primary_10_1016_j_jnca_2018_06_005 crossref_primary_10_3390_s18061950 crossref_primary_10_1016_j_asoc_2022_108477 crossref_primary_10_1007_s10479_022_04883_1 crossref_primary_10_1109_ACCESS_2017_2730233 crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_1016_j_eswa_2022_118619 crossref_primary_10_1016_j_eswa_2017_09_008 crossref_primary_10_1007_s12065_019_00308_4 crossref_primary_10_1007_s41870_019_00391_x crossref_primary_10_1016_j_asoc_2020_106115 crossref_primary_10_1016_j_eswa_2020_113748 crossref_primary_10_1155_2018_3052852 crossref_primary_10_1155_2022_6508895 crossref_primary_10_1007_s00500_016_2220_0 crossref_primary_10_1016_j_ijpe_2023_108772 crossref_primary_10_1007_s11277_019_06537_1 crossref_primary_10_1007_s13369_020_04616_1 crossref_primary_10_1038_s41598_024_83005_2 crossref_primary_10_1002_dac_4949 crossref_primary_10_1016_j_eswa_2022_118365 crossref_primary_10_2478_mspe_2021_0006 crossref_primary_10_1049_wss2_70011 crossref_primary_10_3390_s23031466 crossref_primary_10_1007_s11227_017_2153_0 crossref_primary_10_1016_j_eswa_2019_112968 crossref_primary_10_3390_electronics13244952 crossref_primary_10_1007_s00500_023_09316_0 crossref_primary_10_3390_s19020322 crossref_primary_10_1007_s10696_023_09502_0 crossref_primary_10_1007_s12652_019_01186_5 crossref_primary_10_3390_math8040583 crossref_primary_10_1007_s11277_017_5010_9 crossref_primary_10_58564_IJSER_2_2_2023_65 crossref_primary_10_1186_s13638_020_01721_5 crossref_primary_10_1007_s11227_018_2261_5 crossref_primary_10_1002_dac_3921 crossref_primary_10_1049_iet_net_2018_5102 crossref_primary_10_3390_electronics9101630 crossref_primary_10_3390_s19245526 crossref_primary_10_1016_j_jksuci_2024_101919 crossref_primary_10_1007_s42835_019_00216_8 crossref_primary_10_1080_1448837X_2024_2309424 crossref_primary_10_1109_ACCESS_2020_3041118 crossref_primary_10_1007_s42979_021_00665_x crossref_primary_10_1155_2022_2538115 crossref_primary_10_1007_s11227_023_05091_9 crossref_primary_10_1016_j_engappai_2025_111700 crossref_primary_10_3390_electronics12051171 crossref_primary_10_1016_j_asoc_2019_01_034 |
| Cites_doi | 10.1016/S0019-9958(65)90241-X 10.1109/LCOMM.2012.073112.120450 10.1016/j.eswa.2014.09.030 10.1109/JSEN.2012.2204737 10.1126/science.220.4598.671 10.1016/j.jnca.2012.03.004 10.1016/S1389-1286(01)00302-4 10.1016/j.eswa.2014.11.015 10.1016/S0020-7373(75)80002-2 10.1002/dac.843 10.1109/TSMC.1985.6313399 10.1016/j.asoc.2011.04.007 10.1016/j.asoc.2014.08.064 10.1016/j.aeue.2014.10.023 10.1109/98.878532 10.1016/j.comnet.2008.04.002 10.1016/j.asoc.2012.12.029 10.1016/j.asoc.2014.11.063 10.1007/978-3-642-04944-6_14 10.1109/TWC.2002.804190 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2016.02.016 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 328 |
| ExternalDocumentID | 10_1016_j_eswa_2016_02_016 S0957417416300471 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-766527a1b08074108f5faca38a88e5cd650554201208a80e8bb2a5e34b06e1d43 |
| ISICitedReferencesCount | 116 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374811000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Nov 09 12:33:49 EST 2025 Tue Nov 18 20:42:36 EST 2025 Sat Nov 29 04:44:45 EST 2025 Fri Feb 23 02:29:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wireless sensor networks Fuzzy inference system Fuzzy c-means algorithm Clustering Firefly algorithm Simulated annealing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-766527a1b08074108f5faca38a88e5cd650554201208a80e8bb2a5e34b06e1d43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825469232 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_1825469232 crossref_citationtrail_10_1016_j_eswa_2016_02_016 crossref_primary_10_1016_j_eswa_2016_02_016 elsevier_sciencedirect_doi_10_1016_j_eswa_2016_02_016 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-15 |
| PublicationDateYYYYMMDD | 2016-08-15 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | UCLA Computer Science Department. Bagci, Yazici (bib0003) 2013; 13 Kang, Nguyen (bib0016) 2012; 16 Lee, Cheng (bib0020) 2012; 12 Jain, Reddy (bib0013) 2015; 42 Ran, Zhang, Gong (bib0024) 2010; 7 Heinzelman, Chandrakasan, Balakrishnan (bib0007) 2000 Intanagonwiwat, Govindan, Estrin (bib0012) 2000 Shokouhifar, Hassanzadeh (bib0027) 2014; 8 Hussain, Islam, Matin (bib0011) 2007 Soro, Heinzelman (bib0031) 2005 Shokouhifar, Jalali (bib0029) 2015; 42 Akyildiz, Su, Sankarasubramaniam, Cayirci (bib0001) 2002; 38 Ross (bib0025) 2004 Tsukamoto (bib0033) 1979 Ming, Wong (bib0022) 2007; 20 Xu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks. In Bezdek (bib0004) 1981 Kim, Park, Han, Chung (bib0017) 2008 Jin, Zhou, Wu (bib0015) 2003 Zungeru, Ang, Seng (bib0040) 2012; 35 Hussain, Matin, Islam (bib0010) 2007; 2 Mudundi, Ali (bib0023) 2007 Jia, He, Kuang, Mu (bib0014) 2010 Vlajic, Xia (bib0034) 2006 Heinzelman, Chandrakasan, Balakrishnan (bib0008) 2002; 1 Mamdani, Assilian (bib0021) 1975; 7 Sohrabi, Gao, Ailawadhi, Pottie (bib0030) 2000; 7 Chong, Kumar (bib0005) 2003 Zhang, Sun, Zhang (bib0039) 2014 Zadeh (bib0038) 1965; 8 Sert, Bagci, Yazici (bib0026) 2015; 30 Yick, Mukherjee, Ghosal (bib0037) 2008; 52 Gupta, Riordan, Sampalli (bib0006) 2005 Kuila, Jana (bib0019) 2014; 25 Takagi, Sugeno (bib0032) 1985; 15 Shokouhifar, Jalali (bib0028) 2015; 69 Yang (bib0036) 2009; 5792 Attea, Khalil (bib0002) 2012; 12 Hussain, Matin (bib0009) 2006 Kirkpatrick, Gelatt, Vecchi (bib0018) 1983; 220 Zungeru (10.1016/j.eswa.2016.02.016_bib0040) 2012; 35 Kuila (10.1016/j.eswa.2016.02.016_bib0019) 2014; 25 Shokouhifar (10.1016/j.eswa.2016.02.016_bib0029) 2015; 42 Hussain (10.1016/j.eswa.2016.02.016_bib0010) 2007; 2 Ming (10.1016/j.eswa.2016.02.016_bib0022) 2007; 20 Takagi (10.1016/j.eswa.2016.02.016_bib0032) 1985; 15 Attea (10.1016/j.eswa.2016.02.016_bib0002) 2012; 12 Lee (10.1016/j.eswa.2016.02.016_bib0020) 2012; 12 Yick (10.1016/j.eswa.2016.02.016_bib0037) 2008; 52 Hussain (10.1016/j.eswa.2016.02.016_bib0011) 2007 10.1016/j.eswa.2016.02.016_bib0035 Kirkpatrick (10.1016/j.eswa.2016.02.016_bib0018) 1983; 220 Ross (10.1016/j.eswa.2016.02.016_bib0025) 2004 Zadeh (10.1016/j.eswa.2016.02.016_bib0038) 1965; 8 Hussain (10.1016/j.eswa.2016.02.016_bib0009) 2006 Mudundi (10.1016/j.eswa.2016.02.016_bib0023) 2007 Jia (10.1016/j.eswa.2016.02.016_bib0014) 2010 Shokouhifar (10.1016/j.eswa.2016.02.016_bib0027) 2014; 8 Soro (10.1016/j.eswa.2016.02.016_bib0031) 2005 Gupta (10.1016/j.eswa.2016.02.016_bib0006) 2005 Jain (10.1016/j.eswa.2016.02.016_bib0013) 2015; 42 Yang (10.1016/j.eswa.2016.02.016_bib0036) 2009; 5792 Akyildiz (10.1016/j.eswa.2016.02.016_bib0001) 2002; 38 Ran (10.1016/j.eswa.2016.02.016_bib0024) 2010; 7 Shokouhifar (10.1016/j.eswa.2016.02.016_bib0028) 2015; 69 Bagci (10.1016/j.eswa.2016.02.016_bib0003) 2013; 13 Heinzelman (10.1016/j.eswa.2016.02.016_bib0007) 2000 Bezdek (10.1016/j.eswa.2016.02.016_bib0004) 1981 Heinzelman (10.1016/j.eswa.2016.02.016_bib0008) 2002; 1 Zhang (10.1016/j.eswa.2016.02.016_bib0039) 2014 Jin (10.1016/j.eswa.2016.02.016_bib0015) 2003 Chong (10.1016/j.eswa.2016.02.016_bib0005) 2003 Mamdani (10.1016/j.eswa.2016.02.016_bib0021) 1975; 7 Tsukamoto (10.1016/j.eswa.2016.02.016_bib0033) 1979 Kang (10.1016/j.eswa.2016.02.016_bib0016) 2012; 16 Intanagonwiwat (10.1016/j.eswa.2016.02.016_bib0012) 2000 Sert (10.1016/j.eswa.2016.02.016_bib0026) 2015; 30 Kim (10.1016/j.eswa.2016.02.016_bib0017) 2008 Vlajic (10.1016/j.eswa.2016.02.016_bib0034) 2006 Sohrabi (10.1016/j.eswa.2016.02.016_bib0030) 2000; 7 |
| References_xml | – start-page: 1 year: 2010 end-page: 4 ident: bib0014 article-title: An energy consumption balanced clustering algorithm for wireless sensor network publication-title: Proceedings of the 6th International Conference on Wireless Communications Networking and Mobile Computing – volume: 12 start-page: 2891 year: 2012 end-page: 2897 ident: bib0020 article-title: Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication publication-title: IEEE Sensors Journal – volume: 42 start-page: 1189 year: 2015 end-page: 1201 ident: bib0029 article-title: An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing publication-title: Expert Systems with Applications – volume: 7 start-page: 767 year: 2010 end-page: 775 ident: bib0024 article-title: Improving on LEACH protocol of wireless sensor networks using fuzzy logic publication-title: J. Inf. Computational. Sci – volume: 15 start-page: 116 year: 1985 end-page: 132 ident: bib0032 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 2 start-page: 87 year: 2007 end-page: 97 ident: bib0010 article-title: Genetic algorithm for hierarchical wireless sensor networks publication-title: Journal of Networks – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: bib0018 article-title: Optimization by simulated annealing publication-title: Science – start-page: 147 year: 2007 end-page: 154 ident: bib0011 article-title: Genetic algorithm for energy efficient clusters in wireless sensor networks publication-title: Proceedings of the 4th International Conference on Information Technology: New Generations – volume: 25 start-page: 414 year: 2014 end-page: 425 ident: bib0019 article-title: A novel differential evolution based clustering algorithm for wireless sensor networks publication-title: Applied soft computing – year: 2003 ident: bib0015 article-title: Sensor network optimization using a genetic algorithm publication-title: Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics – start-page: 1 year: 2006 end-page: 2 ident: bib0009 article-title: Hierarchical cluster-based routing in wireless sensor networks publication-title: Proceedings of IEEE/ACM International Conference on Information Processing in Sensor Networks – start-page: 1 year: 2000 end-page: 10 ident: bib0007 article-title: Energy-efficient communication protocol for wireless microsensor networks publication-title: Proceedings of the 33rd International Conference on System Science, – volume: 8 start-page: 86 year: 2014 end-page: 93 ident: bib0027 article-title: An energy efficient routing protocol in wireless sensor networks using genetic algorithm publication-title: Advances in Environmrntal Biology – volume: 13 start-page: 1741 year: 2013 end-page: 1749 ident: bib0003 article-title: An energy aware fuzzy approach to unequal clustering in wireless sensor networks publication-title: Applied Soft Computing – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0038 article-title: Fuzzy sets publication-title: Information control – volume: 12 start-page: 1950 year: 2012 end-page: 1957 ident: bib0002 article-title: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks publication-title: Applied Soft Computing – year: 2007 ident: bib0023 article-title: A new robust genetic algorithm for dynamic cluster formation in wireless sensor networks publication-title: Proceedings of Wireless and Optical Communications, – volume: 5792 start-page: 169 year: 2009 end-page: 178 ident: bib0036 article-title: Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications publication-title: Lecture Notes in Computer Sciences – volume: 69 start-page: 432 year: 2015 end-page: 441 ident: bib0028 article-title: A new evolutionary based application specific routing protocol for clustered wireless sensor networks publication-title: AEU-International Journal of Electronics and Communications – start-page: 8 year: 2005 ident: bib0031 article-title: Prolonging the lifetime of wireless sensor networks via unequal clustering publication-title: Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium – start-page: 1060 year: 2014 end-page: 1067 ident: bib0039 article-title: A clustering routing protocol for wireless sensor networks based on type-2 fuzzy logic and ACO publication-title: IEEE International Conference on Fuzzy Systems – year: 1981 ident: bib0004 article-title: Pattern recognition with fuzzy objective function algorithms – start-page: 1247 year: 2003 end-page: 1256 ident: bib0005 article-title: Sensor networks: evolution, opportunities, and challenges publication-title: Proceedings of IEEE – volume: 7 start-page: 1 year: 1975 end-page: 13 ident: bib0021 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International journal of man-machine studies – start-page: 255 year: 2005 end-page: 260 ident: bib0006 article-title: Cluster-head election using fuzzy logic for wireless sensor networks publication-title: Proceeding of the 3rd Annual Conference on Communication Networks and Services Research – start-page: 137 year: 1979 end-page: 149 ident: bib0033 article-title: An approach to fuzzy reasoning method publication-title: Advances in Fuzzy Set Theory and Applications, – start-page: 56 year: 2000 end-page: 67 ident: bib0012 article-title: Directed diffusion: a scalable and robust communication paradigm for sensor networks publication-title: Proceedings of ACM MobiCom, – start-page: 258 year: 2006 end-page: 268 ident: bib0034 article-title: Wireless sensor networks: To cluster or not to cluster publication-title: Proceedings of the International Symposium on a World of Wireless, Mobile and Multimedia Networks – volume: 7 start-page: 16 year: 2000 end-page: 27 ident: bib0030 article-title: Protocols for self-organization of a wireless sensor network publication-title: IEEE Personal Communications – volume: 35 start-page: 1508 year: 2012 end-page: 1536 ident: bib0040 article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison publication-title: Journal of Network and Computer Applications – reference: , UCLA Computer Science Department. – volume: 16 start-page: 1396 year: 2012 end-page: 1399 ident: bib0016 article-title: Distance based thresholds for cluster head selection in wireless sensor networks publication-title: IEEE Communications Letters – start-page: 654 year: 2008 end-page: 659 ident: bib0017 article-title: CHEF: cluster head election mechanism using fuzzy logic in wireless sensor networks publication-title: Proceeding of the 10th International Conference on Advanced Communication Technology – reference: Xu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: a recursive data dissemination protocol for wireless sensor networks. In – year: 2004 ident: bib0025 publication-title: Fuzzy logic with engineering applications – volume: 1 start-page: 660 year: 2002 end-page: 670 ident: bib0008 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Transaction on Wireless Communications – volume: 20 start-page: 747 year: 2007 end-page: 766 ident: bib0022 article-title: An energy-efficient multipath routing protocol for wireless sensor networks publication-title: International Journal of Communication Systems – volume: 30 start-page: 151 year: 2015 end-page: 165 ident: bib0026 article-title: MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks publication-title: Applied Soft Computing – volume: 38 start-page: 393 year: 2002 end-page: 422 ident: bib0001 article-title: Wireless sensor networks: a survey publication-title: Computer Networks – volume: 52 start-page: 2292 year: 2008 end-page: 2330 ident: bib0037 article-title: Wireless sensor network survey publication-title: Computer Networks – volume: 42 start-page: 2657 year: 2015 end-page: 2669 ident: bib0013 article-title: Eigenvector centrality based cluster size control in randomly deployed wireless sensor networks publication-title: Expert Systems with Applications – start-page: 1247 year: 2003 ident: 10.1016/j.eswa.2016.02.016_bib0005 article-title: Sensor networks: evolution, opportunities, and challenges – start-page: 255 year: 2005 ident: 10.1016/j.eswa.2016.02.016_bib0006 article-title: Cluster-head election using fuzzy logic for wireless sensor networks – ident: 10.1016/j.eswa.2016.02.016_bib0035 – start-page: 8 year: 2005 ident: 10.1016/j.eswa.2016.02.016_bib0031 article-title: Prolonging the lifetime of wireless sensor networks via unequal clustering – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.eswa.2016.02.016_bib0038 article-title: Fuzzy sets publication-title: Information control doi: 10.1016/S0019-9958(65)90241-X – volume: 16 start-page: 1396 issue: 9 year: 2012 ident: 10.1016/j.eswa.2016.02.016_bib0016 article-title: Distance based thresholds for cluster head selection in wireless sensor networks publication-title: IEEE Communications Letters doi: 10.1109/LCOMM.2012.073112.120450 – volume: 42 start-page: 1189 issue: 3 year: 2015 ident: 10.1016/j.eswa.2016.02.016_bib0029 article-title: An evolutionary-based methodology for symbolic simplification of analog circuits using genetic algorithm and simulated annealing publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.09.030 – volume: 12 start-page: 2891 year: 2012 ident: 10.1016/j.eswa.2016.02.016_bib0020 article-title: Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2012.2204737 – start-page: 1 year: 2006 ident: 10.1016/j.eswa.2016.02.016_bib0009 article-title: Hierarchical cluster-based routing in wireless sensor networks – start-page: 147 year: 2007 ident: 10.1016/j.eswa.2016.02.016_bib0011 article-title: Genetic algorithm for energy efficient clusters in wireless sensor networks – start-page: 258 year: 2006 ident: 10.1016/j.eswa.2016.02.016_bib0034 article-title: Wireless sensor networks: To cluster or not to cluster – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.eswa.2016.02.016_bib0018 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 7 start-page: 767 year: 2010 ident: 10.1016/j.eswa.2016.02.016_bib0024 article-title: Improving on LEACH protocol of wireless sensor networks using fuzzy logic publication-title: J. Inf. Computational. Sci – volume: 35 start-page: 1508 year: 2012 ident: 10.1016/j.eswa.2016.02.016_bib0040 article-title: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2012.03.004 – start-page: 56 year: 2000 ident: 10.1016/j.eswa.2016.02.016_bib0012 article-title: Directed diffusion: a scalable and robust communication paradigm for sensor networks – volume: 38 start-page: 393 issue: 4 year: 2002 ident: 10.1016/j.eswa.2016.02.016_bib0001 article-title: Wireless sensor networks: a survey publication-title: Computer Networks doi: 10.1016/S1389-1286(01)00302-4 – start-page: 654 year: 2008 ident: 10.1016/j.eswa.2016.02.016_bib0017 article-title: CHEF: cluster head election mechanism using fuzzy logic in wireless sensor networks – volume: 42 start-page: 2657 issue: 5 year: 2015 ident: 10.1016/j.eswa.2016.02.016_bib0013 article-title: Eigenvector centrality based cluster size control in randomly deployed wireless sensor networks publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.11.015 – volume: 8 start-page: 86 issue: 21 year: 2014 ident: 10.1016/j.eswa.2016.02.016_bib0027 article-title: An energy efficient routing protocol in wireless sensor networks using genetic algorithm publication-title: Advances in Environmrntal Biology – volume: 7 start-page: 1 year: 1975 ident: 10.1016/j.eswa.2016.02.016_bib0021 article-title: An experiment in linguistic synthesis with a fuzzy logic controller publication-title: International journal of man-machine studies doi: 10.1016/S0020-7373(75)80002-2 – year: 2003 ident: 10.1016/j.eswa.2016.02.016_bib0015 article-title: Sensor network optimization using a genetic algorithm – volume: 20 start-page: 747 issue: 7 year: 2007 ident: 10.1016/j.eswa.2016.02.016_bib0022 article-title: An energy-efficient multipath routing protocol for wireless sensor networks publication-title: International Journal of Communication Systems doi: 10.1002/dac.843 – volume: 15 start-page: 116 issue: 1 year: 1985 ident: 10.1016/j.eswa.2016.02.016_bib0032 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMC.1985.6313399 – start-page: 1060 year: 2014 ident: 10.1016/j.eswa.2016.02.016_bib0039 article-title: A clustering routing protocol for wireless sensor networks based on type-2 fuzzy logic and ACO – volume: 2 start-page: 87 issue: 7 year: 2007 ident: 10.1016/j.eswa.2016.02.016_bib0010 article-title: Genetic algorithm for hierarchical wireless sensor networks publication-title: Journal of Networks – year: 2004 ident: 10.1016/j.eswa.2016.02.016_bib0025 – volume: 12 start-page: 1950 issue: 7 year: 2012 ident: 10.1016/j.eswa.2016.02.016_bib0002 article-title: A new evolutionary based routing protocol for clustered heterogeneous wireless sensor networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2011.04.007 – volume: 25 start-page: 414 year: 2014 ident: 10.1016/j.eswa.2016.02.016_bib0019 article-title: A novel differential evolution based clustering algorithm for wireless sensor networks publication-title: Applied soft computing doi: 10.1016/j.asoc.2014.08.064 – volume: 69 start-page: 432 issue: 1 year: 2015 ident: 10.1016/j.eswa.2016.02.016_bib0028 article-title: A new evolutionary based application specific routing protocol for clustered wireless sensor networks publication-title: AEU-International Journal of Electronics and Communications doi: 10.1016/j.aeue.2014.10.023 – volume: 7 start-page: 16 year: 2000 ident: 10.1016/j.eswa.2016.02.016_bib0030 article-title: Protocols for self-organization of a wireless sensor network publication-title: IEEE Personal Communications doi: 10.1109/98.878532 – volume: 52 start-page: 2292 year: 2008 ident: 10.1016/j.eswa.2016.02.016_bib0037 article-title: Wireless sensor network survey publication-title: Computer Networks doi: 10.1016/j.comnet.2008.04.002 – volume: 13 start-page: 1741 issue: 4 year: 2013 ident: 10.1016/j.eswa.2016.02.016_bib0003 article-title: An energy aware fuzzy approach to unequal clustering in wireless sensor networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.12.029 – start-page: 1 year: 2010 ident: 10.1016/j.eswa.2016.02.016_bib0014 article-title: An energy consumption balanced clustering algorithm for wireless sensor network – volume: 30 start-page: 151 year: 2015 ident: 10.1016/j.eswa.2016.02.016_bib0026 article-title: MOFCA: Multi-objective fuzzy clustering algorithm for wireless sensor networks publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2014.11.063 – volume: 5792 start-page: 169 year: 2009 ident: 10.1016/j.eswa.2016.02.016_bib0036 article-title: Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations and Applications publication-title: Lecture Notes in Computer Sciences doi: 10.1007/978-3-642-04944-6_14 – start-page: 1 year: 2000 ident: 10.1016/j.eswa.2016.02.016_bib0007 article-title: Energy-efficient communication protocol for wireless microsensor networks – year: 2007 ident: 10.1016/j.eswa.2016.02.016_bib0023 article-title: A new robust genetic algorithm for dynamic cluster formation in wireless sensor networks – year: 1981 ident: 10.1016/j.eswa.2016.02.016_bib0004 – volume: 1 start-page: 660 issue: 4 year: 2002 ident: 10.1016/j.eswa.2016.02.016_bib0008 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Transaction on Wireless Communications doi: 10.1109/TWC.2002.804190 – start-page: 137 year: 1979 ident: 10.1016/j.eswa.2016.02.016_bib0033 article-title: An approach to fuzzy reasoning method |
| SSID | ssj0017007 |
| Score | 2.5175297 |
| Snippet | •A fuzzy-based protocol is presented for clustered wireless sensor networks.•The main objective is to form balanced clusters over the network.•A hybrid swarm... Wireless sensor networks are rapidly evolving technological platforms with tremendous applications in several domains. Since sensor nodes are battery powered... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 313 |
| SubjectTerms | Algorithms Clustering Clusters Computer networks Firefly algorithm Fuzzy Fuzzy c-means algorithm Fuzzy inference system Networks Remote sensors Routing (telecommunications) Simulated annealing Swarm intelligence Wireless sensor networks |
| Title | Swarm intelligence based fuzzy routing protocol for clustered wireless sensor networks |
| URI | https://dx.doi.org/10.1016/j.eswa.2016.02.016 https://www.proquest.com/docview/1825469232 |
| Volume | 55 |
| WOSCitedRecordID | wos000374811000024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgcuvBHLS0biVmWVxHHsHiu0K0BiheiCeovsxFF3t01WTbKP_hf-K-NXWopYARKXtLKb1PJ8GY_HM98g9JYLlSeA3oBzooKExDIQeVgEoAml5AVXTNhiE-z4mM9m48-DwXefC3O5YFXFr6_HF_9V1NAGwtaps38h7v6h0ADfQehwBbHD9Y8EP70Sq6WhgeipNvVSVYzKbr2-Ga3qrrUZ6HVbAwpMnGG-6DRhgglF11VUQPs1sL-FnsqGiTc_efA1PXLrSKB9etzWQXjvjBZzWBrN8Ye6qYQEBbLYxOxMzqWwae5f1LpfHKbz-rzu5qelDfz-VM_FcimKvluUQpmbjmBHPncdzmsRpdoNa_M2rSvNp9NsYpesT5IFSWTL9hwoq5E5I0HKbBlFr7Ip3dK5xCazuuWb2FzzX1YG66Q4O1DNlaabilJD1Rrt0HCbhX2qx6GHERk-Ms1QsBczOuZDtDf5cDj72B9TsdDm4_txu6wsG0C4-0-_s3x2bABj2Jw8QPfcjgRPLJIeooGqHqH7vtoHdsr_MfpmgIW3gYUNsLABFnbAwh5YGICFe2BhDyxsgYU9sJ6gr0eHJ-_eB64qR5ATQtqApSmN4Q2WoeZRikJe0lLkgnDBuaJ5ASY_mKixTsqGplBxKWNBFUlkmKqoSMhTNKzqSj1DuAhDVcSSyliViWJKwmafCQo2sIzynKb7KPIzluWOsl5XTllkPjbxLNOznOlZzsI4g499NOrvubCELbf-mnpBZM7ktKZkBri59b43XmoZ6GN9yCYqVXdNFpkKE7Btip__47NfoLubN-YlGrarTr1Cd_LL9rRZvXYQ_AE8b7dc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swarm+intelligence+based+fuzzy+routing+protocol+for+clustered+wireless+sensor+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Zahedi%2C+Zeynab+Molay&rft.au=Akbari%2C+Reza&rft.au=Shokouhifar%2C+Mohammad&rft.au=Safaei%2C+Farshad&rft.date=2016-08-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=55&rft.spage=313&rft.epage=328&rft_id=info:doi/10.1016%2Fj.eswa.2016.02.016&rft.externalDocID=S0957417416300471 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |