Learning to Optimize: Training Deep Neural Networks for Interference Management

Numerical optimization has played a central role in addressing key signal processing (SP) problems. Highly effective methods have been developed for a large variety of SP applications such as communications, radar, filter design, and speech and image analytics, just to name a few. However, optimizat...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on signal processing Ročník 66; číslo 20; s. 5438 - 5453
Hlavní autoři: Sun, Haoran, Chen, Xiangyi, Shi, Qingjiang, Hong, Mingyi, Fu, Xiao, Sidiropoulos, Nicholas D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 15.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1053-587X, 1941-0476
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Numerical optimization has played a central role in addressing key signal processing (SP) problems. Highly effective methods have been developed for a large variety of SP applications such as communications, radar, filter design, and speech and image analytics, just to name a few. However, optimization algorithms often entail considerable complexity, which creates a serious gap between theoretical design/analysis and real-time processing. In this paper, we aim at providing a new learning-based perspective to address this challenging issue. The key idea is to treat the input and output of an SP algorithm as an unknown nonlinear mapping and use a deep neural network (DNN) to approximate it. If the nonlinear mapping can be learned accurately by a DNN of moderate size, then SP tasks can be performed effectively-since passing the input through a DNN only requires a small number of simple operations. In our paper, we first identify a class of optimization algorithms that can be accurately approximated by a fully connected DNN. Second, to demonstrate the effectiveness of the proposed approach, we apply it to approximate a popular interference management algorithm, namely, the WMMSE algorithm. Extensive experiments using both synthetically generated wireless channel data and real DSL channel data have been conducted. It is shown that, in practice, only a small network is sufficient to obtain high approximation accuracy, and DNNs can achieve orders of magnitude speedup in computational time compared to the state-of-the-art interference management algorithm.
AbstractList Numerical optimization has played a central role in addressing key signal processing (SP) problems. Highly effective methods have been developed for a large variety of SP applications such as communications, radar, filter design, and speech and image analytics, just to name a few. However, optimization algorithms often entail considerable complexity, which creates a serious gap between theoretical design/analysis and real-time processing. In this paper, we aim at providing a new learning-based perspective to address this challenging issue. The key idea is to treat the input and output of an SP algorithm as an unknown nonlinear mapping and use a deep neural network (DNN) to approximate it. If the nonlinear mapping can be learned accurately by a DNN of moderate size, then SP tasks can be performed effectively—since passing the input through a DNN only requires a small number of simple operations. In our paper, we first identify a class of optimization algorithms that can be accurately approximated by a fully connected DNN. Second, to demonstrate the effectiveness of the proposed approach, we apply it to approximate a popular interference management algorithm, namely, the WMMSE algorithm. Extensive experiments using both synthetically generated wireless channel data and real DSL channel data have been conducted. It is shown that, in practice, only a small network is sufficient to obtain high approximation accuracy, and DNNs can achieve orders of magnitude speedup in computational time compared to the state-of-the-art interference management algorithm.
Author Sun, Haoran
Sidiropoulos, Nicholas D.
Hong, Mingyi
Chen, Xiangyi
Shi, Qingjiang
Fu, Xiao
Author_xml – sequence: 1
  givenname: Haoran
  orcidid: 0000-0002-6266-123X
  surname: Sun
  fullname: Sun, Haoran
  email: sun00111@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 2
  givenname: Xiangyi
  surname: Chen
  fullname: Chen, Xiangyi
  email: chen5719@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Qingjiang
  orcidid: 0000-0003-0507-9080
  surname: Shi
  fullname: Shi, Qingjiang
  email: qing.j.shi@gmail.com
  organization: School of Software Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Mingyi
  orcidid: 0000-0003-1263-9365
  surname: Hong
  fullname: Hong, Mingyi
  email: mhong@umn.edu
  organization: Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
– sequence: 5
  givenname: Xiao
  orcidid: 0000-0003-4847-9586
  surname: Fu
  fullname: Fu, Xiao
  email: xiao.fu@oregonstate.edu
  organization: School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
– sequence: 6
  givenname: Nicholas D.
  orcidid: 0000-0002-3385-7911
  surname: Sidiropoulos
  fullname: Sidiropoulos, Nicholas D.
  email: nikos@virginia.edu
  organization: Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
BookMark eNp9kM1LAzEQxYMo2FbvgpcFz1vztdmsN6lfhWoFK3gLcXdSUttkzaaI_vWmtnjw4GF4w_B-M8zro33nHSB0QvCQEFydz54ehxQTOaRSCCbpHuqRipMc81Lspx4XLC9k-XKI-l23wJhwXokemk5AB2fdPIs-m7bRruwXXGSzoO3P9AqgzR5gHfQySfzw4a3LjA_Z2EUIBgK4GrJ77fQcVuDiETowetnB8U4H6Pnmeja6yyfT2_HocpLXjLGYl5wbRivaYFFXPJXGRDei1LyuWSmxbgwIagwFIxtCCkmBlEQI2cBrTQvDBuhsu7cN_n0NXVQLvw4unVSUbKwlKXByia2rDr7rAhhV26ij9S6mB5eKYLUJT6Xw1CY8tQsvgfgP2Aa70uHzP-R0i1gA-LVLzrngkn0DoBR8Hg
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TVT_2020_2981409
crossref_primary_10_1109_JSAC_2021_3087240
crossref_primary_10_1109_TWC_2024_3442091
crossref_primary_10_32604_cmc_2024_046403
crossref_primary_10_3390_signals6010003
crossref_primary_10_1002_ett_4579
crossref_primary_10_1109_TCOMM_2024_3385919
crossref_primary_10_1109_TCOMM_2024_3486982
crossref_primary_10_1109_LWC_2022_3216330
crossref_primary_10_3390_fi16110408
crossref_primary_10_1109_JIOT_2024_3423008
crossref_primary_10_1109_TVT_2021_3113051
crossref_primary_10_1007_s40747_023_01148_7
crossref_primary_10_1109_TWC_2020_2977340
crossref_primary_10_1109_TSP_2021_3071210
crossref_primary_10_1109_TWC_2023_3309900
crossref_primary_10_1016_j_phycom_2021_101294
crossref_primary_10_1016_j_phycom_2021_101292
crossref_primary_10_1016_j_sigpro_2022_108685
crossref_primary_10_1109_ACCESS_2025_3537160
crossref_primary_10_1109_ACCESS_2022_3224808
crossref_primary_10_1109_ACCESS_2023_3316605
crossref_primary_10_1109_TWC_2025_3530003
crossref_primary_10_1016_j_apenergy_2023_121234
crossref_primary_10_1109_COMST_2023_3330910
crossref_primary_10_1109_TCOMM_2022_3227932
crossref_primary_10_1109_ACCESS_2020_2978935
crossref_primary_10_1109_ACCESS_2019_2963468
crossref_primary_10_1109_TWC_2024_3472612
crossref_primary_10_1016_j_iot_2022_100512
crossref_primary_10_1109_TVT_2024_3369748
crossref_primary_10_1109_TVT_2024_3497603
crossref_primary_10_1109_JIOT_2023_3275818
crossref_primary_10_1109_TWC_2025_3541144
crossref_primary_10_1109_TVT_2021_3125499
crossref_primary_10_1109_MWC_006_2400131
crossref_primary_10_1109_JIOT_2024_3368516
crossref_primary_10_1109_COMST_2023_3249835
crossref_primary_10_1016_j_comcom_2023_03_004
crossref_primary_10_1109_TVT_2021_3068368
crossref_primary_10_1109_ACCESS_2024_3399563
crossref_primary_10_1109_TSP_2020_3035832
crossref_primary_10_1109_TMC_2021_3125793
crossref_primary_10_1109_JSAC_2024_3443759
crossref_primary_10_1109_TWC_2022_3166964
crossref_primary_10_1109_TCOMM_2022_3199477
crossref_primary_10_1109_TCOMM_2022_3158646
crossref_primary_10_1109_TSP_2020_2988255
crossref_primary_10_1016_j_phycom_2021_101476
crossref_primary_10_1109_JIOT_2021_3072840
crossref_primary_10_1109_LCOMM_2019_2936473
crossref_primary_10_1109_LCOMM_2020_3005947
crossref_primary_10_1109_ACCESS_2021_3122331
crossref_primary_10_1049_cmu2_12669
crossref_primary_10_1109_TWC_2024_3437668
crossref_primary_10_1109_ACCESS_2024_3423840
crossref_primary_10_1109_JPHOT_2019_2938231
crossref_primary_10_1109_JIOT_2024_3368692
crossref_primary_10_1109_TCCN_2019_2941191
crossref_primary_10_3389_fnhum_2025_1583342
crossref_primary_10_1109_TPWRS_2019_2909150
crossref_primary_10_1109_TCOMM_2022_3199018
crossref_primary_10_1109_LCOMM_2021_3063707
crossref_primary_10_1109_TWC_2021_3068578
crossref_primary_10_1109_MCOM_001_1900199
crossref_primary_10_1108_BIJ_06_2022_0401
crossref_primary_10_1109_MSP_2020_2996545
crossref_primary_10_4218_etrij_2022_0462
crossref_primary_10_1109_TVT_2022_3201961
crossref_primary_10_1016_j_comnet_2023_109581
crossref_primary_10_3390_app11052163
crossref_primary_10_1109_TVT_2022_3192833
crossref_primary_10_1109_TCOMM_2019_2947514
crossref_primary_10_1109_TSP_2022_3143372
crossref_primary_10_1109_TWC_2020_3033334
crossref_primary_10_1109_TNSE_2022_3163274
crossref_primary_10_1109_JPROC_2024_3409428
crossref_primary_10_1109_MWC_003_21003437
crossref_primary_10_1109_JSAC_2021_3087233
crossref_primary_10_1016_j_engappai_2021_104451
crossref_primary_10_1016_j_phycom_2021_101364
crossref_primary_10_1109_TMC_2025_3542434
crossref_primary_10_1109_TVT_2020_3028010
crossref_primary_10_1109_JPROC_2019_2941458
crossref_primary_10_1109_JSAC_2019_2904352
crossref_primary_10_1109_TVT_2022_3188104
crossref_primary_10_1109_TSP_2023_3238275
crossref_primary_10_3390_electronics13050872
crossref_primary_10_1109_TWC_2020_3043009
crossref_primary_10_1109_JIOT_2023_3263756
crossref_primary_10_1109_OJCOMS_2025_3549434
crossref_primary_10_1002_ett_4324
crossref_primary_10_1109_ACCESS_2021_3094976
crossref_primary_10_1109_TCCN_2019_2945774
crossref_primary_10_1109_TVT_2022_3213368
crossref_primary_10_1109_LWC_2024_3362050
crossref_primary_10_3390_app10134622
crossref_primary_10_1109_ACCESS_2022_3195898
crossref_primary_10_1002_itl2_317
crossref_primary_10_1109_TCOMM_2023_3282220
crossref_primary_10_1109_MCOM_001_2000367
crossref_primary_10_1109_TVT_2023_3302814
crossref_primary_10_1109_TVT_2024_3375020
crossref_primary_10_1007_s10845_023_02261_7
crossref_primary_10_1109_TWC_2022_3218579
crossref_primary_10_1109_TWC_2024_3361174
crossref_primary_10_1109_TVT_2023_3250963
crossref_primary_10_1109_TSP_2022_3207269
crossref_primary_10_1109_TGCN_2021_3058657
crossref_primary_10_3390_app9173470
crossref_primary_10_1016_j_compchemeng_2024_108859
crossref_primary_10_1016_j_phycom_2025_102630
crossref_primary_10_1109_LSP_2023_3289438
crossref_primary_10_1109_MNET_105_2100450
crossref_primary_10_1049_cmu2_70005
crossref_primary_10_1109_ACCESS_2025_3573096
crossref_primary_10_1109_ACCESS_2018_2890441
crossref_primary_10_1109_TWC_2022_3195352
crossref_primary_10_1109_TVT_2022_3187440
crossref_primary_10_1109_TPWRS_2021_3127189
crossref_primary_10_1007_s00521_020_05142_9
crossref_primary_10_1109_TWC_2020_2996368
crossref_primary_10_1007_s11432_022_3566_4
crossref_primary_10_1109_JIOT_2024_3359674
crossref_primary_10_1109_TVT_2022_3151471
crossref_primary_10_1007_s11227_022_04656_4
crossref_primary_10_1109_TCCN_2022_3222847
crossref_primary_10_1109_TWC_2020_3001736
crossref_primary_10_1109_TWC_2020_3041319
crossref_primary_10_1109_JIOT_2021_3113895
crossref_primary_10_1109_TNSE_2020_3004333
crossref_primary_10_1109_JSAC_2021_3126076
crossref_primary_10_1109_TWC_2023_3271521
crossref_primary_10_1109_TCCN_2021_3061464
crossref_primary_10_1109_TVT_2021_3057648
crossref_primary_10_1109_TWC_2021_3065029
crossref_primary_10_1109_LCOMM_2020_3027994
crossref_primary_10_3390_biomimetics8020241
crossref_primary_10_1109_TWC_2021_3138733
crossref_primary_10_3390_en12224300
crossref_primary_10_1049_iet_com_2019_1211
crossref_primary_10_1109_TCOMM_2022_3228611
crossref_primary_10_1109_TMLCN_2025_3562808
crossref_primary_10_1109_JIOT_2024_3369687
crossref_primary_10_1109_JSAC_2019_2933890
crossref_primary_10_1109_ACCESS_2021_3097243
crossref_primary_10_1109_TVT_2021_3082776
crossref_primary_10_1109_JSAC_2021_3118430
crossref_primary_10_1109_LCOMM_2020_3041510
crossref_primary_10_1109_ACCESS_2020_3040133
crossref_primary_10_1109_MNET_003_2200275
crossref_primary_10_1109_TSP_2020_3048232
crossref_primary_10_1109_TCCN_2023_3254515
crossref_primary_10_1109_TVT_2024_3515056
crossref_primary_10_1109_TWC_2020_3022705
crossref_primary_10_1109_TWC_2022_3193138
crossref_primary_10_1109_TVT_2018_2882635
crossref_primary_10_3390_s19153423
crossref_primary_10_1109_TWC_2022_3217176
crossref_primary_10_1109_MNET_001_1900517
crossref_primary_10_1109_TSP_2019_2908906
crossref_primary_10_1109_JSAC_2021_3126050
crossref_primary_10_1109_TCOMM_2025_3534565
crossref_primary_10_1109_ACCESS_2022_3208284
crossref_primary_10_1109_TWC_2021_3053354
crossref_primary_10_3390_app10103634
crossref_primary_10_1109_TCCN_2020_3013257
crossref_primary_10_3390_electronics11182842
crossref_primary_10_1109_JSAC_2019_2933969
crossref_primary_10_1109_TWC_2021_3088224
crossref_primary_10_1109_LCOMM_2024_3474251
crossref_primary_10_1109_TWC_2019_2919611
crossref_primary_10_1016_j_phycom_2021_101402
crossref_primary_10_3390_network3010003
crossref_primary_10_1109_TWC_2023_3279442
crossref_primary_10_1109_TSP_2021_3079807
crossref_primary_10_1109_TSP_2021_3096466
crossref_primary_10_1002_aic_18338
crossref_primary_10_1007_s42484_020_00014_w
crossref_primary_10_1109_LWC_2022_3202904
crossref_primary_10_1007_s11432_024_4205_8
crossref_primary_10_1109_JSYST_2018_2870483
crossref_primary_10_1109_TCOMM_2021_3133939
crossref_primary_10_1109_TCOMM_2023_3251995
crossref_primary_10_1016_j_eng_2025_07_032
crossref_primary_10_1007_s11036_022_02013_6
crossref_primary_10_1109_TCOMM_2023_3310537
crossref_primary_10_1109_TVT_2023_3237551
crossref_primary_10_1109_LCOMM_2024_3503656
crossref_primary_10_1109_TCCN_2022_3228584
crossref_primary_10_1109_ACCESS_2021_3079639
crossref_primary_10_1109_LCOMM_2022_3161712
crossref_primary_10_3390_electronics10030318
crossref_primary_10_1109_JSAC_2019_2933973
crossref_primary_10_1109_MWC_003_2200382
crossref_primary_10_1109_JSAC_2022_3143215
crossref_primary_10_1109_ACCESS_2021_3121724
crossref_primary_10_1109_LCOMM_2020_2965532
crossref_primary_10_1109_TSP_2023_3244104
crossref_primary_10_1109_TVT_2020_2965959
crossref_primary_10_1109_TNNLS_2021_3054778
crossref_primary_10_1109_LWC_2022_3186160
crossref_primary_10_1109_JSAC_2023_3242716
crossref_primary_10_1109_TWC_2022_3180035
crossref_primary_10_1109_TWC_2023_3325735
crossref_primary_10_1109_ACCESS_2018_2887308
crossref_primary_10_1109_TSP_2023_3334396
crossref_primary_10_1109_ACCESS_2021_3060480
crossref_primary_10_1109_TWC_2024_3396798
crossref_primary_10_1109_ACCESS_2024_3450578
crossref_primary_10_1109_TWC_2021_3123620
crossref_primary_10_1109_JSAC_2020_3036965
crossref_primary_10_1038_s41598_023_41700_6
crossref_primary_10_1109_ACCESS_2021_3109948
crossref_primary_10_1109_TSP_2022_3163626
crossref_primary_10_1109_LWC_2022_3206096
crossref_primary_10_1109_TWC_2023_3323207
crossref_primary_10_1109_TCOMM_2020_2983036
crossref_primary_10_1109_TNSM_2021_3049824
crossref_primary_10_1109_TVT_2019_2949122
crossref_primary_10_1109_TWC_2022_3204794
crossref_primary_10_1109_TWC_2020_3040983
crossref_primary_10_1109_TWC_2022_3219840
crossref_primary_10_1109_TWC_2023_3314930
crossref_primary_10_1109_JPROC_2019_2957798
crossref_primary_10_1016_j_ifacol_2025_07_051
crossref_primary_10_1109_LWC_2025_3582828
crossref_primary_10_1109_ACCESS_2020_2978253
crossref_primary_10_3389_fdata_2022_787421
crossref_primary_10_1109_TCOMM_2021_3129199
crossref_primary_10_1109_ACCESS_2019_2937982
crossref_primary_10_1109_TVT_2023_3246982
crossref_primary_10_1109_TWC_2021_3107452
crossref_primary_10_1109_TCCN_2023_3287240
crossref_primary_10_1109_TNSE_2025_3539824
crossref_primary_10_1109_JPROC_2021_3053601
crossref_primary_10_1109_TWC_2025_3560116
crossref_primary_10_1109_ACCESS_2023_3342320
crossref_primary_10_1007_s10489_024_05391_4
crossref_primary_10_1109_TVT_2021_3055205
crossref_primary_10_1016_j_adhoc_2023_103208
crossref_primary_10_1109_ACCESS_2024_3437670
crossref_primary_10_1109_ACCESS_2023_3345831
crossref_primary_10_1109_TNSE_2023_3335973
crossref_primary_10_1109_TCOMM_2024_3405372
crossref_primary_10_1109_JSAC_2020_3000835
crossref_primary_10_1109_TWC_2022_3192203
crossref_primary_10_1109_ACCESS_2024_3462987
crossref_primary_10_1109_TWC_2019_2947591
crossref_primary_10_1109_TWC_2022_3230662
crossref_primary_10_1109_TWC_2022_3179352
crossref_primary_10_1016_j_phycom_2023_102158
crossref_primary_10_1109_JIOT_2020_3023111
crossref_primary_10_1109_ACCESS_2020_2971698
crossref_primary_10_1051_shsconf_202214403016
crossref_primary_10_1080_00207217_2020_1843715
crossref_primary_10_1109_TWC_2020_3031920
crossref_primary_10_3390_math12111755
crossref_primary_10_1016_j_phycom_2025_102620
crossref_primary_10_1109_COMST_2020_3024783
crossref_primary_10_1109_TVT_2020_2972596
crossref_primary_10_1109_TWC_2022_3181219
crossref_primary_10_3390_electronics14132734
crossref_primary_10_1016_j_aej_2025_08_032
crossref_primary_10_1109_TCOMM_2020_2983142
crossref_primary_10_1109_ACCESS_2023_3288698
crossref_primary_10_1109_JSAC_2020_3000812
crossref_primary_10_1109_MWC_003_2200239
crossref_primary_10_1109_TCCN_2024_3510577
crossref_primary_10_1109_TVT_2020_3037060
crossref_primary_10_1016_j_adhoc_2024_103509
crossref_primary_10_1109_ACCESS_2021_3107430
crossref_primary_10_1109_TVT_2019_2953724
crossref_primary_10_1109_TVT_2021_3106398
crossref_primary_10_1109_TWC_2021_3089701
crossref_primary_10_1109_ACCESS_2020_3033333
crossref_primary_10_1002_ett_70027
crossref_primary_10_1109_TWC_2023_3253126
crossref_primary_10_1109_ACCESS_2021_3117451
crossref_primary_10_1109_TCOMM_2023_3300331
crossref_primary_10_1109_ACCESS_2021_3104277
crossref_primary_10_1109_TSP_2025_3574005
crossref_primary_10_1109_TWC_2020_3030973
crossref_primary_10_1109_LWC_2023_3257128
crossref_primary_10_1109_TWC_2021_3094162
crossref_primary_10_1109_TWC_2023_3269815
crossref_primary_10_1016_j_phycom_2024_102429
crossref_primary_10_1109_ACCESS_2022_3159679
crossref_primary_10_1109_ACCESS_2022_3182552
crossref_primary_10_1109_TCOMM_2020_2998858
crossref_primary_10_1109_TSTE_2021_3086846
crossref_primary_10_1109_JIOT_2025_3559063
crossref_primary_10_1109_ACCESS_2020_2992629
crossref_primary_10_1109_TCOMM_2019_2924010
crossref_primary_10_1016_j_icte_2022_08_009
crossref_primary_10_1109_TWC_2020_2981320
crossref_primary_10_1109_LSP_2022_3143771
crossref_primary_10_1109_TMC_2025_3563892
crossref_primary_10_1109_ACCESS_2024_3457805
crossref_primary_10_1049_cit2_12114
crossref_primary_10_1007_s00500_023_08623_w
crossref_primary_10_1109_TWC_2024_3509276
crossref_primary_10_1109_TVT_2021_3050104
crossref_primary_10_1109_TWC_2023_3336911
crossref_primary_10_1109_ACCESS_2023_3326842
crossref_primary_10_1007_s11432_023_3880_y
crossref_primary_10_1109_LWC_2023_3329036
crossref_primary_10_1109_TAES_2023_3334216
crossref_primary_10_1177_15501329221104330
crossref_primary_10_1109_COMST_2024_3450292
crossref_primary_10_1109_TWC_2021_3071480
crossref_primary_10_1109_JPROC_2024_3437730
crossref_primary_10_1109_TVT_2024_3442167
crossref_primary_10_1109_TWC_2023_3287885
crossref_primary_10_1109_TVT_2021_3064868
crossref_primary_10_1016_j_phycom_2019_100941
crossref_primary_10_1016_j_neucom_2020_06_137
crossref_primary_10_1109_ACCESS_2019_2954467
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TNET_2024_3444602
crossref_primary_10_1109_TWC_2022_3192550
crossref_primary_10_1016_j_dsp_2023_104027
crossref_primary_10_1109_JIOT_2022_3173210
crossref_primary_10_1109_ACCESS_2020_3025597
crossref_primary_10_1109_COMST_2019_2924243
crossref_primary_10_3233_ICA_230722
crossref_primary_10_1109_JIOT_2021_3064150
crossref_primary_10_1109_LWC_2020_3007198
crossref_primary_10_1007_s11276_023_03635_8
crossref_primary_10_1109_JSAC_2024_3460084
crossref_primary_10_1109_LCOMM_2023_3246052
crossref_primary_10_1109_TVT_2021_3103521
crossref_primary_10_1109_TWC_2023_3249103
crossref_primary_10_1109_TCOMM_2022_3209888
crossref_primary_10_1109_TVT_2024_3371019
crossref_primary_10_1109_TWC_2022_3190435
crossref_primary_10_1109_TVT_2020_2972734
crossref_primary_10_1109_TVT_2020_2994525
crossref_primary_10_1109_TII_2023_3254651
crossref_primary_10_1109_TSP_2020_3000328
crossref_primary_10_3390_jsan10040060
crossref_primary_10_3390_app15010111
crossref_primary_10_1002_ett_3603
crossref_primary_10_1109_ACCESS_2021_3050522
crossref_primary_10_1109_TWC_2022_3204486
crossref_primary_10_1109_ACCESS_2021_3067070
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1109_LCOMM_2021_3116233
crossref_primary_10_1109_TITS_2022_3165791
crossref_primary_10_3390_fi17060237
crossref_primary_10_1109_MNET_011_1900630
crossref_primary_10_1109_TIP_2023_3263109
crossref_primary_10_1109_TWC_2021_3111843
crossref_primary_10_3233_JIFS_179616
crossref_primary_10_1002_dac_6060
crossref_primary_10_1109_TWC_2025_3560619
crossref_primary_10_1109_MBITS_2022_3212978
crossref_primary_10_1109_ACCESS_2024_3381542
crossref_primary_10_1109_TCOMM_2019_2957482
crossref_primary_10_1109_TWC_2024_3483291
crossref_primary_10_1109_TWC_2023_3249165
crossref_primary_10_1186_s13638_025_02468_7
crossref_primary_10_1109_ACCESS_2020_3011026
crossref_primary_10_1109_TVT_2024_3381285
crossref_primary_10_1109_JIOT_2025_3547933
crossref_primary_10_1109_TCOMM_2019_2938514
crossref_primary_10_1109_ACCESS_2020_3004865
crossref_primary_10_1080_15325008_2023_2209081
crossref_primary_10_2478_jee_2024_0013
crossref_primary_10_1109_LWC_2021_3095500
crossref_primary_10_1109_TWC_2023_3243611
crossref_primary_10_12677_SEA_2023_123052
crossref_primary_10_1109_MNET_006_2200281
crossref_primary_10_1016_j_neucom_2025_129770
crossref_primary_10_1109_ACCESS_2019_2923321
crossref_primary_10_1049_cmu2_12605
crossref_primary_10_1109_TSP_2023_3244096
crossref_primary_10_3390_s23063034
crossref_primary_10_1109_TSP_2020_3030073
crossref_primary_10_1109_TNET_2021_3093452
crossref_primary_10_1109_TWC_2021_3100500
crossref_primary_10_1109_LCOMM_2020_3042490
crossref_primary_10_1109_ACCESS_2023_3321371
crossref_primary_10_3390_sym13091737
crossref_primary_10_1051_jnwpu_20234150887
crossref_primary_10_1109_TAES_2023_3285201
crossref_primary_10_1155_2020_8863865
Cites_doi 10.1137/080716542
10.1109/TSP.2006.872578
10.1109/TSP.2014.2331611
10.1109/SPAWC.2017.8227766
10.1109/26.975766
10.1109/TIT.2009.2023751
10.1109/MSP.2014.2335237
10.1016/0893-6080(89)90020-8
10.1109/TCOMM.2005.851626
10.1109/TSP.2011.2147784
10.1038/nature14539
10.1109/DySPAN.2017.7920754
10.1109/MSP.2010.936019
10.1109/MSRP.2009.933371
10.1109/JSTSP.2007.914876
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2018.2866382
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 5453
ExternalDocumentID 10_1109_TSP_2018_2866382
8444648
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: 10.13039/501100012226
– fundername: National Science Foundation
  grantid: CMMI-1727757; CCF-1526078; CIF-1525194
  funderid: 10.13039/501100008982
– fundername: National Natural Science Foundation of China; NSFC
  grantid: 61671411; U1709219; 61374020
  funderid: 10.13039/501100001809
– fundername: Air Force Office of Scientific Research
  grantid: 15RT0767
  funderid: 10.13039/100000181
– fundername: National Science Foundation
  grantid: CIF-1525194
  funderid: 10.13039/501100008982
– fundername: Zhejiang Provincial NSF of China
  grantid: LR15F010002
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
ID FETCH-LOGICAL-c333t-744f3292d06c946c9a01ad67a4cc3780adfe62ff2ef8d11582e171668debc25f3
IEDL.DBID RIE
ISICitedReferencesCount 594
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444842400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Mon Jun 30 10:16:43 EDT 2025
Sat Nov 29 04:10:47 EST 2025
Tue Nov 18 22:22:54 EST 2025
Wed Aug 27 08:34:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-744f3292d06c946c9a01ad67a4cc3780adfe62ff2ef8d11582e171668debc25f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6266-123X
0000-0003-4847-9586
0000-0002-3385-7911
0000-0003-0507-9080
0000-0003-1263-9365
OpenAccessLink http://hdl.handle.net/20.500.11850/245053
PQID 2117167150
PQPubID 85478
PageCount 16
ParticipantIDs proquest_journals_2117167150
crossref_citationtrail_10_1109_TSP_2018_2866382
ieee_primary_8444648
crossref_primary_10_1109_TSP_2018_2866382
PublicationCentury 2000
PublicationDate 2018-10-15
PublicationDateYYYYMMDD 2018-10-15
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-15
  day: 15
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
verdu (ref25) 1998
samuel (ref20) 0
gregor (ref10) 2010
ref11
ref32
lee (ref29) 0
grzeszczuk (ref21) 1998
ref1
andrychowicz (ref14) 2016
ref18
farsad (ref17) 2017
hinton (ref30) 2012
glorot (ref31) 2010
ref24
karipidis (ref34) 2006; 2006
hong (ref33) 2013
bertsekas (ref26) 1997
ref27
o'shea (ref19) 2017
liang (ref28) 0
ref8
ref7
sprechmann (ref13) 0
ref9
li (ref15) 0
ref4
chen (ref22) 2017
ref3
sun (ref2) 0
ref6
ref5
luo (ref23) 2008; 2
hershey (ref12) 2014
o'shea (ref16) 2016
References_xml – start-page: 9
  year: 1998
  ident: ref21
  article-title: Neuroanimator: Fast neural network emulation and control of physics-based models
  publication-title: Proc 25th Annu Conf Comput Graph Interactive Tech
– ident: ref11
  doi: 10.1137/080716542
– year: 2014
  ident: ref12
  article-title: Deep unfolding: Model-based inspiration of novel deep architectures
– year: 2016
  ident: ref16
  article-title: Recurrent neural radio anomaly detection
– ident: ref8
  doi: 10.1109/TSP.2006.872578
– ident: ref32
  doi: 10.1109/TSP.2014.2331611
– ident: ref1
  doi: 10.1109/SPAWC.2017.8227766
– volume: 2006
  start-page: 90
  year: 2006
  ident: ref34
  article-title: Crosstalk models for short VDSL2 lines from measured 30Mhz data
  publication-title: EURASIP J Appl Signal Process
– year: 0
  ident: ref15
  article-title: Learning to optimize
  publication-title: Proc Int Conf Learn Represent
– start-page: 46
  year: 0
  ident: ref2
  article-title: Deep wireless interference management
  publication-title: Proc Int Zurich Seminar on Communication
– ident: ref5
  doi: 10.1109/26.975766
– ident: ref24
  doi: 10.1109/TIT.2009.2023751
– year: 2012
  ident: ref30
  article-title: Lecture 6a overview of mini-batch gradient descent
  publication-title: Coursera Lecture slides
– start-page: 908
  year: 0
  ident: ref13
  article-title: Supervised sparse analysis and synthesis operators
  publication-title: Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/MSP.2014.2335237
– start-page: 249
  year: 2010
  ident: ref31
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proc 13th Int Conf Artif Intell Statist
– ident: ref27
  doi: 10.1016/0893-6080(89)90020-8
– year: 2017
  ident: ref17
  article-title: Detection algorithms for communication systems using deep learning
– year: 1998
  ident: ref25
  publication-title: Multiuser Detection
– ident: ref35
  doi: 10.1109/TCOMM.2005.851626
– start-page: 1246
  year: 0
  ident: ref29
  article-title: Gradient descent converges to minimizers
  publication-title: Proc Conf Learn Theory
– year: 0
  ident: ref28
  article-title: Why deep neural networks for function approximation?
  publication-title: Proc Int Conf Learn Represent
– ident: ref3
  doi: 10.1109/TSP.2011.2147784
– ident: ref9
  doi: 10.1038/nature14539
– start-page: 399
  year: 2010
  ident: ref10
  article-title: Learning fast approximations of sparse coding
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref18
  doi: 10.1109/DySPAN.2017.7920754
– year: 2013
  ident: ref33
  article-title: Signal processing and optimal resource allocation for the interference channel
  publication-title: Academic Press Library in Signal Processing
– year: 2017
  ident: ref19
  article-title: Deep learning based MIMO communications
– ident: ref7
  doi: 10.1109/MSP.2010.936019
– start-page: 2497
  year: 2017
  ident: ref22
  article-title: Fast image processing with fully-convolutional networks
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref6
  doi: 10.1109/MSRP.2009.933371
– start-page: 3981
  year: 2016
  ident: ref14
  article-title: Learning to learn by gradient descent by gradient descent
  publication-title: Proc Adv Neural Inf Process Syst
– year: 0
  ident: ref20
  article-title: Deep MIMO detection
  publication-title: proc IEEE 18th Int Workshop Signal Process Adv Wireless Commun
– volume: 2
  start-page: 57
  year: 2008
  ident: ref23
  article-title: Dynamic spectrum management: Complexity and duality
  publication-title: IEEE J Sel Topics Signal Process
  doi: 10.1109/JSTSP.2007.914876
– year: 1997
  ident: ref26
  publication-title: Parallel and Distributed Computation Numerical Methods 2nd edition
SSID ssj0014496
Score 2.7093766
Snippet Numerical optimization has played a central role in addressing key signal processing (SP) problems. Highly effective methods have been developed for a large...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5438
SubjectTerms Algorithms
Approximation algorithms
Artificial neural networks
Computing time
deep neural networks
Design analysis
Filter design (mathematics)
Interference
interference management
Machine learning algorithms
Management
Mapping
Neural networks
Optimization
Optimization algorithms
Optimization algorithms approximation
Radar imaging
Signal processing
Signal processing algorithms
Task analysis
Wireless communication
WMMSE algorithm
Title Learning to Optimize: Training Deep Neural Networks for Interference Management
URI https://ieeexplore.ieee.org/document/8444648
https://www.proquest.com/docview/2117167150
Volume 66
WOSCitedRecordID wos000444842400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB42IYf2kEfTkk02QYdcCnVWlmVrnFvIgxzC7kK3sDdj61EC7W7YRw759RnJ2k1LS6EHgw-SsOeTNCPNzDcA5zlhyrFxicOmSaSmld7UOU9IeZWKoy60DpT5D2owwMmkHHXgyyYXxlobgs_shX8Nvnwz0yt_VdZHSYcXiVuwpZRqc7U2HgMpQy0uMheyJEc1Wbskedkffx35GC68EEj6FcVvKijUVPljIw7a5W7v_75rH3ajFcmuWtgPoGOnH-D9L9yChzCMzKnf2XLGhrQx_Hx8sZdsHEtCsBtrn5in5qBxBm0s-IKRBcvCHWHMAmRv0TEf4dvd7fj6PonVExKdZdmSpC1dJkpheKFLSU_N09oUqpYkfoW8Ns4WwjlhHRqyC1FYT51ToLGNFrnLPsH2dDa1R8BqzKxJpcqtdGTAyYb0fCFMalCmqUPehf5aoJWO1OK-wsWPKhwxeFkRBJWHoIoQdOHzpsdTS6vxj7aHXuSbdlHaXeitMaviultUdJylf1Bk5R7_vdcJvPNje-2T5j3YXs5X9hR29PPycTE_C1PqFdQ5yEM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xktg98EZbnj7sZSVCHcdJJtwQD4HoFqQtUm9R4gdCghbRsgd-PWPXLSAQEodIOdhJPF_smfGMvwH4nRKmHGsbWazrSCqa6XWV8oiUV5FzVJlSnjK_lbfb2O0WV1OwNzkLY4zxyWdm3936WL7uqye3VdZESc6LxGmYTaUU8ei01iRmIKWvxkUGQxKlmHfHQUleNDv_rlwWF-4LJA2L4p0S8lVVPizFXr-cLn7vy5ZgIdiR7HAE_DJMmd4K_HzDLrgKl4E79YYN--ySlob722dzwDqhKAQ7NuaBOXIOek57lA0-YGTDMr9LGM4Bstf8mDW4Pj3pHJ1FoX5CpJIkGZK8pU1EITTPVCHpqnhc6SyvJAGQI6-0NZmwVhiLmixDFMaR52SoTa1EapN1mOn1e-YXsAoTo2OZp0ZaMuFkTZo-EzrWKOPYIm9AcyzQUgVycVfj4q70TgYvSoKgdBCUAYIG_Jn0eBgRa3zRdtWJfNIuSLsBW2PMyjDzBiU5tDSGnOzcjc977cL8Wedvq2ydty824Yd7j9NFcboFM8PHJ7MNc-r_8HbwuON_rxdp08uK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+Optimize%3A+Training+Deep+Neural+Networks+for+Interference+Management&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Sun%2C+Haoran&rft.au=Chen%2C+Xiangyi&rft.au=Shi%2C+Qingjiang&rft.au=Hong%2C+Mingyi&rft.date=2018-10-15&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=66&rft.issue=20&rft.spage=5438&rft_id=info:doi/10.1109%2FTSP.2018.2866382&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon