Hierarchical clustering of time series data with parametric derivative dynamic time warping
•Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance. Dynamic Time Warping (DTW) is a popular and efficient distance measure...
Gespeichert in:
| Veröffentlicht in: | Expert systems with applications Jg. 62; S. 116 - 130 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.11.2016
|
| Schlagworte: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance.
Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison. |
|---|---|
| AbstractList | Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison. •Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance. Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison. |
| Author | Łuczak, Maciej |
| Author_xml | – sequence: 1 givenname: Maciej surname: Luczak fullname: Luczak, Maciej |
| BookMark | eNp9kE1LAzEQhoNUsK3-AU85etk12exXwYsUtULBi548hNlkYlP2oyZpS_-9qfXkoTAwM5l5XjLvhIz6oUdCbjlLOePl_TpFv4c0i3XKYvDsgox5XYmkrGZiRMZsVlRJzqv8iky8XzPGK8aqMflcWHTg1MoqaKlqtz6gs_0XHQwNtkPqY4ueaghA9zas6AYcdBicVVTH2Q6C3SHVhx66-PTL7MFtosY1uTTQerz5y1Py8fz0Pl8ky7eX1_njMlFCiJCUteEMTFWqQkAOZY0zXugGM93orDC1LkzRVE3TqDp-uhRFnhtsZmWOJo4Eiim5O-lu3PC9RR9kZ73CtoUeh62XvBZFmUfRLK5mp1XlBu8dGrlxtgN3kJzJo5NyLY9OyqOTksXgR6j-Bykb4tlDHxzY9jz6cEIx3r-LVkuvLPYKtXWogtSDPYf_APKDk6Y |
| CitedBy_id | crossref_primary_10_1186_s13636_019_0149_9 crossref_primary_10_1002_jtr_2794 crossref_primary_10_1155_2021_6687202 crossref_primary_10_3233_JIFS_17523 crossref_primary_10_1016_j_eswa_2020_113840 crossref_primary_10_1007_s10994_021_06125_0 crossref_primary_10_1080_02786826_2024_2445634 crossref_primary_10_1016_j_joi_2023_101412 crossref_primary_10_3233_JIFS_171393 crossref_primary_10_1016_j_asoc_2017_11_038 crossref_primary_10_3390_agriculture15010082 crossref_primary_10_1109_TITS_2023_3348815 crossref_primary_10_1088_1741_4326_abe370 crossref_primary_10_1016_j_neucom_2025_130932 crossref_primary_10_1109_TII_2022_3168035 crossref_primary_10_1016_j_apm_2022_10_014 crossref_primary_10_3390_app131810019 crossref_primary_10_1016_j_fss_2023_108590 crossref_primary_10_1016_j_fss_2025_109522 crossref_primary_10_1108_DTA_08_2022_0300 crossref_primary_10_1177_1071181322661523 crossref_primary_10_2139_ssrn_4996697 crossref_primary_10_3390_en17215272 crossref_primary_10_1371_journal_pone_0197499 crossref_primary_10_1016_j_eswa_2022_117249 crossref_primary_10_4316_AECE_2017_04010 crossref_primary_10_1186_s40813_024_00355_z crossref_primary_10_1088_1755_1315_192_1_012016 crossref_primary_10_1016_j_asoc_2025_112903 crossref_primary_10_1088_1742_6596_1567_2_022072 crossref_primary_10_1016_j_energy_2022_123767 crossref_primary_10_1016_j_ijepes_2022_108241 crossref_primary_10_3233_JIFS_18839 crossref_primary_10_1016_j_ins_2020_08_089 crossref_primary_10_1109_TSMC_2025_3577606 crossref_primary_10_1016_j_jneumeth_2018_06_019 crossref_primary_10_1109_TCYB_2019_2962584 crossref_primary_10_1007_s10044_021_01019_2 crossref_primary_10_1016_j_aei_2025_103757 crossref_primary_10_1007_s12237_025_01490_8 crossref_primary_10_1002_cjce_23037 crossref_primary_10_1016_j_scitotenv_2021_150318 crossref_primary_10_1155_2019_2719617 crossref_primary_10_1007_s11227_021_03701_y crossref_primary_10_1002_for_3095 crossref_primary_10_1016_j_eswa_2025_128979 crossref_primary_10_1016_j_eswa_2022_119481 crossref_primary_10_1109_TITS_2022_3142778 crossref_primary_10_1145_3748726 crossref_primary_10_3390_microorganisms8030331 crossref_primary_10_3390_s18103359 crossref_primary_10_1016_j_irbm_2021_06_001 crossref_primary_10_3390_electronics11020267 crossref_primary_10_1007_s00500_018_3287_6 crossref_primary_10_1016_j_egyr_2025_01_002 crossref_primary_10_1111_biom_13773 crossref_primary_10_1007_s10489_022_03716_9 crossref_primary_10_1016_j_aei_2022_101696 crossref_primary_10_3390_s22186884 crossref_primary_10_1016_j_engappai_2023_107098 crossref_primary_10_3233_IDA_205459 crossref_primary_10_3390_atmos13040503 |
| Cites_doi | 10.1080/03610918.2013.775296 10.1145/235968.233324 10.1016/j.eswa.2013.08.028 10.1002/joc.2367 10.1145/191843.191925 10.1109/TSMCA.2003.822270 10.5120/8282-1278 10.1016/j.datak.2005.05.009 10.1016/j.patcog.2008.11.030 10.1016/j.patcog.2005.01.025 10.1016/j.is.2015.04.007 10.1007/978-3-642-01091-0_9 10.1007/s10994-005-5825-6 10.1007/BF02941227 10.1109/91.940971 10.1007/s10618-012-0251-4 10.1016/j.eswa.2014.11.007 10.1016/j.tcs.2011.09.029 10.1007/s10618-005-0039-x 10.1145/276305.276312 10.1016/j.patcog.2010.09.013 10.1007/11564126_60 10.1109/TASSP.1978.1163055 10.1016/j.knosys.2014.02.011 10.5120/1326-1808 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2016.06.012 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 130 |
| ExternalDocumentID | 10_1016_j_eswa_2016_06_012 S0957417416302937 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABUFD ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-68f10af76c53a4a68e915dbe2dbd25f8d5f5b7bbbc817063544feb964efd5f3e3 |
| ISICitedReferencesCount | 73 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380626000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sun Sep 28 01:11:52 EDT 2025 Tue Nov 18 22:36:20 EST 2025 Sat Nov 29 04:44:46 EST 2025 Fri Feb 23 02:29:04 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Time series clustering Dynamic time warping Parametric distance measure |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-68f10af76c53a4a68e915dbe2dbd25f8d5f5b7bbbc817063544feb964efd5f3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0760-0637 |
| PQID | 1835649152 |
| PQPubID | 23500 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1835649152 crossref_primary_10_1016_j_eswa_2016_06_012 crossref_citationtrail_10_1016_j_eswa_2016_06_012 elsevier_sciencedirect_doi_10_1016_j_eswa_2016_06_012 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-11-15 |
| PublicationDateYYYYMMDD | 2016-11-15 |
| PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lemire (bib0033) 2009; 42 Liao (bib0035) 2005; 38 Górecki, Łuczak (bib0015) 2013; 26 Zhang, Ramakrishnan, Livny (bib0054) 1996; 25 MacQueen (bib0037) 1967 Karypis, Han, Kumar (bib0024) 1999; 32 Pavlidis, Plagianakos, Tasoulis, Vrahatis (bib0038) 2006; 6 Faloutsos, Ranganathan, Manolopoulos (bib0014) 1994; 23 Sakoe, Chiba (bib0045) 1978; 26 Rani, Sikka (bib0043) 2012; l52 Petitjean, Ketterlin, Gançarski (bib0041) 2011; 44 Warrenliao (bib0052) 2005; 38 Ester, Kriegel, Sander, Xu (bib0013) 1996; 96 Aghabozorgi, Shirkhorshidi, Wah (bib0001) 2015; 53 Shavlik, Dietterich (bib0047) 1990 Graves, Pedrycz (bib0019) 2010 Bagnall, Janacek (bib0004) 2005; 58 Banerjee, Ghosh (bib0005) 2001 Bezdek (bib0007) 1981 Box, Jenkins, Reinsel (bib0008) 2008 Keogh, Lonardi, Chiu (bib0028) 2002 Petitjean, Gançarski (bib0040) 2012; 414 Demsar (bib0012) 2006; 7 Kavitha, Punithavalli (bib0026) 2010; 8 Górecki, Łuczak (bib0016) 2014; 43 Latecki, Megalooikonomou, Wang, Lakaemper, Ratanamahatana, Keogh (bib0032) 2005 Sakoe, Chiba (bib0044) 1971 Chen, Keogh, Hu, Begum, Bagnall, Mueen (bib0010) 2015 Sheikholeslami, Chatterjee, Zhang (bib0048) 1998 Leng, Lai, Tan, Xu (bib0034) 2009 Górecki, Łuczak (bib0018) 2015; 42 Rai, Singh (bib0042) 2010; 7 Sfetsos, Siriopoulos (bib0046) 2004; 34 Kalpakis, Gada, Puttagunta (bib0023) 2001 Keogh, Pazzani (bib0029) 2001 Guha, Rastogi, Shim (bib0021) 1998; 27 Antunes, Oliveira (bib0003) 2001 Petitjean, Forestier, Webb, Nicholson, Chen, Keogh (bib0039) 2014 Chiş, Banerjee, Hassanien (bib0011) 2009; 6 Lin, Vlachos, Keogh, Gunopulos (bib0036) 2004; 2992 Wang, Smith, Hyndman (bib0051) 2006; 13 Krishnapuram, Joshi, Nasraoui, Yi (bib0030) 2001; 9 Aghabozorgi, Wah (bib0002) 2014; 41 Górecki, Łuczak (bib0017) 2014; 61 Vlachos, Kollios, Gunopulos (bib0050) 2002 Chan, Mahoney (bib0009) 2005 Kaufman, Rousseeuw, Corporation (bib0025) 1990 Beringer, Hullermeier (bib0006) 2006; 58 Wei, Kumar, Lolla, Keogh (bib0053) 2005 He, Feng, Wu, He, Wan, Chou (bib0022) 2011; 32 Smyth (bib0049) 1997; 9 Guan, Jiang (bib0020) 2007 Kumar, Patel (bib0031) 2002 Keogh (bib0027) 2002 Ester (10.1016/j.eswa.2016.06.012_sbref0013) 1996; 96 Sakoe (10.1016/j.eswa.2016.06.012_bib0045) 1978; 26 Smyth (10.1016/j.eswa.2016.06.012_sbref0049) 1997; 9 Karypis (10.1016/j.eswa.2016.06.012_bib0024) 1999; 32 Petitjean (10.1016/j.eswa.2016.06.012_bib0039) 2014 Demsar (10.1016/j.eswa.2016.06.012_bib0012) 2006; 7 Chen (10.1016/j.eswa.2016.06.012_sbref0010) 2015 Kaufman (10.1016/j.eswa.2016.06.012_sbref0025) 1990 Petitjean (10.1016/j.eswa.2016.06.012_bib0041) 2011; 44 Shavlik (10.1016/j.eswa.2016.06.012_sbref0047) 1990 Guan (10.1016/j.eswa.2016.06.012_bib0020) 2007 Sfetsos (10.1016/j.eswa.2016.06.012_bib0046) 2004; 34 Faloutsos (10.1016/j.eswa.2016.06.012_bib0014) 1994; 23 MacQueen (10.1016/j.eswa.2016.06.012_bib0037) 1967 Aghabozorgi (10.1016/j.eswa.2016.06.012_bib0002) 2014; 41 Petitjean (10.1016/j.eswa.2016.06.012_bib0040) 2012; 414 Warrenliao (10.1016/j.eswa.2016.06.012_bib0052) 2005; 38 Bagnall (10.1016/j.eswa.2016.06.012_bib0004) 2005; 58 Wang (10.1016/j.eswa.2016.06.012_bib0051) 2006; 13 Antunes (10.1016/j.eswa.2016.06.012_bib0003) 2001 Chiş (10.1016/j.eswa.2016.06.012_bib0011) 2009; 6 Sheikholeslami (10.1016/j.eswa.2016.06.012_bib0048) 1998 Wei (10.1016/j.eswa.2016.06.012_bib0053) 2005 Banerjee (10.1016/j.eswa.2016.06.012_bib0005) 2001 Liao (10.1016/j.eswa.2016.06.012_bib0035) 2005; 38 Zhang (10.1016/j.eswa.2016.06.012_sbref0054) 1996; 25 Graves (10.1016/j.eswa.2016.06.012_bib0019) 2010 Kavitha (10.1016/j.eswa.2016.06.012_bib0026) 2010; 8 Aghabozorgi (10.1016/j.eswa.2016.06.012_bib0001) 2015; 53 Kumar (10.1016/j.eswa.2016.06.012_bib0031) 2002 Keogh (10.1016/j.eswa.2016.06.012_bib0028) 2002 Vlachos (10.1016/j.eswa.2016.06.012_bib0050) 2002 Keogh (10.1016/j.eswa.2016.06.012_sbref0029) 2001 Górecki (10.1016/j.eswa.2016.06.012_bib0018) 2015; 42 Pavlidis (10.1016/j.eswa.2016.06.012_bib0038) 2006; 6 Górecki (10.1016/j.eswa.2016.06.012_bib0017) 2014; 61 Lemire (10.1016/j.eswa.2016.06.012_bib0033) 2009; 42 Kalpakis (10.1016/j.eswa.2016.06.012_bib0023) 2001 Chan (10.1016/j.eswa.2016.06.012_bib0009) 2005 Sakoe (10.1016/j.eswa.2016.06.012_bib0044) 1971 Krishnapuram (10.1016/j.eswa.2016.06.012_bib0030) 2001; 9 Keogh (10.1016/j.eswa.2016.06.012_bib0027) 2002 Guha (10.1016/j.eswa.2016.06.012_sbref0021) 1998; 27 Latecki (10.1016/j.eswa.2016.06.012_bib0032) 2005 Rai (10.1016/j.eswa.2016.06.012_bib0042) 2010; 7 Box (10.1016/j.eswa.2016.06.012_bib0008) 2008 Leng (10.1016/j.eswa.2016.06.012_bib0034) 2009 Rani (10.1016/j.eswa.2016.06.012_bib0043) 2012; l52 Lin (10.1016/j.eswa.2016.06.012_bib0036) 2004; 2992 Górecki (10.1016/j.eswa.2016.06.012_bib0016) 2014; 43 Beringer (10.1016/j.eswa.2016.06.012_bib0006) 2006; 58 Górecki (10.1016/j.eswa.2016.06.012_bib0015) 2013; 26 He (10.1016/j.eswa.2016.06.012_bib0022) 2011; 32 Bezdek (10.1016/j.eswa.2016.06.012_bib0007) 1981 |
| References_xml | – start-page: 237 year: 2005 end-page: 240 ident: bib0053 article-title: Assumption-free anomaly detection in time series publication-title: Proceedings of the 17th international conference on scientific and statistical database management, 2005 – volume: 44 start-page: 678 year: 2011 end-page: 693 ident: bib0041 article-title: A global averaging method for dynamic time warping, with applications to clustering publication-title: Pattern Recognition – start-page: 273 year: 2001 end-page: 280 ident: bib0023 article-title: Distance measures for effective clustering of ARIMA time-series publication-title: Proceedings 2001 IEEE international conference on data mining, 2001 – volume: 32 start-page: 68 year: 1999 end-page: 75 ident: bib0024 article-title: Chameleon: hierarchical clustering using dynamic modeling publication-title: Computer (Long Beach California) – start-page: 470 year: 2014 end-page: 479 ident: bib0039 publication-title: 2014 IEEE international conference on data mining (ICDM) – start-page: 577 year: 2005 end-page: 584 ident: bib0032 article-title: Elastic partial matching of time series publication-title: Knowledge Discovery. Databases PKDD 2005 – year: 2015 ident: bib0010 article-title: The UCR time series classification archive – start-page: 49 year: 2010 end-page: 54 ident: bib0019 article-title: Proximity fuzzy clustering and its application to time series clustering and prediction publication-title: Proceedings of the 2010 10th international conference on intelligent systems design and applications ISDA10, 2010 – start-page: 628 year: 2009 end-page: 632 ident: bib0034 article-title: Time series representation for anomaly detection publication-title: Proceedings of 2nd IEEE international conference on computer science and information technology, 2009, ICCSIT 2009 – volume: 26 start-page: 43 year: 1978 end-page: 49 ident: bib0045 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing – start-page: 851 year: 2007 end-page: 856 ident: bib0020 article-title: Cluster financial time series forportfolio publication-title: Proceedings of the international conference on wavelet analysis and pattern recognition, 2007 – volume: 42 start-page: 2169 year: 2009 end-page: 2180 ident: bib0033 article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound publication-title: Pattern Recognition – year: 2008 ident: bib0008 article-title: Time series analysis: Forecasting and control – volume: 26 start-page: 310 year: 2013 end-page: 331 ident: bib0015 article-title: Using derivatives in time series classification publication-title: Data Mining and Knowledge Discovery – year: 2001 ident: bib0029 article-title: Dynamic time warping with higher order features publication-title: Proceedings of SIAM international conference on data mining (SDM 2001) – volume: 414 start-page: 76 year: 2012 end-page: 91 ident: bib0040 article-title: Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment publication-title: Theoretical Computer Science – volume: 43 start-page: 2081 year: 2014 end-page: 2092 ident: bib0016 article-title: First and second derivative in time series classification using DTW publication-title: Communications in Statistics-Simulation and Computation – volume: 9 start-page: 648 year: 1997 end-page: 654 ident: bib0049 article-title: Clustering sequences with hidden markov models publication-title: Advances in Neural Information Processing Systems – start-page: 406 year: 2002 end-page: 417 ident: bib0027 article-title: Exact indexing of dynamic time warping publication-title: In 28th international conference on very large data bases – volume: l52 start-page: 1 year: 2012 end-page: 9 ident: bib0043 article-title: Recent techniques of clustering of time series data: A survey publication-title: International Journal of Computer Applications – volume: 41 start-page: 1301 year: 2014 end-page: 1314 ident: bib0002 article-title: Stock market co-movement assessment using a three-phase clustering method publication-title: Expert Systems with Applications – volume: 38 start-page: 1857 year: 2005 end-page: 1874 ident: bib0035 article-title: Clustering of time series data—a survey publication-title: Pattern Recognition – year: 1981 ident: bib0007 article-title: Pattern recognition with fuzzy objective function algorithms – volume: 27 start-page: 73 year: 1998 end-page: 84 ident: bib0021 article-title: CURE: An efficient clustering algorithm for large databases publication-title: ACM Sigmod Record – volume: 13 start-page: 335 year: 2006 end-page: 364 ident: bib0051 article-title: Characteristic-based clustering for time series data publication-title: Data Mining and Knowledge Discovery – year: 1990 ident: bib0047 article-title: Readings in machine learning – volume: 53 start-page: 16 year: 2015 end-page: 38 ident: bib0001 article-title: Time-seriesclustering—A decade review publication-title: Information Systems – start-page: 428 year: 1998 end-page: 439 ident: bib0048 article-title: Wavecluster: A multiresolution clustering approach for very large spatial databases publication-title: Proceedings of the international conference on very large data bases, 1998 – volume: 61 start-page: 98 year: 2014 end-page: 108 ident: bib0017 article-title: Non-isometric transforms in time series classification using DTW publication-title: Knowledge-Based Systems – volume: 32 start-page: 1604 year: 2011 end-page: 1614 ident: bib0022 article-title: A new method for abrupt dynamic change detection of correlated time series publication-title: International Journal of Climatology – volume: 2992 start-page: 521 year: 2004 end-page: 522 ident: bib0036 article-title: Iterative incremental clustering of time series publication-title: Advanced Database Technology – start-page: 550 year: 2002 end-page: 556 ident: bib0028 article-title: Finding surprising patterns in a time series database in linear time and space publication-title: Proceedings of the eighth ACM SIGKDD, 2002 – start-page: 281 year: 1967 end-page: 297 ident: bib0037 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of the fifth berkeley symposium mathematical statist. probability, Vol. 1 – volume: 6 start-page: 103 year: 2006 end-page: 127 ident: bib0038 article-title: Financial forecasting through unsupervised clustering and neural networks publication-title: Operations Research – volume: 38 start-page: 1857 year: 2005 end-page: 1874 ident: bib0052 article-title: Clustering of time series data—a survey publication-title: Pattern Recognition – start-page: 1 year: 2001 end-page: 13 ident: bib0003 article-title: Temporal data mining: Ano verview publication-title: KDD workshop on temporal data mining, 2001 – volume: 9 start-page: 595 year: 2001 end-page: 607 ident: bib0030 article-title: Low-complexity fuzzy relational clustering algorithms for webmining publication-title: IEEE Transactions on Fuzzy Systems – volume: 23 start-page: 419 year: 1994 end-page: 429 ident: bib0014 article-title: Fast subsequence matching intime-series databases publication-title: ACM Sigmod Record – volume: 42 start-page: 2305 year: 2015 end-page: 2312 ident: bib0018 article-title: Multivariate time series classification with parametric derivative dynamic time warping publication-title: Expert Systems with Applications – year: 1990 ident: bib0025 article-title: Finding groups in data: An introduction to cluster analysis, Vol. 39 – start-page: 557 year: 2002 end-page: 563 ident: bib0031 article-title: Clustering seasonality patterns in the presence of errors publication-title: Proceedings of eighth ACM SIGKDD, 2002 – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 8 start-page: 289 year: 2010 end-page: 294 ident: bib0026 article-title: Clustering time series data stream—a literature survey publication-title: International Journal of Computer Science and Information Security – volume: 96 start-page: 226 year: 1996 end-page: 231 ident: bib0013 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – start-page: 673 year: 2002 end-page: 684 ident: bib0050 article-title: Discovering similar multidimensional trajectories publication-title: Proceedings of 18th international conference on data engineering – volume: 58 start-page: 180 year: 2006 end-page: 204 ident: bib0006 article-title: Online clustering of parallel data streams publication-title: Data & Knowledge Engineering – volume: 25 start-page: 103 year: 1996 end-page: 114 ident: bib0054 article-title: BIRCH: An efficient data clustering method for very large databases publication-title: ACM Sigmod Record – start-page: 33 year: 2001 end-page: 40 ident: bib0005 article-title: Clickstream clustering using weighted longest common subsequences publication-title: Proceedings of the workshop on web mining, SIAM conference on data mining, 2001 – volume: 34 start-page: 399 year: 2004 end-page: 405 ident: bib0046 article-title: Time series forecasting with a hybrid clustering scheme and pattern recognition publication-title: IEEE Transactions on Systems, Man, and Cybernetics – start-page: 65 year: 1971 end-page: 69 ident: bib0044 article-title: A dynamic programming approach to continuous speech recognition publication-title: Proceedings of the seventh international congress on acoustics Vol. 3, 1971 – volume: 6 start-page: 193 year: 2009 end-page: 207 ident: bib0011 article-title: Clustering time series data: An evolutionary approach publication-title: Found. Computational Intelligence – volume: 7 start-page: 1 year: 2010 end-page: 5 ident: bib0042 article-title: A survey of clustering techniques publication-title: International Journal of Computer Applications – start-page: 90 year: 2005 end-page: 97 ident: bib0009 article-title: Modeling multiple time series for anomaly detection publication-title: Proceedings of ffifth IEEE international conferenceon data mining, 2005 – volume: 58 start-page: 151 year: 2005 end-page: 178 ident: bib0004 article-title: Clustering time series with clipped data publication-title: Machine Learning – volume: 96 start-page: 226 issue: 34 year: 1996 ident: 10.1016/j.eswa.2016.06.012_sbref0013 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – year: 1981 ident: 10.1016/j.eswa.2016.06.012_bib0007 – volume: 43 start-page: 2081 issue: 9 year: 2014 ident: 10.1016/j.eswa.2016.06.012_bib0016 article-title: First and second derivative in time series classification using DTW publication-title: Communications in Statistics-Simulation and Computation doi: 10.1080/03610918.2013.775296 – start-page: 237 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0053 article-title: Assumption-free anomaly detection in time series – volume: 25 start-page: 103 issue: 2 year: 1996 ident: 10.1016/j.eswa.2016.06.012_sbref0054 article-title: BIRCH: An efficient data clustering method for very large databases publication-title: ACM Sigmod Record doi: 10.1145/235968.233324 – volume: 41 start-page: 1301 issue: 4 year: 2014 ident: 10.1016/j.eswa.2016.06.012_bib0002 article-title: Stock market co-movement assessment using a three-phase clustering method publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.08.028 – start-page: 406 year: 2002 ident: 10.1016/j.eswa.2016.06.012_bib0027 article-title: Exact indexing of dynamic time warping – volume: 32 start-page: 1604 issue: 10 year: 2011 ident: 10.1016/j.eswa.2016.06.012_bib0022 article-title: A new method for abrupt dynamic change detection of correlated time series publication-title: International Journal of Climatology doi: 10.1002/joc.2367 – volume: 23 start-page: 419 issue: 2 year: 1994 ident: 10.1016/j.eswa.2016.06.012_bib0014 article-title: Fast subsequence matching intime-series databases publication-title: ACM Sigmod Record doi: 10.1145/191843.191925 – start-page: 281 year: 1967 ident: 10.1016/j.eswa.2016.06.012_bib0037 article-title: Some methods for classification and analysis of multivariate observations – start-page: 470 year: 2014 ident: 10.1016/j.eswa.2016.06.012_bib0039 – start-page: 557 year: 2002 ident: 10.1016/j.eswa.2016.06.012_bib0031 article-title: Clustering seasonality patterns in the presence of errors – volume: 34 start-page: 399 issue: 3 year: 2004 ident: 10.1016/j.eswa.2016.06.012_bib0046 article-title: Time series forecasting with a hybrid clustering scheme and pattern recognition publication-title: IEEE Transactions on Systems, Man, and Cybernetics doi: 10.1109/TSMCA.2003.822270 – volume: l52 start-page: 1 issue: 15 year: 2012 ident: 10.1016/j.eswa.2016.06.012_bib0043 article-title: Recent techniques of clustering of time series data: A survey publication-title: International Journal of Computer Applications doi: 10.5120/8282-1278 – volume: 58 start-page: 180 issue: 2 year: 2006 ident: 10.1016/j.eswa.2016.06.012_bib0006 article-title: Online clustering of parallel data streams publication-title: Data & Knowledge Engineering doi: 10.1016/j.datak.2005.05.009 – volume: 42 start-page: 2169 issue: 9 year: 2009 ident: 10.1016/j.eswa.2016.06.012_bib0033 article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound publication-title: Pattern Recognition doi: 10.1016/j.patcog.2008.11.030 – volume: 38 start-page: 1857 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0035 article-title: Clustering of time series data—a survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.01.025 – year: 2001 ident: 10.1016/j.eswa.2016.06.012_sbref0029 article-title: Dynamic time warping with higher order features – year: 1990 ident: 10.1016/j.eswa.2016.06.012_sbref0047 – volume: 32 start-page: 68 issue: 8 year: 1999 ident: 10.1016/j.eswa.2016.06.012_bib0024 article-title: Chameleon: hierarchical clustering using dynamic modeling publication-title: Computer (Long Beach California) – start-page: 1 year: 2001 ident: 10.1016/j.eswa.2016.06.012_bib0003 article-title: Temporal data mining: Ano verview – start-page: 90 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0009 article-title: Modeling multiple time series for anomaly detection – volume: 53 start-page: 16 year: 2015 ident: 10.1016/j.eswa.2016.06.012_bib0001 article-title: Time-seriesclustering—A decade review publication-title: Information Systems doi: 10.1016/j.is.2015.04.007 – start-page: 550 year: 2002 ident: 10.1016/j.eswa.2016.06.012_bib0028 article-title: Finding surprising patterns in a time series database in linear time and space – volume: 6 start-page: 193 issue: 1 year: 2009 ident: 10.1016/j.eswa.2016.06.012_bib0011 article-title: Clustering time series data: An evolutionary approach publication-title: Found. Computational Intelligence doi: 10.1007/978-3-642-01091-0_9 – start-page: 673 year: 2002 ident: 10.1016/j.eswa.2016.06.012_bib0050 article-title: Discovering similar multidimensional trajectories – volume: 58 start-page: 151 issue: 2 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0004 article-title: Clustering time series with clipped data publication-title: Machine Learning doi: 10.1007/s10994-005-5825-6 – volume: 6 start-page: 103 issue: 2 year: 2006 ident: 10.1016/j.eswa.2016.06.012_bib0038 article-title: Financial forecasting through unsupervised clustering and neural networks publication-title: Operations Research doi: 10.1007/BF02941227 – volume: 9 start-page: 595 issue: 4 year: 2001 ident: 10.1016/j.eswa.2016.06.012_bib0030 article-title: Low-complexity fuzzy relational clustering algorithms for webmining publication-title: IEEE Transactions on Fuzzy Systems doi: 10.1109/91.940971 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.eswa.2016.06.012_bib0012 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: Journal of Machine Learning Research – volume: 26 start-page: 310 issue: 2 year: 2013 ident: 10.1016/j.eswa.2016.06.012_bib0015 article-title: Using derivatives in time series classification publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-012-0251-4 – start-page: 628 year: 2009 ident: 10.1016/j.eswa.2016.06.012_bib0034 article-title: Time series representation for anomaly detection – year: 2015 ident: 10.1016/j.eswa.2016.06.012_sbref0010 – volume: 9 start-page: 648 year: 1997 ident: 10.1016/j.eswa.2016.06.012_sbref0049 article-title: Clustering sequences with hidden markov models publication-title: Advances in Neural Information Processing Systems – volume: 42 start-page: 2305 issue: 5 year: 2015 ident: 10.1016/j.eswa.2016.06.012_bib0018 article-title: Multivariate time series classification with parametric derivative dynamic time warping publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.11.007 – volume: 414 start-page: 76 issue: 1 year: 2012 ident: 10.1016/j.eswa.2016.06.012_bib0040 article-title: Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment publication-title: Theoretical Computer Science doi: 10.1016/j.tcs.2011.09.029 – start-page: 273 year: 2001 ident: 10.1016/j.eswa.2016.06.012_bib0023 article-title: Distance measures for effective clustering of ARIMA time-series – start-page: 428 year: 1998 ident: 10.1016/j.eswa.2016.06.012_bib0048 article-title: Wavecluster: A multiresolution clustering approach for very large spatial databases – volume: 13 start-page: 335 issue: 3 year: 2006 ident: 10.1016/j.eswa.2016.06.012_bib0051 article-title: Characteristic-based clustering for time series data publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-005-0039-x – volume: 27 start-page: 73 issue: 2 year: 1998 ident: 10.1016/j.eswa.2016.06.012_sbref0021 article-title: CURE: An efficient clustering algorithm for large databases publication-title: ACM Sigmod Record doi: 10.1145/276305.276312 – volume: 2992 start-page: 521 year: 2004 ident: 10.1016/j.eswa.2016.06.012_bib0036 article-title: Iterative incremental clustering of time series publication-title: Advanced Database Technology – volume: 44 start-page: 678 issue: 3 year: 2011 ident: 10.1016/j.eswa.2016.06.012_bib0041 article-title: A global averaging method for dynamic time warping, with applications to clustering publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.09.013 – start-page: 33 year: 2001 ident: 10.1016/j.eswa.2016.06.012_bib0005 article-title: Clickstream clustering using weighted longest common subsequences – start-page: 577 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0032 article-title: Elastic partial matching of time series publication-title: Knowledge Discovery. Databases PKDD 2005 doi: 10.1007/11564126_60 – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 10.1016/j.eswa.2016.06.012_bib0045 article-title: Dynamic programming algorithm optimization for spoken word recognition publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing doi: 10.1109/TASSP.1978.1163055 – start-page: 851 year: 2007 ident: 10.1016/j.eswa.2016.06.012_bib0020 article-title: Cluster financial time series forportfolio – year: 2008 ident: 10.1016/j.eswa.2016.06.012_bib0008 – start-page: 65 year: 1971 ident: 10.1016/j.eswa.2016.06.012_bib0044 article-title: A dynamic programming approach to continuous speech recognition – volume: 8 start-page: 289 issue: 1 year: 2010 ident: 10.1016/j.eswa.2016.06.012_bib0026 article-title: Clustering time series data stream—a literature survey publication-title: International Journal of Computer Science and Information Security – year: 1990 ident: 10.1016/j.eswa.2016.06.012_sbref0025 – volume: 38 start-page: 1857 issue: 11 year: 2005 ident: 10.1016/j.eswa.2016.06.012_bib0052 article-title: Clustering of time series data—a survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2005.01.025 – volume: 61 start-page: 98 year: 2014 ident: 10.1016/j.eswa.2016.06.012_bib0017 article-title: Non-isometric transforms in time series classification using DTW publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2014.02.011 – volume: 7 start-page: 1 issue: 12 year: 2010 ident: 10.1016/j.eswa.2016.06.012_bib0042 article-title: A survey of clustering techniques publication-title: International Journal of Computer Applications doi: 10.5120/1326-1808 – start-page: 49 year: 2010 ident: 10.1016/j.eswa.2016.06.012_bib0019 article-title: Proximity fuzzy clustering and its application to time series clustering and prediction |
| SSID | ssj0017007 |
| Score | 2.4746072 |
| Snippet | •Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation... Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 116 |
| SubjectTerms | Algorithms Classification Clustering Derivatives Dynamic time warping Mathematical analysis Mathematical models Parametric distance measure Time series Time series clustering Warping |
| Title | Hierarchical clustering of time series data with parametric derivative dynamic time warping |
| URI | https://dx.doi.org/10.1016/j.eswa.2016.06.012 https://www.proquest.com/docview/1835649152 |
| Volume | 62 |
| WOSCitedRecordID | wos000380626000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-99F2avlChPRkHy7Ik-xhCStpDKCSFhR6MrQdku_Eu-0ror69mR1pvUxraQi_G2JZX6BvPzI5mviHknVSWO8N5WlpZpuDAp1VrTWqYlLYUrvIf-6bZhDo9LUej6vNgcBZrYdYT1XXl9XU1-69Q-2sebCid_Qu4ty_1F_y5B90fPez--EfAn1xATfGmxckk0ZMVMCGE1GZoJJ_AJOwigdRQjMIC-_clNNbSifH31kgFbrBVPY65auazaOPG2-Q9O18GJuhYI7ezGx6RfH8kvLe60t-bb1gb5JXJeDfWwCQU3WG1JQbAYhFMn3GEkUSVFgyb7RxY1KOl4qlU2PwwKtqgdlFTMiZ3jC7DzZlf9DmGFsYHdnEFJFFMbshWQ-L1zzzZZzAPmIb3MDPvxKg7ZC9XoiqHZO_w4_Ho03ZzSWVYRR_nHWqpMO3v5i_9zl-5Ybk37sj5Q3I__I-gh4j_IzKw3WPyIPbooEFlPyFfd8WB9uJAp44CtBTFgYI4UACR9uJAe3GgQRxwTBCHp-TLh-Pzo5M0NNRINed8mcrSsaxxSmrBm6KRpa2YMK3NTWty4UojnGhV27YaaBu9K1oUzraVLKzzt7jlz8iwm3b2OaFKgynQjc4MLxzP21wXVVY5B3xCPHP7hMVlq3Vgm4emJ5M6phWOa1jqGpa6htxKlu-TZDtmhlwrtz4tIhp18BbRC6y98Nw67m2ErvaqFPbHms5OV4vaWzchC78k-Yt_fPdLcq__bF6R4XK-sq_JXb1eXizmb4Ic_gBOMJ5e |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+clustering+of+time+series+data+with+parametric+derivative+dynamic+time+warping&rft.jtitle=Expert+systems+with+applications&rft.au=%C5%81uczak%2C+Maciej&rft.date=2016-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=62&rft.spage=116&rft.epage=130&rft_id=info:doi/10.1016%2Fj.eswa.2016.06.012&rft.externalDocID=S0957417416302937 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |