Hierarchical clustering of time series data with parametric derivative dynamic time warping

•Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance. Dynamic Time Warping (DTW) is a popular and efficient distance measure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 62; S. 116 - 130
1. Verfasser: Luczak, Maciej
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.11.2016
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance. Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison.
AbstractList Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison.
•Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation measures.•Parameter selection for any dataset, giving the best clustering performance. Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By computing the DTW distance not on raw data but on the time series of the (first, discrete) derivative of the data, we obtain the so-called Derivative Dynamic Time Warping (DDTW) distance measure. DDTW, used alone, is usually inefficient, but there exist datasets on which DDTW gives good results, sometimes much better than DTW. To improve the performance of the two distance measures, we can combine them into a new single (parametric) distance function. The literature contains examples of the combining of DTW and DDTW in algorithms for supervised classification of time series data. In this paper, we demonstrate that combination of DTW and DDTW can also be applied in a method of time series clustering (unsupervised classification). In particular, we focus on a hierarchical clustering (with average linkage) of univariate (one-dimensional) time series data. We construct a new parametric distance function, combining DTW and DDTW, where a single real number parameter controls the contribution of each of the two measures to the total value of the combined distances. The parameter is tuned in the initial phase of the clustering algorithm. Using this technique in clustering methods requires a different approach (to address certain specific problems) than for supervised methods. In the clustering process we use three internal cluster validation measures (measures which do not use labels) and three external cluster validation measures (measures which do use clustering data labels). Internal measures are used to select an optimal value of the parameter of the algorithm, where external measures give information about the overall performance of the new method and enable comparison with other distance functions. Computational experiments are performed on a large real-world data base (UCR Time Series Classification Archive: 84 datasets) from a very broad range of fields, including medicine, finance, multimedia and engineering. The experimental results demonstrate the effectiveness of the proposed approach for hierarchical clustering of time series data. The method with the new parametric distance function outperforms DTW (and DDTW) on the data base used. The results are confirmed by graphical and statistical comparison.
Author Łuczak, Maciej
Author_xml – sequence: 1
  givenname: Maciej
  surname: Luczak
  fullname: Luczak, Maciej
BookMark eNp9kE1LAzEQhoNUsK3-AU85etk12exXwYsUtULBi548hNlkYlP2oyZpS_-9qfXkoTAwM5l5XjLvhIz6oUdCbjlLOePl_TpFv4c0i3XKYvDsgox5XYmkrGZiRMZsVlRJzqv8iky8XzPGK8aqMflcWHTg1MoqaKlqtz6gs_0XHQwNtkPqY4ueaghA9zas6AYcdBicVVTH2Q6C3SHVhx66-PTL7MFtosY1uTTQerz5y1Py8fz0Pl8ky7eX1_njMlFCiJCUteEMTFWqQkAOZY0zXugGM93orDC1LkzRVE3TqDp-uhRFnhtsZmWOJo4Eiim5O-lu3PC9RR9kZ73CtoUeh62XvBZFmUfRLK5mp1XlBu8dGrlxtgN3kJzJo5NyLY9OyqOTksXgR6j-Bykb4tlDHxzY9jz6cEIx3r-LVkuvLPYKtXWogtSDPYf_APKDk6Y
CitedBy_id crossref_primary_10_1186_s13636_019_0149_9
crossref_primary_10_1002_jtr_2794
crossref_primary_10_1155_2021_6687202
crossref_primary_10_3233_JIFS_17523
crossref_primary_10_1016_j_eswa_2020_113840
crossref_primary_10_1007_s10994_021_06125_0
crossref_primary_10_1080_02786826_2024_2445634
crossref_primary_10_1016_j_joi_2023_101412
crossref_primary_10_3233_JIFS_171393
crossref_primary_10_1016_j_asoc_2017_11_038
crossref_primary_10_3390_agriculture15010082
crossref_primary_10_1109_TITS_2023_3348815
crossref_primary_10_1088_1741_4326_abe370
crossref_primary_10_1016_j_neucom_2025_130932
crossref_primary_10_1109_TII_2022_3168035
crossref_primary_10_1016_j_apm_2022_10_014
crossref_primary_10_3390_app131810019
crossref_primary_10_1016_j_fss_2023_108590
crossref_primary_10_1016_j_fss_2025_109522
crossref_primary_10_1108_DTA_08_2022_0300
crossref_primary_10_1177_1071181322661523
crossref_primary_10_2139_ssrn_4996697
crossref_primary_10_3390_en17215272
crossref_primary_10_1371_journal_pone_0197499
crossref_primary_10_1016_j_eswa_2022_117249
crossref_primary_10_4316_AECE_2017_04010
crossref_primary_10_1186_s40813_024_00355_z
crossref_primary_10_1088_1755_1315_192_1_012016
crossref_primary_10_1016_j_asoc_2025_112903
crossref_primary_10_1088_1742_6596_1567_2_022072
crossref_primary_10_1016_j_energy_2022_123767
crossref_primary_10_1016_j_ijepes_2022_108241
crossref_primary_10_3233_JIFS_18839
crossref_primary_10_1016_j_ins_2020_08_089
crossref_primary_10_1109_TSMC_2025_3577606
crossref_primary_10_1016_j_jneumeth_2018_06_019
crossref_primary_10_1109_TCYB_2019_2962584
crossref_primary_10_1007_s10044_021_01019_2
crossref_primary_10_1016_j_aei_2025_103757
crossref_primary_10_1007_s12237_025_01490_8
crossref_primary_10_1002_cjce_23037
crossref_primary_10_1016_j_scitotenv_2021_150318
crossref_primary_10_1155_2019_2719617
crossref_primary_10_1007_s11227_021_03701_y
crossref_primary_10_1002_for_3095
crossref_primary_10_1016_j_eswa_2025_128979
crossref_primary_10_1016_j_eswa_2022_119481
crossref_primary_10_1109_TITS_2022_3142778
crossref_primary_10_1145_3748726
crossref_primary_10_3390_microorganisms8030331
crossref_primary_10_3390_s18103359
crossref_primary_10_1016_j_irbm_2021_06_001
crossref_primary_10_3390_electronics11020267
crossref_primary_10_1007_s00500_018_3287_6
crossref_primary_10_1016_j_egyr_2025_01_002
crossref_primary_10_1111_biom_13773
crossref_primary_10_1007_s10489_022_03716_9
crossref_primary_10_1016_j_aei_2022_101696
crossref_primary_10_3390_s22186884
crossref_primary_10_1016_j_engappai_2023_107098
crossref_primary_10_3233_IDA_205459
crossref_primary_10_3390_atmos13040503
Cites_doi 10.1080/03610918.2013.775296
10.1145/235968.233324
10.1016/j.eswa.2013.08.028
10.1002/joc.2367
10.1145/191843.191925
10.1109/TSMCA.2003.822270
10.5120/8282-1278
10.1016/j.datak.2005.05.009
10.1016/j.patcog.2008.11.030
10.1016/j.patcog.2005.01.025
10.1016/j.is.2015.04.007
10.1007/978-3-642-01091-0_9
10.1007/s10994-005-5825-6
10.1007/BF02941227
10.1109/91.940971
10.1007/s10618-012-0251-4
10.1016/j.eswa.2014.11.007
10.1016/j.tcs.2011.09.029
10.1007/s10618-005-0039-x
10.1145/276305.276312
10.1016/j.patcog.2010.09.013
10.1007/11564126_60
10.1109/TASSP.1978.1163055
10.1016/j.knosys.2014.02.011
10.5120/1326-1808
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2016.06.012
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 130
ExternalDocumentID 10_1016_j_eswa_2016_06_012
S0957417416302937
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABUFD
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-68f10af76c53a4a68e915dbe2dbd25f8d5f5b7bbbc817063544feb964efd5f3e3
ISICitedReferencesCount 73
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000380626000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Sep 28 01:11:52 EDT 2025
Tue Nov 18 22:36:20 EST 2025
Sat Nov 29 04:44:46 EST 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Time series clustering
Dynamic time warping
Parametric distance measure
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-68f10af76c53a4a68e915dbe2dbd25f8d5f5b7bbbc817063544feb964efd5f3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0760-0637
PQID 1835649152
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_1835649152
crossref_primary_10_1016_j_eswa_2016_06_012
crossref_citationtrail_10_1016_j_eswa_2016_06_012
elsevier_sciencedirect_doi_10_1016_j_eswa_2016_06_012
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lemire (bib0033) 2009; 42
Liao (bib0035) 2005; 38
Górecki, Łuczak (bib0015) 2013; 26
Zhang, Ramakrishnan, Livny (bib0054) 1996; 25
MacQueen (bib0037) 1967
Karypis, Han, Kumar (bib0024) 1999; 32
Pavlidis, Plagianakos, Tasoulis, Vrahatis (bib0038) 2006; 6
Faloutsos, Ranganathan, Manolopoulos (bib0014) 1994; 23
Sakoe, Chiba (bib0045) 1978; 26
Rani, Sikka (bib0043) 2012; l52
Petitjean, Ketterlin, Gançarski (bib0041) 2011; 44
Warrenliao (bib0052) 2005; 38
Ester, Kriegel, Sander, Xu (bib0013) 1996; 96
Aghabozorgi, Shirkhorshidi, Wah (bib0001) 2015; 53
Shavlik, Dietterich (bib0047) 1990
Graves, Pedrycz (bib0019) 2010
Bagnall, Janacek (bib0004) 2005; 58
Banerjee, Ghosh (bib0005) 2001
Bezdek (bib0007) 1981
Box, Jenkins, Reinsel (bib0008) 2008
Keogh, Lonardi, Chiu (bib0028) 2002
Petitjean, Gançarski (bib0040) 2012; 414
Demsar (bib0012) 2006; 7
Kavitha, Punithavalli (bib0026) 2010; 8
Górecki, Łuczak (bib0016) 2014; 43
Latecki, Megalooikonomou, Wang, Lakaemper, Ratanamahatana, Keogh (bib0032) 2005
Sakoe, Chiba (bib0044) 1971
Chen, Keogh, Hu, Begum, Bagnall, Mueen (bib0010) 2015
Sheikholeslami, Chatterjee, Zhang (bib0048) 1998
Leng, Lai, Tan, Xu (bib0034) 2009
Górecki, Łuczak (bib0018) 2015; 42
Rai, Singh (bib0042) 2010; 7
Sfetsos, Siriopoulos (bib0046) 2004; 34
Kalpakis, Gada, Puttagunta (bib0023) 2001
Keogh, Pazzani (bib0029) 2001
Guha, Rastogi, Shim (bib0021) 1998; 27
Antunes, Oliveira (bib0003) 2001
Petitjean, Forestier, Webb, Nicholson, Chen, Keogh (bib0039) 2014
Chiş, Banerjee, Hassanien (bib0011) 2009; 6
Lin, Vlachos, Keogh, Gunopulos (bib0036) 2004; 2992
Wang, Smith, Hyndman (bib0051) 2006; 13
Krishnapuram, Joshi, Nasraoui, Yi (bib0030) 2001; 9
Aghabozorgi, Wah (bib0002) 2014; 41
Górecki, Łuczak (bib0017) 2014; 61
Vlachos, Kollios, Gunopulos (bib0050) 2002
Chan, Mahoney (bib0009) 2005
Kaufman, Rousseeuw, Corporation (bib0025) 1990
Beringer, Hullermeier (bib0006) 2006; 58
Wei, Kumar, Lolla, Keogh (bib0053) 2005
He, Feng, Wu, He, Wan, Chou (bib0022) 2011; 32
Smyth (bib0049) 1997; 9
Guan, Jiang (bib0020) 2007
Kumar, Patel (bib0031) 2002
Keogh (bib0027) 2002
Ester (10.1016/j.eswa.2016.06.012_sbref0013) 1996; 96
Sakoe (10.1016/j.eswa.2016.06.012_bib0045) 1978; 26
Smyth (10.1016/j.eswa.2016.06.012_sbref0049) 1997; 9
Karypis (10.1016/j.eswa.2016.06.012_bib0024) 1999; 32
Petitjean (10.1016/j.eswa.2016.06.012_bib0039) 2014
Demsar (10.1016/j.eswa.2016.06.012_bib0012) 2006; 7
Chen (10.1016/j.eswa.2016.06.012_sbref0010) 2015
Kaufman (10.1016/j.eswa.2016.06.012_sbref0025) 1990
Petitjean (10.1016/j.eswa.2016.06.012_bib0041) 2011; 44
Shavlik (10.1016/j.eswa.2016.06.012_sbref0047) 1990
Guan (10.1016/j.eswa.2016.06.012_bib0020) 2007
Sfetsos (10.1016/j.eswa.2016.06.012_bib0046) 2004; 34
Faloutsos (10.1016/j.eswa.2016.06.012_bib0014) 1994; 23
MacQueen (10.1016/j.eswa.2016.06.012_bib0037) 1967
Aghabozorgi (10.1016/j.eswa.2016.06.012_bib0002) 2014; 41
Petitjean (10.1016/j.eswa.2016.06.012_bib0040) 2012; 414
Warrenliao (10.1016/j.eswa.2016.06.012_bib0052) 2005; 38
Bagnall (10.1016/j.eswa.2016.06.012_bib0004) 2005; 58
Wang (10.1016/j.eswa.2016.06.012_bib0051) 2006; 13
Antunes (10.1016/j.eswa.2016.06.012_bib0003) 2001
Chiş (10.1016/j.eswa.2016.06.012_bib0011) 2009; 6
Sheikholeslami (10.1016/j.eswa.2016.06.012_bib0048) 1998
Wei (10.1016/j.eswa.2016.06.012_bib0053) 2005
Banerjee (10.1016/j.eswa.2016.06.012_bib0005) 2001
Liao (10.1016/j.eswa.2016.06.012_bib0035) 2005; 38
Zhang (10.1016/j.eswa.2016.06.012_sbref0054) 1996; 25
Graves (10.1016/j.eswa.2016.06.012_bib0019) 2010
Kavitha (10.1016/j.eswa.2016.06.012_bib0026) 2010; 8
Aghabozorgi (10.1016/j.eswa.2016.06.012_bib0001) 2015; 53
Kumar (10.1016/j.eswa.2016.06.012_bib0031) 2002
Keogh (10.1016/j.eswa.2016.06.012_bib0028) 2002
Vlachos (10.1016/j.eswa.2016.06.012_bib0050) 2002
Keogh (10.1016/j.eswa.2016.06.012_sbref0029) 2001
Górecki (10.1016/j.eswa.2016.06.012_bib0018) 2015; 42
Pavlidis (10.1016/j.eswa.2016.06.012_bib0038) 2006; 6
Górecki (10.1016/j.eswa.2016.06.012_bib0017) 2014; 61
Lemire (10.1016/j.eswa.2016.06.012_bib0033) 2009; 42
Kalpakis (10.1016/j.eswa.2016.06.012_bib0023) 2001
Chan (10.1016/j.eswa.2016.06.012_bib0009) 2005
Sakoe (10.1016/j.eswa.2016.06.012_bib0044) 1971
Krishnapuram (10.1016/j.eswa.2016.06.012_bib0030) 2001; 9
Keogh (10.1016/j.eswa.2016.06.012_bib0027) 2002
Guha (10.1016/j.eswa.2016.06.012_sbref0021) 1998; 27
Latecki (10.1016/j.eswa.2016.06.012_bib0032) 2005
Rai (10.1016/j.eswa.2016.06.012_bib0042) 2010; 7
Box (10.1016/j.eswa.2016.06.012_bib0008) 2008
Leng (10.1016/j.eswa.2016.06.012_bib0034) 2009
Rani (10.1016/j.eswa.2016.06.012_bib0043) 2012; l52
Lin (10.1016/j.eswa.2016.06.012_bib0036) 2004; 2992
Górecki (10.1016/j.eswa.2016.06.012_bib0016) 2014; 43
Beringer (10.1016/j.eswa.2016.06.012_bib0006) 2006; 58
Górecki (10.1016/j.eswa.2016.06.012_bib0015) 2013; 26
He (10.1016/j.eswa.2016.06.012_bib0022) 2011; 32
Bezdek (10.1016/j.eswa.2016.06.012_bib0007) 1981
References_xml – start-page: 237
  year: 2005
  end-page: 240
  ident: bib0053
  article-title: Assumption-free anomaly detection in time series
  publication-title: Proceedings of the 17th international conference on scientific and statistical database management, 2005
– volume: 44
  start-page: 678
  year: 2011
  end-page: 693
  ident: bib0041
  article-title: A global averaging method for dynamic time warping, with applications to clustering
  publication-title: Pattern Recognition
– start-page: 273
  year: 2001
  end-page: 280
  ident: bib0023
  article-title: Distance measures for effective clustering of ARIMA time-series
  publication-title: Proceedings 2001 IEEE international conference on data mining, 2001
– volume: 32
  start-page: 68
  year: 1999
  end-page: 75
  ident: bib0024
  article-title: Chameleon: hierarchical clustering using dynamic modeling
  publication-title: Computer (Long Beach California)
– start-page: 470
  year: 2014
  end-page: 479
  ident: bib0039
  publication-title: 2014 IEEE international conference on data mining (ICDM)
– start-page: 577
  year: 2005
  end-page: 584
  ident: bib0032
  article-title: Elastic partial matching of time series
  publication-title: Knowledge Discovery. Databases PKDD 2005
– year: 2015
  ident: bib0010
  article-title: The UCR time series classification archive
– start-page: 49
  year: 2010
  end-page: 54
  ident: bib0019
  article-title: Proximity fuzzy clustering and its application to time series clustering and prediction
  publication-title: Proceedings of the 2010 10th international conference on intelligent systems design and applications ISDA10, 2010
– start-page: 628
  year: 2009
  end-page: 632
  ident: bib0034
  article-title: Time series representation for anomaly detection
  publication-title: Proceedings of 2nd IEEE international conference on computer science and information technology, 2009, ICCSIT 2009
– volume: 26
  start-page: 43
  year: 1978
  end-page: 49
  ident: bib0045
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
– start-page: 851
  year: 2007
  end-page: 856
  ident: bib0020
  article-title: Cluster financial time series forportfolio
  publication-title: Proceedings of the international conference on wavelet analysis and pattern recognition, 2007
– volume: 42
  start-page: 2169
  year: 2009
  end-page: 2180
  ident: bib0033
  article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound
  publication-title: Pattern Recognition
– year: 2008
  ident: bib0008
  article-title: Time series analysis: Forecasting and control
– volume: 26
  start-page: 310
  year: 2013
  end-page: 331
  ident: bib0015
  article-title: Using derivatives in time series classification
  publication-title: Data Mining and Knowledge Discovery
– year: 2001
  ident: bib0029
  article-title: Dynamic time warping with higher order features
  publication-title: Proceedings of SIAM international conference on data mining (SDM 2001)
– volume: 414
  start-page: 76
  year: 2012
  end-page: 91
  ident: bib0040
  article-title: Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment
  publication-title: Theoretical Computer Science
– volume: 43
  start-page: 2081
  year: 2014
  end-page: 2092
  ident: bib0016
  article-title: First and second derivative in time series classification using DTW
  publication-title: Communications in Statistics-Simulation and Computation
– volume: 9
  start-page: 648
  year: 1997
  end-page: 654
  ident: bib0049
  article-title: Clustering sequences with hidden markov models
  publication-title: Advances in Neural Information Processing Systems
– start-page: 406
  year: 2002
  end-page: 417
  ident: bib0027
  article-title: Exact indexing of dynamic time warping
  publication-title: In 28th international conference on very large data bases
– volume: l52
  start-page: 1
  year: 2012
  end-page: 9
  ident: bib0043
  article-title: Recent techniques of clustering of time series data: A survey
  publication-title: International Journal of Computer Applications
– volume: 41
  start-page: 1301
  year: 2014
  end-page: 1314
  ident: bib0002
  article-title: Stock market co-movement assessment using a three-phase clustering method
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 1857
  year: 2005
  end-page: 1874
  ident: bib0035
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
– year: 1981
  ident: bib0007
  article-title: Pattern recognition with fuzzy objective function algorithms
– volume: 27
  start-page: 73
  year: 1998
  end-page: 84
  ident: bib0021
  article-title: CURE: An efficient clustering algorithm for large databases
  publication-title: ACM Sigmod Record
– volume: 13
  start-page: 335
  year: 2006
  end-page: 364
  ident: bib0051
  article-title: Characteristic-based clustering for time series data
  publication-title: Data Mining and Knowledge Discovery
– year: 1990
  ident: bib0047
  article-title: Readings in machine learning
– volume: 53
  start-page: 16
  year: 2015
  end-page: 38
  ident: bib0001
  article-title: Time-seriesclustering—A decade review
  publication-title: Information Systems
– start-page: 428
  year: 1998
  end-page: 439
  ident: bib0048
  article-title: Wavecluster: A multiresolution clustering approach for very large spatial databases
  publication-title: Proceedings of the international conference on very large data bases, 1998
– volume: 61
  start-page: 98
  year: 2014
  end-page: 108
  ident: bib0017
  article-title: Non-isometric transforms in time series classification using DTW
  publication-title: Knowledge-Based Systems
– volume: 32
  start-page: 1604
  year: 2011
  end-page: 1614
  ident: bib0022
  article-title: A new method for abrupt dynamic change detection of correlated time series
  publication-title: International Journal of Climatology
– volume: 2992
  start-page: 521
  year: 2004
  end-page: 522
  ident: bib0036
  article-title: Iterative incremental clustering of time series
  publication-title: Advanced Database Technology
– start-page: 550
  year: 2002
  end-page: 556
  ident: bib0028
  article-title: Finding surprising patterns in a time series database in linear time and space
  publication-title: Proceedings of the eighth ACM SIGKDD, 2002
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0037
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the fifth berkeley symposium mathematical statist. probability, Vol. 1
– volume: 6
  start-page: 103
  year: 2006
  end-page: 127
  ident: bib0038
  article-title: Financial forecasting through unsupervised clustering and neural networks
  publication-title: Operations Research
– volume: 38
  start-page: 1857
  year: 2005
  end-page: 1874
  ident: bib0052
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
– start-page: 1
  year: 2001
  end-page: 13
  ident: bib0003
  article-title: Temporal data mining: Ano verview
  publication-title: KDD workshop on temporal data mining, 2001
– volume: 9
  start-page: 595
  year: 2001
  end-page: 607
  ident: bib0030
  article-title: Low-complexity fuzzy relational clustering algorithms for webmining
  publication-title: IEEE Transactions on Fuzzy Systems
– volume: 23
  start-page: 419
  year: 1994
  end-page: 429
  ident: bib0014
  article-title: Fast subsequence matching intime-series databases
  publication-title: ACM Sigmod Record
– volume: 42
  start-page: 2305
  year: 2015
  end-page: 2312
  ident: bib0018
  article-title: Multivariate time series classification with parametric derivative dynamic time warping
  publication-title: Expert Systems with Applications
– year: 1990
  ident: bib0025
  article-title: Finding groups in data: An introduction to cluster analysis, Vol. 39
– start-page: 557
  year: 2002
  end-page: 563
  ident: bib0031
  article-title: Clustering seasonality patterns in the presence of errors
  publication-title: Proceedings of eighth ACM SIGKDD, 2002
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 8
  start-page: 289
  year: 2010
  end-page: 294
  ident: bib0026
  article-title: Clustering time series data stream—a literature survey
  publication-title: International Journal of Computer Science and Information Security
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: bib0013
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– start-page: 673
  year: 2002
  end-page: 684
  ident: bib0050
  article-title: Discovering similar multidimensional trajectories
  publication-title: Proceedings of 18th international conference on data engineering
– volume: 58
  start-page: 180
  year: 2006
  end-page: 204
  ident: bib0006
  article-title: Online clustering of parallel data streams
  publication-title: Data & Knowledge Engineering
– volume: 25
  start-page: 103
  year: 1996
  end-page: 114
  ident: bib0054
  article-title: BIRCH: An efficient data clustering method for very large databases
  publication-title: ACM Sigmod Record
– start-page: 33
  year: 2001
  end-page: 40
  ident: bib0005
  article-title: Clickstream clustering using weighted longest common subsequences
  publication-title: Proceedings of the workshop on web mining, SIAM conference on data mining, 2001
– volume: 34
  start-page: 399
  year: 2004
  end-page: 405
  ident: bib0046
  article-title: Time series forecasting with a hybrid clustering scheme and pattern recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– start-page: 65
  year: 1971
  end-page: 69
  ident: bib0044
  article-title: A dynamic programming approach to continuous speech recognition
  publication-title: Proceedings of the seventh international congress on acoustics Vol. 3, 1971
– volume: 6
  start-page: 193
  year: 2009
  end-page: 207
  ident: bib0011
  article-title: Clustering time series data: An evolutionary approach
  publication-title: Found. Computational Intelligence
– volume: 7
  start-page: 1
  year: 2010
  end-page: 5
  ident: bib0042
  article-title: A survey of clustering techniques
  publication-title: International Journal of Computer Applications
– start-page: 90
  year: 2005
  end-page: 97
  ident: bib0009
  article-title: Modeling multiple time series for anomaly detection
  publication-title: Proceedings of ffifth IEEE international conferenceon data mining, 2005
– volume: 58
  start-page: 151
  year: 2005
  end-page: 178
  ident: bib0004
  article-title: Clustering time series with clipped data
  publication-title: Machine Learning
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.eswa.2016.06.012_sbref0013
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– year: 1981
  ident: 10.1016/j.eswa.2016.06.012_bib0007
– volume: 43
  start-page: 2081
  issue: 9
  year: 2014
  ident: 10.1016/j.eswa.2016.06.012_bib0016
  article-title: First and second derivative in time series classification using DTW
  publication-title: Communications in Statistics-Simulation and Computation
  doi: 10.1080/03610918.2013.775296
– start-page: 237
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0053
  article-title: Assumption-free anomaly detection in time series
– volume: 25
  start-page: 103
  issue: 2
  year: 1996
  ident: 10.1016/j.eswa.2016.06.012_sbref0054
  article-title: BIRCH: An efficient data clustering method for very large databases
  publication-title: ACM Sigmod Record
  doi: 10.1145/235968.233324
– volume: 41
  start-page: 1301
  issue: 4
  year: 2014
  ident: 10.1016/j.eswa.2016.06.012_bib0002
  article-title: Stock market co-movement assessment using a three-phase clustering method
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.08.028
– start-page: 406
  year: 2002
  ident: 10.1016/j.eswa.2016.06.012_bib0027
  article-title: Exact indexing of dynamic time warping
– volume: 32
  start-page: 1604
  issue: 10
  year: 2011
  ident: 10.1016/j.eswa.2016.06.012_bib0022
  article-title: A new method for abrupt dynamic change detection of correlated time series
  publication-title: International Journal of Climatology
  doi: 10.1002/joc.2367
– volume: 23
  start-page: 419
  issue: 2
  year: 1994
  ident: 10.1016/j.eswa.2016.06.012_bib0014
  article-title: Fast subsequence matching intime-series databases
  publication-title: ACM Sigmod Record
  doi: 10.1145/191843.191925
– start-page: 281
  year: 1967
  ident: 10.1016/j.eswa.2016.06.012_bib0037
  article-title: Some methods for classification and analysis of multivariate observations
– start-page: 470
  year: 2014
  ident: 10.1016/j.eswa.2016.06.012_bib0039
– start-page: 557
  year: 2002
  ident: 10.1016/j.eswa.2016.06.012_bib0031
  article-title: Clustering seasonality patterns in the presence of errors
– volume: 34
  start-page: 399
  issue: 3
  year: 2004
  ident: 10.1016/j.eswa.2016.06.012_bib0046
  article-title: Time series forecasting with a hybrid clustering scheme and pattern recognition
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
  doi: 10.1109/TSMCA.2003.822270
– volume: l52
  start-page: 1
  issue: 15
  year: 2012
  ident: 10.1016/j.eswa.2016.06.012_bib0043
  article-title: Recent techniques of clustering of time series data: A survey
  publication-title: International Journal of Computer Applications
  doi: 10.5120/8282-1278
– volume: 58
  start-page: 180
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2016.06.012_bib0006
  article-title: Online clustering of parallel data streams
  publication-title: Data & Knowledge Engineering
  doi: 10.1016/j.datak.2005.05.009
– volume: 42
  start-page: 2169
  issue: 9
  year: 2009
  ident: 10.1016/j.eswa.2016.06.012_bib0033
  article-title: Faster retrieval with a two-pass dynamic-time-warping lower bound
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2008.11.030
– volume: 38
  start-page: 1857
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0035
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.01.025
– year: 2001
  ident: 10.1016/j.eswa.2016.06.012_sbref0029
  article-title: Dynamic time warping with higher order features
– year: 1990
  ident: 10.1016/j.eswa.2016.06.012_sbref0047
– volume: 32
  start-page: 68
  issue: 8
  year: 1999
  ident: 10.1016/j.eswa.2016.06.012_bib0024
  article-title: Chameleon: hierarchical clustering using dynamic modeling
  publication-title: Computer (Long Beach California)
– start-page: 1
  year: 2001
  ident: 10.1016/j.eswa.2016.06.012_bib0003
  article-title: Temporal data mining: Ano verview
– start-page: 90
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0009
  article-title: Modeling multiple time series for anomaly detection
– volume: 53
  start-page: 16
  year: 2015
  ident: 10.1016/j.eswa.2016.06.012_bib0001
  article-title: Time-seriesclustering—A decade review
  publication-title: Information Systems
  doi: 10.1016/j.is.2015.04.007
– start-page: 550
  year: 2002
  ident: 10.1016/j.eswa.2016.06.012_bib0028
  article-title: Finding surprising patterns in a time series database in linear time and space
– volume: 6
  start-page: 193
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2016.06.012_bib0011
  article-title: Clustering time series data: An evolutionary approach
  publication-title: Found. Computational Intelligence
  doi: 10.1007/978-3-642-01091-0_9
– start-page: 673
  year: 2002
  ident: 10.1016/j.eswa.2016.06.012_bib0050
  article-title: Discovering similar multidimensional trajectories
– volume: 58
  start-page: 151
  issue: 2
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0004
  article-title: Clustering time series with clipped data
  publication-title: Machine Learning
  doi: 10.1007/s10994-005-5825-6
– volume: 6
  start-page: 103
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2016.06.012_bib0038
  article-title: Financial forecasting through unsupervised clustering and neural networks
  publication-title: Operations Research
  doi: 10.1007/BF02941227
– volume: 9
  start-page: 595
  issue: 4
  year: 2001
  ident: 10.1016/j.eswa.2016.06.012_bib0030
  article-title: Low-complexity fuzzy relational clustering algorithms for webmining
  publication-title: IEEE Transactions on Fuzzy Systems
  doi: 10.1109/91.940971
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.eswa.2016.06.012_bib0012
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: Journal of Machine Learning Research
– volume: 26
  start-page: 310
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2016.06.012_bib0015
  article-title: Using derivatives in time series classification
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-012-0251-4
– start-page: 628
  year: 2009
  ident: 10.1016/j.eswa.2016.06.012_bib0034
  article-title: Time series representation for anomaly detection
– year: 2015
  ident: 10.1016/j.eswa.2016.06.012_sbref0010
– volume: 9
  start-page: 648
  year: 1997
  ident: 10.1016/j.eswa.2016.06.012_sbref0049
  article-title: Clustering sequences with hidden markov models
  publication-title: Advances in Neural Information Processing Systems
– volume: 42
  start-page: 2305
  issue: 5
  year: 2015
  ident: 10.1016/j.eswa.2016.06.012_bib0018
  article-title: Multivariate time series classification with parametric derivative dynamic time warping
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.11.007
– volume: 414
  start-page: 76
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2016.06.012_bib0040
  article-title: Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment
  publication-title: Theoretical Computer Science
  doi: 10.1016/j.tcs.2011.09.029
– start-page: 273
  year: 2001
  ident: 10.1016/j.eswa.2016.06.012_bib0023
  article-title: Distance measures for effective clustering of ARIMA time-series
– start-page: 428
  year: 1998
  ident: 10.1016/j.eswa.2016.06.012_bib0048
  article-title: Wavecluster: A multiresolution clustering approach for very large spatial databases
– volume: 13
  start-page: 335
  issue: 3
  year: 2006
  ident: 10.1016/j.eswa.2016.06.012_bib0051
  article-title: Characteristic-based clustering for time series data
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1007/s10618-005-0039-x
– volume: 27
  start-page: 73
  issue: 2
  year: 1998
  ident: 10.1016/j.eswa.2016.06.012_sbref0021
  article-title: CURE: An efficient clustering algorithm for large databases
  publication-title: ACM Sigmod Record
  doi: 10.1145/276305.276312
– volume: 2992
  start-page: 521
  year: 2004
  ident: 10.1016/j.eswa.2016.06.012_bib0036
  article-title: Iterative incremental clustering of time series
  publication-title: Advanced Database Technology
– volume: 44
  start-page: 678
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2016.06.012_bib0041
  article-title: A global averaging method for dynamic time warping, with applications to clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.09.013
– start-page: 33
  year: 2001
  ident: 10.1016/j.eswa.2016.06.012_bib0005
  article-title: Clickstream clustering using weighted longest common subsequences
– start-page: 577
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0032
  article-title: Elastic partial matching of time series
  publication-title: Knowledge Discovery. Databases PKDD 2005
  doi: 10.1007/11564126_60
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 10.1016/j.eswa.2016.06.012_bib0045
  article-title: Dynamic programming algorithm optimization for spoken word recognition
  publication-title: IEEE Transactions on Acoustics, Speech, and Signal Processing
  doi: 10.1109/TASSP.1978.1163055
– start-page: 851
  year: 2007
  ident: 10.1016/j.eswa.2016.06.012_bib0020
  article-title: Cluster financial time series forportfolio
– year: 2008
  ident: 10.1016/j.eswa.2016.06.012_bib0008
– start-page: 65
  year: 1971
  ident: 10.1016/j.eswa.2016.06.012_bib0044
  article-title: A dynamic programming approach to continuous speech recognition
– volume: 8
  start-page: 289
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2016.06.012_bib0026
  article-title: Clustering time series data stream—a literature survey
  publication-title: International Journal of Computer Science and Information Security
– year: 1990
  ident: 10.1016/j.eswa.2016.06.012_sbref0025
– volume: 38
  start-page: 1857
  issue: 11
  year: 2005
  ident: 10.1016/j.eswa.2016.06.012_bib0052
  article-title: Clustering of time series data—a survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.01.025
– volume: 61
  start-page: 98
  year: 2014
  ident: 10.1016/j.eswa.2016.06.012_bib0017
  article-title: Non-isometric transforms in time series classification using DTW
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2014.02.011
– volume: 7
  start-page: 1
  issue: 12
  year: 2010
  ident: 10.1016/j.eswa.2016.06.012_bib0042
  article-title: A survey of clustering techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/1326-1808
– start-page: 49
  year: 2010
  ident: 10.1016/j.eswa.2016.06.012_bib0019
  article-title: Proximity fuzzy clustering and its application to time series clustering and prediction
SSID ssj0017007
Score 2.4746072
Snippet •Combination of DTW and DDTW applied in a method of time series clustering.•Specific correction algorithm for the internal cluster validation...
Dynamic Time Warping (DTW) is a popular and efficient distance measure used in classification and clustering algorithms applied to time series data. By...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116
SubjectTerms Algorithms
Classification
Clustering
Derivatives
Dynamic time warping
Mathematical analysis
Mathematical models
Parametric distance measure
Time series
Time series clustering
Warping
Title Hierarchical clustering of time series data with parametric derivative dynamic time warping
URI https://dx.doi.org/10.1016/j.eswa.2016.06.012
https://www.proquest.com/docview/1835649152
Volume 62
WOSCitedRecordID wos000380626000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbTQ-99F2avlChPRkHy7Ik-xhCStpDKCSFhR6MrQdku_Eu-0ror69mR1pvUxraQi_G2JZX6BvPzI5mviHknVSWO8N5WlpZpuDAp1VrTWqYlLYUrvIf-6bZhDo9LUej6vNgcBZrYdYT1XXl9XU1-69Q-2sebCid_Qu4ty_1F_y5B90fPez--EfAn1xATfGmxckk0ZMVMCGE1GZoJJ_AJOwigdRQjMIC-_clNNbSifH31kgFbrBVPY65auazaOPG2-Q9O18GJuhYI7ezGx6RfH8kvLe60t-bb1gb5JXJeDfWwCQU3WG1JQbAYhFMn3GEkUSVFgyb7RxY1KOl4qlU2PwwKtqgdlFTMiZ3jC7DzZlf9DmGFsYHdnEFJFFMbshWQ-L1zzzZZzAPmIb3MDPvxKg7ZC9XoiqHZO_w4_Ho03ZzSWVYRR_nHWqpMO3v5i_9zl-5Ybk37sj5Q3I__I-gh4j_IzKw3WPyIPbooEFlPyFfd8WB9uJAp44CtBTFgYI4UACR9uJAe3GgQRxwTBCHp-TLh-Pzo5M0NNRINed8mcrSsaxxSmrBm6KRpa2YMK3NTWty4UojnGhV27YaaBu9K1oUzraVLKzzt7jlz8iwm3b2OaFKgynQjc4MLxzP21wXVVY5B3xCPHP7hMVlq3Vgm4emJ5M6phWOa1jqGpa6htxKlu-TZDtmhlwrtz4tIhp18BbRC6y98Nw67m2ErvaqFPbHms5OV4vaWzchC78k-Yt_fPdLcq__bF6R4XK-sq_JXb1eXizmb4Ic_gBOMJ5e
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+clustering+of+time+series+data+with+parametric+derivative+dynamic+time+warping&rft.jtitle=Expert+systems+with+applications&rft.au=%C5%81uczak%2C+Maciej&rft.date=2016-11-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=62&rft.spage=116&rft.epage=130&rft_id=info:doi/10.1016%2Fj.eswa.2016.06.012&rft.externalDocID=S0957417416302937
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon