High-Precision Prediction of Total Nitrogen Based on Distance Correlation and Machine Learning Models—A Case Study of Dongjiang River, China
Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that c...
Gespeichert in:
| Veröffentlicht in: | Water (Basel) Jg. 17; H. 8; S. 1131 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
10.04.2025
|
| Schlagworte: | |
| ISSN: | 2073-4441, 2073-4441 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (CODMn), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems. |
|---|---|
| AbstractList | Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (CODMn), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems. Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (COD[sub.Mn] ), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems. |
| Audience | Academic |
| Author | Chen, Yiling Yao, Weike Chen, Yuanpei |
| Author_xml | – sequence: 1 givenname: Yuanpei surname: Chen fullname: Chen, Yuanpei – sequence: 2 givenname: Weike surname: Yao fullname: Yao, Weike – sequence: 3 givenname: Yiling surname: Chen fullname: Chen, Yiling |
| BookMark | eNptkc9u1DAQxi1UJErpgTewxAmJtPH6T5zjkhaKtC2ItudoYk9Sr1K72F5QbzwBJ56QJ8HbRQhV2Ad_Gv--Gemb52TPB4-EvGT1EedtffyNNbVmjLMnZH9RN7wSQrC9f_QzcpjSui5HtFrLep_8OHPTTfUponHJBU-Lss7krQwjvQoZZnrhcgwTevoWElpavk5cyuAN0i7EiDM88OAtPQdz4zzSFUL0zk_0PFic06_vP5e0K256mTf2ftv6JPhp7aAgn91XjG9oV4zwgjwdYU54-Oc9INfvTq-6s2r18f2HbrmqDOc8V0oAGtsYLVo2ooIB9DCIBZetsS0fuG65klLIVqCwUlmlDddK6sWgNQOh-AF5tet7F8OXDabcr8Mm-jKy56wVSpawmkId7agJZuydH0OOYMq1eOtMyX50pb7UvFFloJbF8HpnMDGkFHHs76K7hXjfs7rfrqj_u6LCHj9ijcsPSZYhbv6P4zcN-JSY |
| CitedBy_id | crossref_primary_10_3390_w17162394 |
| Cites_doi | 10.1016/j.jclepro.2022.131724 10.1108/IJICC-06-2021-0109 10.1016/j.neucom.2005.12.126 10.1007/s11356-022-21115-y 10.1016/j.chemolab.2020.103978 10.1016/j.aquaculture.2021.736724 10.3390/su15075930 10.1007/s11269-024-03946-1 10.1016/j.ins.2022.12.091 10.5194/hess-22-6005-2018 10.1016/j.rineng.2025.104349 10.1016/j.biortech.2020.124114 10.5004/dwt.2018.22559 10.1162/neco_a_01199 10.1002/hyp.14741 10.1016/j.ins.2023.119218 10.1016/j.isprsjprs.2010.11.001 10.3390/w14101552 10.1016/j.chaos.2020.110212 10.1007/s11356-021-13875-w 10.1007/s12555-019-0984-6 10.1002/sres.2179 10.1142/S0219691323500194 10.3390/jmse12010159 10.1007/s11270-024-06913-z 10.1007/s11783-023-1688-y 10.1007/s12652-020-02817-y 10.3390/app10175776 10.1080/00401706.2015.1054435 10.1007/s00521-021-05989-6 10.1049/iet-spr.2017.0320 10.1016/j.watres.2025.123281 10.3390/su15043628 10.1016/j.jenvman.2024.120887 10.1162/089976600300015015 10.1109/TCC.2022.3160129 10.1016/j.csda.2019.01.016 10.3390/w14172592 10.3390/su11072058 10.1016/j.neucom.2017.11.077 10.1023/A:1010933404324 10.3390/app122211329 10.3390/rs14246373 10.3390/w14223766 10.3390/agriculture13061162 10.2166/ws.2023.275 10.1007/s00477-020-01776-2 10.1109/TGRS.2022.3227108 10.3390/ijerph19159699 10.1007/s12559-023-10179-8 10.1213/ANE.0000000000002864 10.1016/j.physd.2019.132306 10.1007/s10661-015-4596-1 10.3390/w14040610 10.3390/w15152760 10.1016/j.envsoft.2024.106091 10.1016/j.jhydrol.2020.125220 10.1016/j.spl.2020.108960 10.1162/neco.1997.9.8.1735 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/w17081131 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2073-4441 |
| ExternalDocumentID | A837693685 10_3390_w17081131 |
| GeographicLocations | China Dongjiang River |
| GeographicLocations_xml | – name: China – name: Dongjiang River |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c333t-64aecd7c8491fe6aba8bb42359cd93b38936554594e4d56d68c386582b881a463 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4441 |
| IngestDate | Mon Jun 30 11:06:39 EDT 2025 Sun Nov 23 08:43:50 EST 2025 Sat Nov 29 07:13:24 EST 2025 Tue Nov 18 22:35:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-64aecd7c8491fe6aba8bb42359cd93b38936554594e4d56d68c386582b881a463 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3194654417?pq-origsite=%requestingapplication% |
| PQID | 3194654417 |
| PQPubID | 2032318 |
| ParticipantIDs | proquest_journals_3194654417 gale_infotracacademiconefile_A837693685 crossref_primary_10_3390_w17081131 crossref_citationtrail_10_3390_w17081131 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-10 |
| PublicationDateYYYYMMDD | 2025-04-10 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Huo (ref_39) 2016; 58 Bi (ref_51) 2023; 625 Kota (ref_50) 2022; 15 Cai (ref_8) 2025; 277 Wang (ref_26) 2013; 30 Cai (ref_17) 2018; 300 Huang (ref_22) 2024; 235 ref_14 An (ref_55) 2024; 359 ref_58 ref_13 ref_56 ref_11 Guo (ref_15) 2023; 23 Wang (ref_61) 2024; 178 Zhang (ref_52) 2024; 38 ref_16 Chaudhuri (ref_38) 2019; 135 Huang (ref_12) 2006; 70 Shahid (ref_43) 2020; 140 Wu (ref_54) 2015; 187 Mountrakis (ref_9) 2011; 66 Breiman (ref_10) 2001; 45 Barzegar (ref_33) 2020; 34 Zhang (ref_44) 2022; 29 ref_24 Kang (ref_49) 2020; 18 Khullar (ref_32) 2022; 29 ref_20 Madhukumar (ref_37) 2022; 60 Zhong (ref_7) 2021; 55 He (ref_3) 2022; 36 ref_29 Li (ref_30) 2023; 21 Zhang (ref_36) 2022; 354 Xu (ref_2) 2018; 122 Sherstinsky (ref_48) 2020; 404 ref_35 Edelmann (ref_19) 2021; 169 ref_34 Schober (ref_18) 2018; 126 Zhao (ref_6) 2021; 540 Tao (ref_57) 2023; 11 Gers (ref_28) 2000; 12 Infant (ref_60) 2025; 25 Hochreiter (ref_27) 1997; 9 ref_47 ref_46 ref_45 Kratzert (ref_31) 2018; 22 ref_41 ref_1 Rajaee (ref_53) 2020; 200 Noori (ref_25) 2020; 590 Hassija (ref_59) 2024; 16 Ruan (ref_23) 2022; 34 Zhao (ref_42) 2018; 12 Yu (ref_40) 2019; 31 ref_5 ref_4 Li (ref_21) 2023; 643 |
| References_xml | – volume: 354 start-page: 12 year: 2022 ident: ref_36 article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131724 – volume: 15 start-page: 61 year: 2022 ident: ref_50 article-title: High accuracy offering attention mechanisms based deep learning approach using CNN/bi-LSTM for sentiment analysis publication-title: Int. J. Intell. Comput. Cybern. doi: 10.1108/IJICC-06-2021-0109 – volume: 70 start-page: 489 year: 2006 ident: ref_12 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 29 start-page: 75664 year: 2022 ident: ref_44 article-title: A watershed water quality prediction model based on attention mechanism and Bi-LSTM publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-21115-y – volume: 200 start-page: 25 year: 2020 ident: ref_53 article-title: Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.103978 – volume: 540 start-page: 19 year: 2021 ident: ref_6 article-title: Application of machine learning in intelligent fish aquaculture: A review publication-title: Aquaculture doi: 10.1016/j.aquaculture.2021.736724 – ident: ref_41 doi: 10.3390/su15075930 – volume: 38 start-page: 6103 year: 2024 ident: ref_52 article-title: The Use of Attention-Enhanced CNN-LSTM Models for Multi-Indicator and Time-Series Predictions of Surface Water Quality publication-title: Water Resour. Manag. doi: 10.1007/s11269-024-03946-1 – ident: ref_1 – volume: 625 start-page: 65 year: 2023 ident: ref_51 article-title: Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder publication-title: Inf. Sci. doi: 10.1016/j.ins.2022.12.091 – volume: 22 start-page: 6005 year: 2018 ident: ref_31 article-title: Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-6005-2018 – volume: 25 start-page: 14 year: 2025 ident: ref_60 article-title: Explainable artificial intelligence for sustainable urban water systems engineering publication-title: Results Eng. doi: 10.1016/j.rineng.2025.104349 – ident: ref_5 doi: 10.1016/j.biortech.2020.124114 – volume: 122 start-page: 1 year: 2018 ident: ref_2 article-title: Research and application of near-infrared spectroscopy in rapid detection of water pollution publication-title: Desalination Water Treat. doi: 10.5004/dwt.2018.22559 – volume: 31 start-page: 1235 year: 2019 ident: ref_40 article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 36 start-page: 15 year: 2022 ident: ref_3 article-title: Detecting and explaining long-term changes in river water quality in south-eastern Australia publication-title: Hydrol. Process. doi: 10.1002/hyp.14741 – volume: 643 start-page: 13 year: 2023 ident: ref_21 article-title: ECDX: Energy consumption prediction model based on distance correlation and XGBoost for edge data center publication-title: Inf. Sci. doi: 10.1016/j.ins.2023.119218 – volume: 66 start-page: 247 year: 2011 ident: ref_9 article-title: Support vector machines in remote sensing: A review publication-title: Isprs J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – ident: ref_11 doi: 10.3390/w14101552 – volume: 55 start-page: 12741 year: 2021 ident: ref_7 article-title: Machine Learning: New Ideas and Tools in Environmental Science and Engineering publication-title: Environ. Sci. Technol. – volume: 140 start-page: 9 year: 2020 ident: ref_43 article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110212 – volume: 29 start-page: 12875 year: 2022 ident: ref_32 article-title: Water quality assessment of a river using deep learning Bi-LSTM methodology: Forecasting and validation publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-021-13875-w – volume: 18 start-page: 3023 year: 2020 ident: ref_49 article-title: Time Series Prediction of Wastewater Flow Rate by Bidirectional LSTM Deep Learning publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-019-0984-6 – volume: 30 start-page: 244 year: 2013 ident: ref_26 article-title: An ARIMA-ANN Hybrid Model for Time Series Forecasting publication-title: Syst. Res. Behav. Sci. doi: 10.1002/sres.2179 – volume: 21 start-page: 20 year: 2023 ident: ref_30 article-title: Long short-term memory network-based wastewater quality prediction model with sparrow search algorithm publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S0219691323500194 – ident: ref_4 doi: 10.3390/jmse12010159 – volume: 235 start-page: 14 year: 2024 ident: ref_22 article-title: Prediction of Total Phosphorus Based on Distance Correlation and Machine Learning Methods-a Case Study of Dongjiang River, China publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-024-06913-z – ident: ref_35 doi: 10.1007/s11783-023-1688-y – ident: ref_20 doi: 10.1007/s12652-020-02817-y – ident: ref_24 doi: 10.3390/app10175776 – volume: 58 start-page: 435 year: 2016 ident: ref_39 article-title: Fast Computing for Distance Covariance publication-title: Technometrics doi: 10.1080/00401706.2015.1054435 – volume: 34 start-page: 2729 year: 2022 ident: ref_23 article-title: Weighted naive Bayes text classification algorithm based on improved distance correlation coefficient publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05989-6 – volume: 12 start-page: 713 year: 2018 ident: ref_42 article-title: Learning deep features to recognise speech emotion using merged deep CNN publication-title: IET Signal Process. doi: 10.1049/iet-spr.2017.0320 – volume: 277 start-page: 16 year: 2025 ident: ref_8 article-title: Emerging applications of fluorescence excitation-emission matrix with machine learning for water quality monitoring: A systematic review publication-title: Water Res. doi: 10.1016/j.watres.2025.123281 – ident: ref_14 doi: 10.3390/su15043628 – volume: 359 start-page: 11 year: 2024 ident: ref_55 article-title: Adaptive prediction for effluent quality of wastewater treatment plant: Improvement with a dual-stage attention-based LSTM network publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.120887 – volume: 12 start-page: 2451 year: 2000 ident: ref_28 article-title: Learning to forget: Continual prediction with LSTM publication-title: Neural Comput. doi: 10.1162/089976600300015015 – volume: 11 start-page: 1733 year: 2023 ident: ref_57 article-title: An Efficient and Robust Cloud-Based Deep Learning With Knowledge Distillation publication-title: IEEE Trans. Cloud Comput. doi: 10.1109/TCC.2022.3160129 – volume: 135 start-page: 15 year: 2019 ident: ref_38 article-title: A fast algorithm for computing distance correlation publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2019.01.016 – ident: ref_13 doi: 10.3390/w14172592 – ident: ref_29 doi: 10.3390/su11072058 – volume: 300 start-page: 70 year: 2018 ident: ref_17 article-title: Feature selection in machine learning: A new perspective publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – volume: 45 start-page: 5 year: 2001 ident: ref_10 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref_45 doi: 10.3390/app122211329 – ident: ref_58 doi: 10.3390/rs14246373 – ident: ref_46 doi: 10.3390/w14223766 – ident: ref_56 doi: 10.3390/agriculture13061162 – volume: 23 start-page: 4742 year: 2023 ident: ref_15 article-title: Monthly precipitation prediction based on the EMD-VMD-LSTM coupled model publication-title: Water Supply doi: 10.2166/ws.2023.275 – volume: 34 start-page: 415 year: 2020 ident: ref_33 article-title: Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-020-01776-2 – volume: 60 start-page: 18 year: 2022 ident: ref_37 article-title: 3-D Bi-directional LSTM for Satellite Soil Moisture Downscaling publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2022.3227108 – ident: ref_47 doi: 10.3390/ijerph19159699 – volume: 16 start-page: 45 year: 2024 ident: ref_59 article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence publication-title: Cogn. Comput. doi: 10.1007/s12559-023-10179-8 – volume: 126 start-page: 1763 year: 2018 ident: ref_18 article-title: Correlation Coefficients: Appropriate Use and Interpretation publication-title: Anesth. Analg. doi: 10.1213/ANE.0000000000002864 – volume: 404 start-page: 28 year: 2020 ident: ref_48 article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network publication-title: Phys. D-Nonlinear Phenom. doi: 10.1016/j.physd.2019.132306 – volume: 187 start-page: 15 year: 2015 ident: ref_54 article-title: A new framework to evaluate ecosystem health: A case study in the Wei River basin, China publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4596-1 – ident: ref_34 doi: 10.3390/w14040610 – ident: ref_16 doi: 10.3390/w15152760 – volume: 178 start-page: 21 year: 2024 ident: ref_61 article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2024.106091 – volume: 590 start-page: 10 year: 2020 ident: ref_25 article-title: Water quality prediction using SWAT-ANN coupled approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125220 – volume: 169 start-page: 6 year: 2021 ident: ref_19 article-title: On relationships between the Pearson and the distance correlation coefficients publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2020.108960 – volume: 9 start-page: 1735 year: 1997 ident: ref_27 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 |
| SSID | ssj0000498850 |
| Score | 2.3352833 |
| Snippet | Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1131 |
| SubjectTerms | Accuracy Artificial intelligence Automation Comparative analysis Composition Datasets Deep learning Distribution Environmental aspects Feature selection Forecasts and trends Hydrology Machine learning Measurement Neural networks Nitrogen Rivers Testing Variables Water quality |
| Title | High-Precision Prediction of Total Nitrogen Based on Distance Correlation and Machine Learning Models—A Case Study of Dongjiang River, China |
| URI | https://www.proquest.com/docview/3194654417 |
| Volume | 17 |
| WOSCitedRecordID | wos001489843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUo9NAeWlqomkLRqKrUHroijh2v91SFAIID0QpRiZ5W_tooFdqFJLTqrb-AE7-QX9KZjRNAQlw47Ur2WpbeeGbsHb_H2OdSWBF4ytH7OZPQtdnEtLNOktlShw4CLoxpxCbSwUCfnmZ5PHCbxLLKuU9sHLWvHZ2Rb6OpEPWX5On384uEVKPo72qU0HjGVoipDO18ZWdvkB8vTlkw_9W6255RCgnc32__4SlGQS74vUD0sDtuYsz-66fObpW9itkl9Gbm8IYtheote3mHc3CNXVFlR5KPo7YO4JsfNZcboC7hpMZkHAaj6bhGy4IdjHEesGmX0ky0D-iTmsesfg5M5eGoKcYMEHlah0DiameTm3_XPejj10CFin9p6N26Gv5CYxzCMdWCfINGunud_djfO-kfJFGUIXFCiGmipAnOp07LjJdBGWu0tZiTdTPnMwQe8x-FKUo3k0H6rvJKO5IV1R2rNTdSiXdsuaqr8J6B1D6VxnClrZOlKq320mnjvPSls9y22Nc5QoWLjOUknHFW4M6FwCwWYLbYp0XX8xlNx0OdvhDMBS1dHMeZeAMBZ0MkWEUPN-sqI0b-Ftucw1zENT0pbjH-8HjzBnvRIZVgYoRsb7Ll6fgyfGTP3e_paDLeiiaKz_zwKP_5H_FP9Ig |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFAk48I8aKLBCIDhgNetd2-sDQiGhatQmilCQysnsn6NUlV2SQNUbT8CJ5-CheBJmbCeAVHHrgZultVer3W9nZtcz3wfwNBdGeJ5wtH5WB1Q2G-hOGgapyZUPccGF1pXYRDIaqcPDdLwBP1a1MJRWubKJlaF2paU78h2EClF_SZ68PvkUkGoU_V1dSWjUsNj3Z6d4ZFu8GvRxfZ-F4e7bSW8vaFQFAiuEWAax1N66xCqZ8tzH2mhlDAYVUWpdiiNHBx6jj41S6aWLYhcrS7qYKjRKcS1jgf1egk1JYG_B5ngwHH9Y3-pgvK1U1KkpjIRIOzunPEGvywX_y_Gdb_4rn7Z743-bjZtwvYmeWbeG-y3Y8MVtuPYHp-Id-EaZK8F43mgHMXxys6p4g5U5m5R42GCj2XJe4s5hb9CHO4ZNfQqjEf-sR2oldX4g04VjwyrZ1LOGh3bKSDzuePHz6_cu6-HXjBIxz6jrfllMj3CzTdk7ynV5ySpp8rvw_kIm5B60irLwW8CkconUmsfKWJnHuVFOWqWtky63hps2vFghIrMNIzsJgxxneDIj8GRr8LThyfrVk5qG5LyXnhOsMjJN2I_VTYUFjoZIvrKuEqR8GauoDdsrWGWNzVpkvzF1_9_Nj-HK3mR4kB0MRvsP4GpIisjEftnZhtZy_tk_hMv2y3K2mD9qtgeDjxeNwV8bgE5w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgjeiMICFQLAgah27ibNAqLRUVMNUERqkYRX8SlU0Soa2MJodX8CKr-Fz-BLuzaOANGI3C3aRnFiJfe7DzvU5AI9yYYTnMUfvZ3VAx2YD3U_CIDG58iFOuNC6EpuIZzN1cJCkW_CjPQtDZZWtT6wctSst7ZH3ECpE_SV53Mubsoh0PHlx9CkgBSn609rKadQQ2fUnx7h8Wz2fjnGuH4fh5NX-6HXQKAwEVgixDiKpvXWxVTLhuY-00coYTDAGiXUJfgUG8wjj7SCRXrpB5CJlSSNThUYprmUksN9zsI0puQw7sJ1O99L3mx0ezL2VGvRrOiMhkn7vmMcYgbngfwXB00NBFd8mV_7nkbkKl5usmg1rM7gGW764Dpf-4Fq8Ad-ooiVIl42mEMMrt6gOdbAyZ_slLkLYbLFelmhR7CXGdsewaUzpNdoFG5GKSV03yHTh2F5VhOpZw087ZyQqd7j6-fX7kI3waUYFmifU9bgs5h_RCOfsLdXAPGOVZPlNeHcmA3ILOkVZ-NvApHKx1JpHyliZR7lRTlqlrZMut4abLjxt0ZHZhqmdBEMOM1yxEZCyDZC68HBz61FNT3LaTU8IYhm5LOzH6ubkBb4NkX9lQyVIETNSgy7stBDLGl-2yn7j686_mx_ABQRe9mY6270LF0MSSiZSzP4OdNbLz_4enLdf1ovV8n5jKQw-nDUEfwGXr1cw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Prediction+of+Total+Nitrogen+Based+on+Distance+Correlation+and+Machine+Learning+Models+-+A+Case+Study+of+Dongjiang+River%2C+China&rft.jtitle=Water+%28Basel%29&rft.au=Yuanpei+Chen&rft.au=Weike+Yao&rft.au=Yiling+Chen&rft.date=2025-04-10&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=17&rft.issue=8&rft_id=info:doi/10.3390%2Fw17081131&rft.externalDocID=A837693685 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |