High-Precision Prediction of Total Nitrogen Based on Distance Correlation and Machine Learning Models—A Case Study of Dongjiang River, China

Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) Jg. 17; H. 8; S. 1131
Hauptverfasser: Chen, Yuanpei, Yao, Weike, Chen, Yiling
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 10.04.2025
Schlagworte:
ISSN:2073-4441, 2073-4441
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (CODMn), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems.
AbstractList Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (CODMn), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems.
Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human health. Accurate real-time TN prediction is crucial for effective water quality management. This study presents an innovative approach that combines the distance correlation coefficient (DCC) for feature selection with a coupled Attention-Convolutional Neural Network-Bidirectional Long Short-Term Memory (At-CBiLSTM) model to predict TN concentrations in the Dongjiang River in China. A dataset of 28,922 time-series data points was collected from seven sampling sites along the Dongjiang River, spanning from November 2020 to February 2023. The DCC method identified conductivity, Permanganate Index (COD[sub.Mn] ), and total phosphorus as the most significant predictors for TN levels. The At-CBiLSTM model, optimized with a time step of three, outperformed other models, including standalone Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM), Convolutional Neural Network LSTM (CNN-LSTM), and Attention-LSTM variants, achieving excellent performance with the following metrics: mean absolute error (MAE) = 0.032, mean squared error (MSE) = 0.005, mean absolute percentage error (MAPE) = 0.218, and root mean squared error (RMSE) = 0.045. Importantly, increasing the number of input features beyond three variables led to a decline in model accuracy, underscoring the importance of DCC-driven feature selection. The results highlight that combining DCC with deep learning models, particularly At-CBiLSTM, effectively captures nonlinear temporal dependencies and improves prediction accuracy. This approach provides a solid foundation for real-time water quality monitoring and can inform targeted pollution control strategies in river ecosystems.
Audience Academic
Author Chen, Yiling
Yao, Weike
Chen, Yuanpei
Author_xml – sequence: 1
  givenname: Yuanpei
  surname: Chen
  fullname: Chen, Yuanpei
– sequence: 2
  givenname: Weike
  surname: Yao
  fullname: Yao, Weike
– sequence: 3
  givenname: Yiling
  surname: Chen
  fullname: Chen, Yiling
BookMark eNptkc9u1DAQxi1UJErpgTewxAmJtPH6T5zjkhaKtC2ItudoYk9Sr1K72F5QbzwBJ56QJ8HbRQhV2Ad_Gv--Gemb52TPB4-EvGT1EedtffyNNbVmjLMnZH9RN7wSQrC9f_QzcpjSui5HtFrLep_8OHPTTfUponHJBU-Lss7krQwjvQoZZnrhcgwTevoWElpavk5cyuAN0i7EiDM88OAtPQdz4zzSFUL0zk_0PFic06_vP5e0K256mTf2ftv6JPhp7aAgn91XjG9oV4zwgjwdYU54-Oc9INfvTq-6s2r18f2HbrmqDOc8V0oAGtsYLVo2ooIB9DCIBZetsS0fuG65klLIVqCwUlmlDddK6sWgNQOh-AF5tet7F8OXDabcr8Mm-jKy56wVSpawmkId7agJZuydH0OOYMq1eOtMyX50pb7UvFFloJbF8HpnMDGkFHHs76K7hXjfs7rfrqj_u6LCHj9ijcsPSZYhbv6P4zcN-JSY
CitedBy_id crossref_primary_10_3390_w17162394
Cites_doi 10.1016/j.jclepro.2022.131724
10.1108/IJICC-06-2021-0109
10.1016/j.neucom.2005.12.126
10.1007/s11356-022-21115-y
10.1016/j.chemolab.2020.103978
10.1016/j.aquaculture.2021.736724
10.3390/su15075930
10.1007/s11269-024-03946-1
10.1016/j.ins.2022.12.091
10.5194/hess-22-6005-2018
10.1016/j.rineng.2025.104349
10.1016/j.biortech.2020.124114
10.5004/dwt.2018.22559
10.1162/neco_a_01199
10.1002/hyp.14741
10.1016/j.ins.2023.119218
10.1016/j.isprsjprs.2010.11.001
10.3390/w14101552
10.1016/j.chaos.2020.110212
10.1007/s11356-021-13875-w
10.1007/s12555-019-0984-6
10.1002/sres.2179
10.1142/S0219691323500194
10.3390/jmse12010159
10.1007/s11270-024-06913-z
10.1007/s11783-023-1688-y
10.1007/s12652-020-02817-y
10.3390/app10175776
10.1080/00401706.2015.1054435
10.1007/s00521-021-05989-6
10.1049/iet-spr.2017.0320
10.1016/j.watres.2025.123281
10.3390/su15043628
10.1016/j.jenvman.2024.120887
10.1162/089976600300015015
10.1109/TCC.2022.3160129
10.1016/j.csda.2019.01.016
10.3390/w14172592
10.3390/su11072058
10.1016/j.neucom.2017.11.077
10.1023/A:1010933404324
10.3390/app122211329
10.3390/rs14246373
10.3390/w14223766
10.3390/agriculture13061162
10.2166/ws.2023.275
10.1007/s00477-020-01776-2
10.1109/TGRS.2022.3227108
10.3390/ijerph19159699
10.1007/s12559-023-10179-8
10.1213/ANE.0000000000002864
10.1016/j.physd.2019.132306
10.1007/s10661-015-4596-1
10.3390/w14040610
10.3390/w15152760
10.1016/j.envsoft.2024.106091
10.1016/j.jhydrol.2020.125220
10.1016/j.spl.2020.108960
10.1162/neco.1997.9.8.1735
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/w17081131
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4441
ExternalDocumentID A837693685
10_3390_w17081131
GeographicLocations China
Dongjiang River
GeographicLocations_xml – name: China
– name: Dongjiang River
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c333t-64aecd7c8491fe6aba8bb42359cd93b38936554594e4d56d68c386582b881a463
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001489843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4441
IngestDate Mon Jun 30 11:06:39 EDT 2025
Sun Nov 23 08:43:50 EST 2025
Sat Nov 29 07:13:24 EST 2025
Tue Nov 18 22:35:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-64aecd7c8491fe6aba8bb42359cd93b38936554594e4d56d68c386582b881a463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3194654417?pq-origsite=%requestingapplication%
PQID 3194654417
PQPubID 2032318
ParticipantIDs proquest_journals_3194654417
gale_infotracacademiconefile_A837693685
crossref_primary_10_3390_w17081131
crossref_citationtrail_10_3390_w17081131
PublicationCentury 2000
PublicationDate 2025-04-10
PublicationDateYYYYMMDD 2025-04-10
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-10
  day: 10
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Huo (ref_39) 2016; 58
Bi (ref_51) 2023; 625
Kota (ref_50) 2022; 15
Cai (ref_8) 2025; 277
Wang (ref_26) 2013; 30
Cai (ref_17) 2018; 300
Huang (ref_22) 2024; 235
ref_14
An (ref_55) 2024; 359
ref_58
ref_13
ref_56
ref_11
Guo (ref_15) 2023; 23
Wang (ref_61) 2024; 178
Zhang (ref_52) 2024; 38
ref_16
Chaudhuri (ref_38) 2019; 135
Huang (ref_12) 2006; 70
Shahid (ref_43) 2020; 140
Wu (ref_54) 2015; 187
Mountrakis (ref_9) 2011; 66
Breiman (ref_10) 2001; 45
Barzegar (ref_33) 2020; 34
Zhang (ref_44) 2022; 29
ref_24
Kang (ref_49) 2020; 18
Khullar (ref_32) 2022; 29
ref_20
Madhukumar (ref_37) 2022; 60
Zhong (ref_7) 2021; 55
He (ref_3) 2022; 36
ref_29
Li (ref_30) 2023; 21
Zhang (ref_36) 2022; 354
Xu (ref_2) 2018; 122
Sherstinsky (ref_48) 2020; 404
ref_35
Edelmann (ref_19) 2021; 169
ref_34
Schober (ref_18) 2018; 126
Zhao (ref_6) 2021; 540
Tao (ref_57) 2023; 11
Gers (ref_28) 2000; 12
Infant (ref_60) 2025; 25
Hochreiter (ref_27) 1997; 9
ref_47
ref_46
ref_45
Kratzert (ref_31) 2018; 22
ref_41
ref_1
Rajaee (ref_53) 2020; 200
Noori (ref_25) 2020; 590
Hassija (ref_59) 2024; 16
Ruan (ref_23) 2022; 34
Zhao (ref_42) 2018; 12
Yu (ref_40) 2019; 31
ref_5
ref_4
Li (ref_21) 2023; 643
References_xml – volume: 354
  start-page: 12
  year: 2022
  ident: ref_36
  article-title: Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131724
– volume: 15
  start-page: 61
  year: 2022
  ident: ref_50
  article-title: High accuracy offering attention mechanisms based deep learning approach using CNN/bi-LSTM for sentiment analysis
  publication-title: Int. J. Intell. Comput. Cybern.
  doi: 10.1108/IJICC-06-2021-0109
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_12
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 29
  start-page: 75664
  year: 2022
  ident: ref_44
  article-title: A watershed water quality prediction model based on attention mechanism and Bi-LSTM
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-21115-y
– volume: 200
  start-page: 25
  year: 2020
  ident: ref_53
  article-title: Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.103978
– volume: 540
  start-page: 19
  year: 2021
  ident: ref_6
  article-title: Application of machine learning in intelligent fish aquaculture: A review
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2021.736724
– ident: ref_41
  doi: 10.3390/su15075930
– volume: 38
  start-page: 6103
  year: 2024
  ident: ref_52
  article-title: The Use of Attention-Enhanced CNN-LSTM Models for Multi-Indicator and Time-Series Predictions of Surface Water Quality
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-024-03946-1
– ident: ref_1
– volume: 625
  start-page: 65
  year: 2023
  ident: ref_51
  article-title: Multi-indicator water quality prediction with attention-assisted bidirectional LSTM and encoder-decoder
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.12.091
– volume: 22
  start-page: 6005
  year: 2018
  ident: ref_31
  article-title: Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-6005-2018
– volume: 25
  start-page: 14
  year: 2025
  ident: ref_60
  article-title: Explainable artificial intelligence for sustainable urban water systems engineering
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2025.104349
– ident: ref_5
  doi: 10.1016/j.biortech.2020.124114
– volume: 122
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Research and application of near-infrared spectroscopy in rapid detection of water pollution
  publication-title: Desalination Water Treat.
  doi: 10.5004/dwt.2018.22559
– volume: 31
  start-page: 1235
  year: 2019
  ident: ref_40
  article-title: A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 36
  start-page: 15
  year: 2022
  ident: ref_3
  article-title: Detecting and explaining long-term changes in river water quality in south-eastern Australia
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.14741
– volume: 643
  start-page: 13
  year: 2023
  ident: ref_21
  article-title: ECDX: Energy consumption prediction model based on distance correlation and XGBoost for edge data center
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2023.119218
– volume: 66
  start-page: 247
  year: 2011
  ident: ref_9
  article-title: Support vector machines in remote sensing: A review
  publication-title: Isprs J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– ident: ref_11
  doi: 10.3390/w14101552
– volume: 55
  start-page: 12741
  year: 2021
  ident: ref_7
  article-title: Machine Learning: New Ideas and Tools in Environmental Science and Engineering
  publication-title: Environ. Sci. Technol.
– volume: 140
  start-page: 9
  year: 2020
  ident: ref_43
  article-title: Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110212
– volume: 29
  start-page: 12875
  year: 2022
  ident: ref_32
  article-title: Water quality assessment of a river using deep learning Bi-LSTM methodology: Forecasting and validation
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-021-13875-w
– volume: 18
  start-page: 3023
  year: 2020
  ident: ref_49
  article-title: Time Series Prediction of Wastewater Flow Rate by Bidirectional LSTM Deep Learning
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-019-0984-6
– volume: 30
  start-page: 244
  year: 2013
  ident: ref_26
  article-title: An ARIMA-ANN Hybrid Model for Time Series Forecasting
  publication-title: Syst. Res. Behav. Sci.
  doi: 10.1002/sres.2179
– volume: 21
  start-page: 20
  year: 2023
  ident: ref_30
  article-title: Long short-term memory network-based wastewater quality prediction model with sparrow search algorithm
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S0219691323500194
– ident: ref_4
  doi: 10.3390/jmse12010159
– volume: 235
  start-page: 14
  year: 2024
  ident: ref_22
  article-title: Prediction of Total Phosphorus Based on Distance Correlation and Machine Learning Methods-a Case Study of Dongjiang River, China
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-024-06913-z
– ident: ref_35
  doi: 10.1007/s11783-023-1688-y
– ident: ref_20
  doi: 10.1007/s12652-020-02817-y
– ident: ref_24
  doi: 10.3390/app10175776
– volume: 58
  start-page: 435
  year: 2016
  ident: ref_39
  article-title: Fast Computing for Distance Covariance
  publication-title: Technometrics
  doi: 10.1080/00401706.2015.1054435
– volume: 34
  start-page: 2729
  year: 2022
  ident: ref_23
  article-title: Weighted naive Bayes text classification algorithm based on improved distance correlation coefficient
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05989-6
– volume: 12
  start-page: 713
  year: 2018
  ident: ref_42
  article-title: Learning deep features to recognise speech emotion using merged deep CNN
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2017.0320
– volume: 277
  start-page: 16
  year: 2025
  ident: ref_8
  article-title: Emerging applications of fluorescence excitation-emission matrix with machine learning for water quality monitoring: A systematic review
  publication-title: Water Res.
  doi: 10.1016/j.watres.2025.123281
– ident: ref_14
  doi: 10.3390/su15043628
– volume: 359
  start-page: 11
  year: 2024
  ident: ref_55
  article-title: Adaptive prediction for effluent quality of wastewater treatment plant: Improvement with a dual-stage attention-based LSTM network
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2024.120887
– volume: 12
  start-page: 2451
  year: 2000
  ident: ref_28
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 11
  start-page: 1733
  year: 2023
  ident: ref_57
  article-title: An Efficient and Robust Cloud-Based Deep Learning With Knowledge Distillation
  publication-title: IEEE Trans. Cloud Comput.
  doi: 10.1109/TCC.2022.3160129
– volume: 135
  start-page: 15
  year: 2019
  ident: ref_38
  article-title: A fast algorithm for computing distance correlation
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2019.01.016
– ident: ref_13
  doi: 10.3390/w14172592
– ident: ref_29
  doi: 10.3390/su11072058
– volume: 300
  start-page: 70
  year: 2018
  ident: ref_17
  article-title: Feature selection in machine learning: A new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_10
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: ref_45
  doi: 10.3390/app122211329
– ident: ref_58
  doi: 10.3390/rs14246373
– ident: ref_46
  doi: 10.3390/w14223766
– ident: ref_56
  doi: 10.3390/agriculture13061162
– volume: 23
  start-page: 4742
  year: 2023
  ident: ref_15
  article-title: Monthly precipitation prediction based on the EMD-VMD-LSTM coupled model
  publication-title: Water Supply
  doi: 10.2166/ws.2023.275
– volume: 34
  start-page: 415
  year: 2020
  ident: ref_33
  article-title: Short-term water quality variable prediction using a hybrid CNN-LSTM deep learning model
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-020-01776-2
– volume: 60
  start-page: 18
  year: 2022
  ident: ref_37
  article-title: 3-D Bi-directional LSTM for Satellite Soil Moisture Downscaling
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2022.3227108
– ident: ref_47
  doi: 10.3390/ijerph19159699
– volume: 16
  start-page: 45
  year: 2024
  ident: ref_59
  article-title: Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-023-10179-8
– volume: 126
  start-page: 1763
  year: 2018
  ident: ref_18
  article-title: Correlation Coefficients: Appropriate Use and Interpretation
  publication-title: Anesth. Analg.
  doi: 10.1213/ANE.0000000000002864
– volume: 404
  start-page: 28
  year: 2020
  ident: ref_48
  article-title: Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network
  publication-title: Phys. D-Nonlinear Phenom.
  doi: 10.1016/j.physd.2019.132306
– volume: 187
  start-page: 15
  year: 2015
  ident: ref_54
  article-title: A new framework to evaluate ecosystem health: A case study in the Wei River basin, China
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4596-1
– ident: ref_34
  doi: 10.3390/w14040610
– ident: ref_16
  doi: 10.3390/w15152760
– volume: 178
  start-page: 21
  year: 2024
  ident: ref_61
  article-title: Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2024.106091
– volume: 590
  start-page: 10
  year: 2020
  ident: ref_25
  article-title: Water quality prediction using SWAT-ANN coupled approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125220
– volume: 169
  start-page: 6
  year: 2021
  ident: ref_19
  article-title: On relationships between the Pearson and the distance correlation coefficients
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2020.108960
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_27
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
SSID ssj0000498850
Score 2.3352833
Snippet Excessive total nitrogen (TN) in water bodies leads to eutrophication, algal blooms, and hypoxia, which pose significant risks to aquatic ecosystems and human...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1131
SubjectTerms Accuracy
Artificial intelligence
Automation
Comparative analysis
Composition
Datasets
Deep learning
Distribution
Environmental aspects
Feature selection
Forecasts and trends
Hydrology
Machine learning
Measurement
Neural networks
Nitrogen
Rivers
Testing
Variables
Water quality
Title High-Precision Prediction of Total Nitrogen Based on Distance Correlation and Machine Learning Models—A Case Study of Dongjiang River, China
URI https://www.proquest.com/docview/3194654417
Volume 17
WOSCitedRecordID wos001489843700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUo9NAeWlqomkLRqKrUHroijh2v91SFAIID0QpRiZ5W_tooFdqFJLTqrb-AE7-QX9KZjRNAQlw47Ur2WpbeeGbsHb_H2OdSWBF4ytH7OZPQtdnEtLNOktlShw4CLoxpxCbSwUCfnmZ5PHCbxLLKuU9sHLWvHZ2Rb6OpEPWX5On384uEVKPo72qU0HjGVoipDO18ZWdvkB8vTlkw_9W6255RCgnc32__4SlGQS74vUD0sDtuYsz-66fObpW9itkl9Gbm8IYtheote3mHc3CNXVFlR5KPo7YO4JsfNZcboC7hpMZkHAaj6bhGy4IdjHEesGmX0ky0D-iTmsesfg5M5eGoKcYMEHlah0DiameTm3_XPejj10CFin9p6N26Gv5CYxzCMdWCfINGunud_djfO-kfJFGUIXFCiGmipAnOp07LjJdBGWu0tZiTdTPnMwQe8x-FKUo3k0H6rvJKO5IV1R2rNTdSiXdsuaqr8J6B1D6VxnClrZOlKq320mnjvPSls9y22Nc5QoWLjOUknHFW4M6FwCwWYLbYp0XX8xlNx0OdvhDMBS1dHMeZeAMBZ0MkWEUPN-sqI0b-Ftucw1zENT0pbjH-8HjzBnvRIZVgYoRsb7Ll6fgyfGTP3e_paDLeiiaKz_zwKP_5H_FP9Ig
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VFAk48I8aKLBCIDhgNetd2-sDQiGhatQmilCQysnsn6NUlV2SQNUbT8CJ5-CheBJmbCeAVHHrgZultVer3W9nZtcz3wfwNBdGeJ5wtH5WB1Q2G-hOGgapyZUPccGF1pXYRDIaqcPDdLwBP1a1MJRWubKJlaF2paU78h2EClF_SZ68PvkUkGoU_V1dSWjUsNj3Z6d4ZFu8GvRxfZ-F4e7bSW8vaFQFAiuEWAax1N66xCqZ8tzH2mhlDAYVUWpdiiNHBx6jj41S6aWLYhcrS7qYKjRKcS1jgf1egk1JYG_B5ngwHH9Y3-pgvK1U1KkpjIRIOzunPEGvywX_y_Gdb_4rn7Z743-bjZtwvYmeWbeG-y3Y8MVtuPYHp-Id-EaZK8F43mgHMXxys6p4g5U5m5R42GCj2XJe4s5hb9CHO4ZNfQqjEf-sR2oldX4g04VjwyrZ1LOGh3bKSDzuePHz6_cu6-HXjBIxz6jrfllMj3CzTdk7ynV5ySpp8rvw_kIm5B60irLwW8CkconUmsfKWJnHuVFOWqWtky63hps2vFghIrMNIzsJgxxneDIj8GRr8LThyfrVk5qG5LyXnhOsMjJN2I_VTYUFjoZIvrKuEqR8GauoDdsrWGWNzVpkvzF1_9_Nj-HK3mR4kB0MRvsP4GpIisjEftnZhtZy_tk_hMv2y3K2mD9qtgeDjxeNwV8bgE5w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LjtMwFL0aOgjBgjeiMICFQLAgah27ibNAqLRUVMNUERqkYRX8SlU0Soa2MJodX8CKr-Fz-BLuzaOANGI3C3aRnFiJfe7DzvU5AI9yYYTnMUfvZ3VAx2YD3U_CIDG58iFOuNC6EpuIZzN1cJCkW_CjPQtDZZWtT6wctSst7ZH3ECpE_SV53Mubsoh0PHlx9CkgBSn609rKadQQ2fUnx7h8Wz2fjnGuH4fh5NX-6HXQKAwEVgixDiKpvXWxVTLhuY-00coYTDAGiXUJfgUG8wjj7SCRXrpB5CJlSSNThUYprmUksN9zsI0puQw7sJ1O99L3mx0ezL2VGvRrOiMhkn7vmMcYgbngfwXB00NBFd8mV_7nkbkKl5usmg1rM7gGW764Dpf-4Fq8Ad-ooiVIl42mEMMrt6gOdbAyZ_slLkLYbLFelmhR7CXGdsewaUzpNdoFG5GKSV03yHTh2F5VhOpZw087ZyQqd7j6-fX7kI3waUYFmifU9bgs5h_RCOfsLdXAPGOVZPlNeHcmA3ILOkVZ-NvApHKx1JpHyliZR7lRTlqlrZMut4abLjxt0ZHZhqmdBEMOM1yxEZCyDZC68HBz61FNT3LaTU8IYhm5LOzH6ubkBb4NkX9lQyVIETNSgy7stBDLGl-2yn7j686_mx_ABQRe9mY6270LF0MSSiZSzP4OdNbLz_4enLdf1ovV8n5jKQw-nDUEfwGXr1cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Precision+Prediction+of+Total+Nitrogen+Based+on+Distance+Correlation+and+Machine+Learning+Models+-+A+Case+Study+of+Dongjiang+River%2C+China&rft.jtitle=Water+%28Basel%29&rft.au=Yuanpei+Chen&rft.au=Weike+Yao&rft.au=Yiling+Chen&rft.date=2025-04-10&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=17&rft.issue=8&rft_id=info:doi/10.3390%2Fw17081131&rft.externalDocID=A837693685
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon