Optimal Energy Trading With Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids

The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the gro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cloud computing Ročník 10; číslo 1; s. 17 - 30
Hlavní autoři: Chung, Hwei-Ming, Maharjan, Sabita, Zhang, Yan, Eliassen, Frank, Strunz, Kai
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-7161, 2372-0018
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly <inline-formula><tex-math notation="LaTeX">200\%</tex-math> <mml:math><mml:mrow><mml:mn>200</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq1-3118563.gif"/> </inline-formula> higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly <inline-formula><tex-math notation="LaTeX">50\%</tex-math> <mml:math><mml:mrow><mml:mn>50</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq2-3118563.gif"/> </inline-formula> in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately <inline-formula><tex-math notation="LaTeX">120\%</tex-math> <mml:math><mml:mrow><mml:mn>120</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq3-3118563.gif"/> </inline-formula> where the users get profit by utilizing the internal market.
AbstractList The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly [Formula Omitted] higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly [Formula Omitted] in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately [Formula Omitted] where the users get profit by utilizing the internal market.
The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly <inline-formula><tex-math notation="LaTeX">200\%</tex-math> <mml:math><mml:mrow><mml:mn>200</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq1-3118563.gif"/> </inline-formula> higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly <inline-formula><tex-math notation="LaTeX">50\%</tex-math> <mml:math><mml:mrow><mml:mn>50</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq2-3118563.gif"/> </inline-formula> in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately <inline-formula><tex-math notation="LaTeX">120\%</tex-math> <mml:math><mml:mrow><mml:mn>120</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq3-3118563.gif"/> </inline-formula> where the users get profit by utilizing the internal market.
Author Zhang, Yan
Eliassen, Frank
Maharjan, Sabita
Chung, Hwei-Ming
Strunz, Kai
Author_xml – sequence: 1
  givenname: Hwei-Ming
  orcidid: 0000-0001-7752-285X
  surname: Chung
  fullname: Chung, Hwei-Ming
  email: hweiminc@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 2
  givenname: Sabita
  orcidid: 0000-0002-4616-8488
  surname: Maharjan
  fullname: Maharjan, Sabita
  email: sabita@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 3
  givenname: Yan
  orcidid: 0000-0002-8561-5092
  surname: Zhang
  fullname: Zhang, Yan
  email: yanzhang@ieee.org
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 4
  givenname: Frank
  orcidid: 0000-0002-7788-4137
  surname: Eliassen
  fullname: Eliassen, Frank
  email: frank@ifi.uio.no
  organization: Department of Informatics, University of Oslo, Oslo, Norway
– sequence: 5
  givenname: Kai
  orcidid: 0000-0002-2043-4549
  surname: Strunz
  fullname: Strunz, Kai
  email: kai.strunz@tu-berlin.de
  organization: Department of Energy and Automation Technology, Technische Universität Berlin, Berlin, Germany
BookMark eNp9kM9LwzAUx4NMUKd3wUvAc2d-NE1zlDqnIEx06rGkTaoZXVKTFNl_b8bEgwff5T143x_wOQET66wG4ByjGcZIXK2qakYQwTOKcckKegCOCeUkQwiXk3Tjosw4LvAROAthjdKUDAssjsF6OUSzkT2cW-3ft3DlpTL2Hb6Z-AFv9EZaBZ90GJwNOkBjYdW7UcHKbYYx7oRzK5teK_hqfBxTzqP70h4-9tLGnfx5I32EC29UOAWHneyDPvvZU_ByO19Vd9nDcnFfXT9kLaU0ZkXOcySw4gWXrEFCUsVaIUtGWUcoIk2LWSsbxnmnGkqIIl1JujxnuGlbxDWdgst97uDd56hDrNdu9DZV1qSgPKdCMJRUaK9qvQvB664efALhtzVG9Q5qnaDWO6j1D9RkKf5YWhNlNM5GL03_n_FibzRa698ekV4EcfoNxJeE7A
CODEN ITCCF6
CitedBy_id crossref_primary_10_1016_j_jclepro_2024_141741
crossref_primary_10_1109_JIOT_2023_3303870
crossref_primary_10_1016_j_est_2025_116672
crossref_primary_10_1016_j_jnca_2025_104220
crossref_primary_10_1049_gtd2_70057
crossref_primary_10_3390_machines13090857
crossref_primary_10_1016_j_rser_2024_114748
crossref_primary_10_1109_JIOT_2023_3314832
crossref_primary_10_3390_math10152748
crossref_primary_10_3390_en16093705
crossref_primary_10_1016_j_compeleceng_2024_109709
crossref_primary_10_1016_j_apenergy_2025_125553
crossref_primary_10_1088_2516_1083_adbeb4
crossref_primary_10_1016_j_apenergy_2024_123243
crossref_primary_10_1007_s42835_025_02194_6
crossref_primary_10_1109_TCC_2022_3185170
crossref_primary_10_1109_ACCESS_2024_3384985
crossref_primary_10_1109_TASE_2024_3406412
crossref_primary_10_3390_su15043287
crossref_primary_10_1088_1742_6596_2846_1_012027
crossref_primary_10_1016_j_rser_2025_115929
crossref_primary_10_1016_j_egyr_2023_11_061
crossref_primary_10_1016_j_epsr_2023_109783
crossref_primary_10_1109_JIOT_2024_3411555
Cites_doi 10.1017/CBO9780511804441
10.1109/TSG.2018.2825388
10.1109/TSG.2017.2786668
10.1109/TSG.2019.2963238
10.1109/TCC.2017.2744623
10.1109/TITS.2020.3008279
10.1109/TCC.2015.2440246
10.1109/TPWRS.2018.2883753
10.1109/TAC.2020.3040249
10.1109/TSG.2020.3026971
10.1109/TSG.2019.2933574
10.1109/ACCESS.2015.2476996
10.1109/TII.2019.2929498
10.1109/TSG.2017.2662801
10.1109/TSG.2018.2820026
10.1109/TII.2020.3007167
10.1109/TSG.2017.2707103
10.1109/TPWRS.2017.2710481
10.1109/TTE.2018.2847244
10.1109/TITS.2019.2919934
10.1109/TSG.2012.2223766
10.1109/TSTE.2019.2924936
10.1109/TSG.2011.2173507
10.1109/TIE.2018.2874578
10.1109/TPDS.2015.2495120
10.1109/TPEL.2018.2829211
10.1109/TSTE.2019.2895387
10.1109/TASC.2007.898490
10.1109/TPDS.2015.2398435
10.1109/TSTE.2019.2941418
10.1109/TSG.2018.2834219
10.1109/TII.2019.2898462
10.1109/TCC.2020.3031881
10.1109/TITS.2015.2462824
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCC.2021.3118563
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2372-0018
EndPage 30
ExternalDocumentID 10_1109_TCC_2021_3118563
9563207
Genre orig-research
GrantInformation_xml – fundername: SmartNEM project
  grantid: 267967
– fundername: PACE project
  grantid: 287412
– fundername: Norwegian Research Council LUCS
  grantid: 275106
– fundername: German Federal Ministry for Economic Affairs and Energy (BMWi) project EchtEWende: Echtzeitmodellbildung für die Energiewende
  grantid: 03ET4060
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-6474091d767a5b09a3d5c9a8535f2302bc15cab577fdb322d2f82f4451bcc07e3
IEDL.DBID RIE
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766635400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-7161
IngestDate Mon Jun 30 06:47:48 EDT 2025
Tue Nov 18 21:36:21 EST 2025
Sat Nov 29 04:11:00 EST 2025
Wed Aug 27 02:49:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-6474091d767a5b09a3d5c9a8535f2302bc15cab577fdb322d2f82f4451bcc07e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7752-285X
0000-0002-8561-5092
0000-0002-2043-4549
0000-0002-7788-4137
0000-0002-4616-8488
OpenAccessLink https://ieeexplore.ieee.org/document/9563207
PQID 2637439950
PQPubID 2040413
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCC_2021_3118563
proquest_journals_2637439950
ieee_primary_9563207
crossref_citationtrail_10_1109_TCC_2021_3118563
PublicationCentury 2000
PublicationDate 2022-Jan.-March-1
2022-1-1
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.-March-1
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cloud computing
PublicationTitleAbbrev TCC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref15
ref36
ref14
ref31
sánchez (ref34) 2020
gao (ref12) 2019; 10
ref30
ref11
ref10
ref2
ref39
ref17
ref16
ref19
ref18
teytelboym (ref25) 2020; 11
ref24
ref23
ref26
ref20
ref42
(ref32) 2020
ref22
ref21
(ref38) 0
ref28
ref27
ref29
b -sasson (ref33) 2018
ref8
gersdorf (ref37) 2020
ref7
ref9
(ref1) 2020
ref4
ref3
nesterov (ref41) 2013
ref6
ref5
ref40
References_xml – year: 2020
  ident: ref32
  article-title: Growing an innovative energy partnership across australia
– ident: ref36
  doi: 10.1017/CBO9780511804441
– ident: ref10
  doi: 10.1109/TSG.2018.2825388
– ident: ref21
  doi: 10.1109/TSG.2017.2786668
– volume: 11
  start-page: 3095
  year: 2020
  ident: ref25
  article-title: Integrating P2P energy trading with probabilistic distribution locational marginal pricing
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2963238
– ident: ref15
  doi: 10.1109/TCC.2017.2744623
– ident: ref7
  doi: 10.1109/TITS.2020.3008279
– ident: ref14
  doi: 10.1109/TCC.2015.2440246
– ident: ref17
  doi: 10.1109/TPWRS.2018.2883753
– ident: ref42
  doi: 10.1109/TAC.2020.3040249
– year: 2018
  ident: ref33
  article-title: Scalable, transparent, and post-quantum secure computational integrity
  publication-title: Int Assoc Cryptologic Res Cryptology ePrint Archive
– ident: ref19
  doi: 10.1109/TSG.2020.3026971
– ident: ref22
  doi: 10.1109/TSG.2019.2933574
– ident: ref2
  doi: 10.1109/ACCESS.2015.2476996
– year: 2020
  ident: ref34
  article-title: Zero-knowledge proof-of-identity: Sybil-resistant, anonymous authentication on permissionless blockchains and incentive compatible, strictly dominant cryptocurrencies
  publication-title: Int Assoc Cryptologic Res Cryptology ePrint Archive
– ident: ref23
  doi: 10.1109/TII.2019.2929498
– ident: ref6
  doi: 10.1109/TSG.2017.2662801
– ident: ref5
  doi: 10.1109/TSG.2018.2820026
– year: 2020
  ident: ref1
  article-title: Global EV outlook 2020: Two million and counting
– ident: ref40
  doi: 10.1109/TII.2020.3007167
– year: 2020
  ident: ref37
  article-title: McKinsey electric vehicle index: Europe cushions a global plunge in EV sales
– ident: ref4
  doi: 10.1109/TSG.2017.2707103
– ident: ref35
  doi: 10.1109/TPWRS.2017.2710481
– ident: ref30
  doi: 10.1109/TTE.2018.2847244
– ident: ref8
  doi: 10.1109/TITS.2019.2919934
– ident: ref9
  doi: 10.1109/TSG.2012.2223766
– year: 0
  ident: ref38
  article-title: California ISO open access same-time information system.
– ident: ref18
  doi: 10.1109/TSTE.2019.2924936
– ident: ref39
  doi: 10.1109/TSG.2011.2173507
– ident: ref20
  doi: 10.1109/TIE.2018.2874578
– ident: ref26
  doi: 10.1109/TPDS.2015.2495120
– year: 2013
  ident: ref41
  publication-title: Introductory Lectures on Convex Optimization A Basic Course
– ident: ref29
  doi: 10.1109/TPEL.2018.2829211
– ident: ref24
  doi: 10.1109/TSTE.2019.2895387
– ident: ref28
  doi: 10.1109/TASC.2007.898490
– volume: 10
  start-page: 6629
  year: 2019
  ident: ref12
  article-title: Energy-efficient thermal comfort control in smart buildings via deep reinforcement learning
  publication-title: IEEE Internet of Things Journal
– ident: ref27
  doi: 10.1109/TPDS.2015.2398435
– ident: ref31
  doi: 10.1109/TSTE.2019.2941418
– ident: ref13
  doi: 10.1109/TSG.2018.2834219
– ident: ref11
  doi: 10.1109/TII.2019.2898462
– ident: ref16
  doi: 10.1109/TCC.2020.3031881
– ident: ref3
  doi: 10.1109/TITS.2015.2462824
SSID ssj0000851919
Score 2.4215996
Snippet The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 17
SubjectTerms Algorithms
Charging
Cloud computing
cloud energy trading
Demand
Demand response
Electric power grids
Electric vehicles
Electrical loads
Energy
Energy storage
Game theory
Games
Peak load
renewable energy
Renewable energy sources
Revenue
Smart grid
Smart grids
Uncertainty
Virtual power plant
Virtual power plants
Title Optimal Energy Trading With Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids
URI https://ieeexplore.ieee.org/document/9563207
https://www.proquest.com/docview/2637439950
Volume 10
WOSCitedRecordID wos000766635400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-0018
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000851919
  issn: 2168-7161
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QePAiKhpRND14MXGyrXRdjwZBT0gUldvSX4szMAwM_377dYPEaEy87fB1Wfa1fX1t3_cQuohoV8WMB5401FiCYqgnREC8SMXExKybEimc2QQbDuPJhI9q6GqjhTHGuMtn5hoe3Vm-nqsVbJV17FqehCAd32IsKrVam_0UWDrwgK9PIn3eGfd6lv-FgaWlFpQi8g15nJXKj_nXgcqg8b_P2UO71eIR35TZ3kc1kx-gxtqYAVfjtIneH-xEMLORfafswxaQAKLwa1a84VszE7nGj-XlWLPEWY570_lK4_JFENh3iiqNX7IF6EvwCLzUMBgcFRD-NLMdDt8tMr08RM-D_rh371WmCp4ihBRe1GWW0gWaRUxQ6XNBNFVcWNSmqaUjoVQBVUJSxlIt7WjXYRqHKZQxk0r5zJAjVM_nuTlGmMZMh3FgIsA448eCcUWolFAzzLfY20Kd9Q9PVFVxHIwvpoljHj5PbIoSSFFSpaiFLjctPspqG3_ENiElm7gqGy3UXuc0qYbjMgkj4ogX9U9-b3WKdkLQNbi9lTaqF4uVOUPb6rPIlotz19O-AFHJ0VA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6qYNJ2WWFlolDAh10mLTSJ6zg-Tl2BaV1XbYVxi_wrIhNNUZru75-fm1ZCoEnccniOojzbnz_b3_sAPiRsoFMuokBZZh1BsSyQMqJBolNqUz7IqZLebIJPJuntrZi24NNWC2Ot9ZfP7Dk--rN8s9Ar3Crru7U8jVE6vovOWY1aa7ujgosHEYnNWWQo-rPh0DHAOHLE1MFSQh9hjzdTeTIDe1i5aL_sg_bgbbN8JJ_X-d6Hli3fQXtjzUCakdqBPz_cVDB3kSOv7SMOkhCkyO-iviNf7FyWhvxcX4-1S1KUZHi_WBmyfhEGjrymypCbokKFCZmimxpBi6Maw3_NXZcjl1VhlgdwfTGaDa-CxlYh0JTSOkgG3JG6yPCES6ZCIalhWkiH2yx3hCRWOmJaKsZ5bpQb7ybO0zjHQmZK65Bb-h52ykVpD4GwlJs4jWyCKGfDVHKhKVMKq4aFDn270N_88Ew3NcfR-uI-89wjFJlLUYYpypoUdeHjtsXDut7Gf2I7mJJtXJONLvQ2Oc2aAbnM4oR66sXCo-dbncHrq9n3cTb-Ovl2DG9iVDn4nZYe7NTVyp7AK_23LpbVqe91_wBiM9SZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Energy+Trading+With+Demand+Responses+in+Cloud+Computing+Enabled+Virtual+Power+Plant+in+Smart+Grids&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Chung%2C+Hwei-Ming&rft.au=Maharjan%2C+Sabita&rft.au=Zhang%2C+Yan&rft.au=Eliassen%2C+Frank&rft.date=2022-01-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=1&rft.spage=17&rft.epage=30&rft_id=info:doi/10.1109%2FTCC.2021.3118563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2021_3118563
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon