Optimal Energy Trading With Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids
The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the gro...
Uloženo v:
| Vydáno v: | IEEE transactions on cloud computing Ročník 10; číslo 1; s. 17 - 30 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-7161, 2372-0018 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly <inline-formula><tex-math notation="LaTeX">200\%</tex-math> <mml:math><mml:mrow><mml:mn>200</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq1-3118563.gif"/> </inline-formula> higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly <inline-formula><tex-math notation="LaTeX">50\%</tex-math> <mml:math><mml:mrow><mml:mn>50</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq2-3118563.gif"/> </inline-formula> in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately <inline-formula><tex-math notation="LaTeX">120\%</tex-math> <mml:math><mml:mrow><mml:mn>120</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq3-3118563.gif"/> </inline-formula> where the users get profit by utilizing the internal market. |
|---|---|
| AbstractList | The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly [Formula Omitted] higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly [Formula Omitted] in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately [Formula Omitted] where the users get profit by utilizing the internal market. The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of increasing peak load and power quality reduction. Moreover, there is a growing demand for fast charging services in smart grids. Addressing the growing demand from fast charging services is challenging. To overcome this challenge, in this article, we propose a new computational architecture combining energy trading and demand responses based on cloud computing for managing virtual power plants (VPPs) in smart grids. In the proposed system, EVs can be charged at high charging rates without affecting the operation of the power grid by purchasing energy through the energy trading platform in the cloud. In addition, users with storage devices can sell energy surplus to the market. On the one hand, the energy trading platform can be regarded as an internal market of the VPP that aims to maximize its revenue. The interest of the EV owners, on the other hand, is to minimize the cost for charging. Therefore, we model the interactions between the EV owners and the VPP as a non-cooperative game. To search for the Nash equilibrium (NE) of the game, we design an algorithm and then analyze its computational complexity and communication overhead. We utilize real data from the California Independent System Operator (CAISO) to evaluate the performance of the proposed algorithm. Our results illustrate that the users with only storage devices can obtain nearly <inline-formula><tex-math notation="LaTeX">200\%</tex-math> <mml:math><mml:mrow><mml:mn>200</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq1-3118563.gif"/> </inline-formula> higher revenue on average by participating in the proposed internal market. Moreover, users with only EVs can reduce their charging costs by nearly <inline-formula><tex-math notation="LaTeX">50\%</tex-math> <mml:math><mml:mrow><mml:mn>50</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq2-3118563.gif"/> </inline-formula> in average. Users with both EVs and storage devices can reduce the charging costs even further by approximately <inline-formula><tex-math notation="LaTeX">120\%</tex-math> <mml:math><mml:mrow><mml:mn>120</mml:mn><mml:mo>%</mml:mo></mml:mrow></mml:math><inline-graphic xlink:href="chung-ieq3-3118563.gif"/> </inline-formula> where the users get profit by utilizing the internal market. |
| Author | Zhang, Yan Eliassen, Frank Maharjan, Sabita Chung, Hwei-Ming Strunz, Kai |
| Author_xml | – sequence: 1 givenname: Hwei-Ming orcidid: 0000-0001-7752-285X surname: Chung fullname: Chung, Hwei-Ming email: hweiminc@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 2 givenname: Sabita orcidid: 0000-0002-4616-8488 surname: Maharjan fullname: Maharjan, Sabita email: sabita@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 3 givenname: Yan orcidid: 0000-0002-8561-5092 surname: Zhang fullname: Zhang, Yan email: yanzhang@ieee.org organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 4 givenname: Frank orcidid: 0000-0002-7788-4137 surname: Eliassen fullname: Eliassen, Frank email: frank@ifi.uio.no organization: Department of Informatics, University of Oslo, Oslo, Norway – sequence: 5 givenname: Kai orcidid: 0000-0002-2043-4549 surname: Strunz fullname: Strunz, Kai email: kai.strunz@tu-berlin.de organization: Department of Energy and Automation Technology, Technische Universität Berlin, Berlin, Germany |
| BookMark | eNp9kM9LwzAUx4NMUKd3wUvAc2d-NE1zlDqnIEx06rGkTaoZXVKTFNl_b8bEgwff5T143x_wOQET66wG4ByjGcZIXK2qakYQwTOKcckKegCOCeUkQwiXk3Tjosw4LvAROAthjdKUDAssjsF6OUSzkT2cW-3ft3DlpTL2Hb6Z-AFv9EZaBZ90GJwNOkBjYdW7UcHKbYYx7oRzK5teK_hqfBxTzqP70h4-9tLGnfx5I32EC29UOAWHneyDPvvZU_ByO19Vd9nDcnFfXT9kLaU0ZkXOcySw4gWXrEFCUsVaIUtGWUcoIk2LWSsbxnmnGkqIIl1JujxnuGlbxDWdgst97uDd56hDrNdu9DZV1qSgPKdCMJRUaK9qvQvB664efALhtzVG9Q5qnaDWO6j1D9RkKf5YWhNlNM5GL03_n_FibzRa698ekV4EcfoNxJeE7A |
| CODEN | ITCCF6 |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_141741 crossref_primary_10_1109_JIOT_2023_3303870 crossref_primary_10_1016_j_est_2025_116672 crossref_primary_10_1016_j_jnca_2025_104220 crossref_primary_10_1049_gtd2_70057 crossref_primary_10_3390_machines13090857 crossref_primary_10_1016_j_rser_2024_114748 crossref_primary_10_1109_JIOT_2023_3314832 crossref_primary_10_3390_math10152748 crossref_primary_10_3390_en16093705 crossref_primary_10_1016_j_compeleceng_2024_109709 crossref_primary_10_1016_j_apenergy_2025_125553 crossref_primary_10_1088_2516_1083_adbeb4 crossref_primary_10_1016_j_apenergy_2024_123243 crossref_primary_10_1007_s42835_025_02194_6 crossref_primary_10_1109_TCC_2022_3185170 crossref_primary_10_1109_ACCESS_2024_3384985 crossref_primary_10_1109_TASE_2024_3406412 crossref_primary_10_3390_su15043287 crossref_primary_10_1088_1742_6596_2846_1_012027 crossref_primary_10_1016_j_rser_2025_115929 crossref_primary_10_1016_j_egyr_2023_11_061 crossref_primary_10_1016_j_epsr_2023_109783 crossref_primary_10_1109_JIOT_2024_3411555 |
| Cites_doi | 10.1017/CBO9780511804441 10.1109/TSG.2018.2825388 10.1109/TSG.2017.2786668 10.1109/TSG.2019.2963238 10.1109/TCC.2017.2744623 10.1109/TITS.2020.3008279 10.1109/TCC.2015.2440246 10.1109/TPWRS.2018.2883753 10.1109/TAC.2020.3040249 10.1109/TSG.2020.3026971 10.1109/TSG.2019.2933574 10.1109/ACCESS.2015.2476996 10.1109/TII.2019.2929498 10.1109/TSG.2017.2662801 10.1109/TSG.2018.2820026 10.1109/TII.2020.3007167 10.1109/TSG.2017.2707103 10.1109/TPWRS.2017.2710481 10.1109/TTE.2018.2847244 10.1109/TITS.2019.2919934 10.1109/TSG.2012.2223766 10.1109/TSTE.2019.2924936 10.1109/TSG.2011.2173507 10.1109/TIE.2018.2874578 10.1109/TPDS.2015.2495120 10.1109/TPEL.2018.2829211 10.1109/TSTE.2019.2895387 10.1109/TASC.2007.898490 10.1109/TPDS.2015.2398435 10.1109/TSTE.2019.2941418 10.1109/TSG.2018.2834219 10.1109/TII.2019.2898462 10.1109/TCC.2020.3031881 10.1109/TITS.2015.2462824 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCC.2021.3118563 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2372-0018 |
| EndPage | 30 |
| ExternalDocumentID | 10_1109_TCC_2021_3118563 9563207 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: SmartNEM project grantid: 267967 – fundername: PACE project grantid: 287412 – fundername: Norwegian Research Council LUCS grantid: 275106 – fundername: German Federal Ministry for Economic Affairs and Energy (BMWi) project EchtEWende: Echtzeitmodellbildung für die Energiewende grantid: 03ET4060 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c333t-6474091d767a5b09a3d5c9a8535f2302bc15cab577fdb322d2f82f4451bcc07e3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766635400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-7161 |
| IngestDate | Mon Jun 30 06:47:48 EDT 2025 Tue Nov 18 21:36:21 EST 2025 Sat Nov 29 04:11:00 EST 2025 Wed Aug 27 02:49:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-6474091d767a5b09a3d5c9a8535f2302bc15cab577fdb322d2f82f4451bcc07e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7752-285X 0000-0002-8561-5092 0000-0002-2043-4549 0000-0002-7788-4137 0000-0002-4616-8488 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/9563207 |
| PQID | 2637439950 |
| PQPubID | 2040413 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TCC_2021_3118563 proquest_journals_2637439950 ieee_primary_9563207 crossref_citationtrail_10_1109_TCC_2021_3118563 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan.-March-1 2022-1-1 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan.-March-1 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cloud computing |
| PublicationTitleAbbrev | TCC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref15 ref36 ref14 ref31 sánchez (ref34) 2020 gao (ref12) 2019; 10 ref30 ref11 ref10 ref2 ref39 ref17 ref16 ref19 ref18 teytelboym (ref25) 2020; 11 ref24 ref23 ref26 ref20 ref42 (ref32) 2020 ref22 ref21 (ref38) 0 ref28 ref27 ref29 b -sasson (ref33) 2018 ref8 gersdorf (ref37) 2020 ref7 ref9 (ref1) 2020 ref4 ref3 nesterov (ref41) 2013 ref6 ref5 ref40 |
| References_xml | – year: 2020 ident: ref32 article-title: Growing an innovative energy partnership across australia – ident: ref36 doi: 10.1017/CBO9780511804441 – ident: ref10 doi: 10.1109/TSG.2018.2825388 – ident: ref21 doi: 10.1109/TSG.2017.2786668 – volume: 11 start-page: 3095 year: 2020 ident: ref25 article-title: Integrating P2P energy trading with probabilistic distribution locational marginal pricing publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2963238 – ident: ref15 doi: 10.1109/TCC.2017.2744623 – ident: ref7 doi: 10.1109/TITS.2020.3008279 – ident: ref14 doi: 10.1109/TCC.2015.2440246 – ident: ref17 doi: 10.1109/TPWRS.2018.2883753 – ident: ref42 doi: 10.1109/TAC.2020.3040249 – year: 2018 ident: ref33 article-title: Scalable, transparent, and post-quantum secure computational integrity publication-title: Int Assoc Cryptologic Res Cryptology ePrint Archive – ident: ref19 doi: 10.1109/TSG.2020.3026971 – ident: ref22 doi: 10.1109/TSG.2019.2933574 – ident: ref2 doi: 10.1109/ACCESS.2015.2476996 – year: 2020 ident: ref34 article-title: Zero-knowledge proof-of-identity: Sybil-resistant, anonymous authentication on permissionless blockchains and incentive compatible, strictly dominant cryptocurrencies publication-title: Int Assoc Cryptologic Res Cryptology ePrint Archive – ident: ref23 doi: 10.1109/TII.2019.2929498 – ident: ref6 doi: 10.1109/TSG.2017.2662801 – ident: ref5 doi: 10.1109/TSG.2018.2820026 – year: 2020 ident: ref1 article-title: Global EV outlook 2020: Two million and counting – ident: ref40 doi: 10.1109/TII.2020.3007167 – year: 2020 ident: ref37 article-title: McKinsey electric vehicle index: Europe cushions a global plunge in EV sales – ident: ref4 doi: 10.1109/TSG.2017.2707103 – ident: ref35 doi: 10.1109/TPWRS.2017.2710481 – ident: ref30 doi: 10.1109/TTE.2018.2847244 – ident: ref8 doi: 10.1109/TITS.2019.2919934 – ident: ref9 doi: 10.1109/TSG.2012.2223766 – year: 0 ident: ref38 article-title: California ISO open access same-time information system. – ident: ref18 doi: 10.1109/TSTE.2019.2924936 – ident: ref39 doi: 10.1109/TSG.2011.2173507 – ident: ref20 doi: 10.1109/TIE.2018.2874578 – ident: ref26 doi: 10.1109/TPDS.2015.2495120 – year: 2013 ident: ref41 publication-title: Introductory Lectures on Convex Optimization A Basic Course – ident: ref29 doi: 10.1109/TPEL.2018.2829211 – ident: ref24 doi: 10.1109/TSTE.2019.2895387 – ident: ref28 doi: 10.1109/TASC.2007.898490 – volume: 10 start-page: 6629 year: 2019 ident: ref12 article-title: Energy-efficient thermal comfort control in smart buildings via deep reinforcement learning publication-title: IEEE Internet of Things Journal – ident: ref27 doi: 10.1109/TPDS.2015.2398435 – ident: ref31 doi: 10.1109/TSTE.2019.2941418 – ident: ref13 doi: 10.1109/TSG.2018.2834219 – ident: ref11 doi: 10.1109/TII.2019.2898462 – ident: ref16 doi: 10.1109/TCC.2020.3031881 – ident: ref3 doi: 10.1109/TITS.2015.2462824 |
| SSID | ssj0000851919 |
| Score | 2.4215996 |
| Snippet | The increasing penetration of renewable energy sources and electric vehicles (EVs) poses a significant challenge for the power grid operator in terms of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 17 |
| SubjectTerms | Algorithms Charging Cloud computing cloud energy trading Demand Demand response Electric power grids Electric vehicles Electrical loads Energy Energy storage Game theory Games Peak load renewable energy Renewable energy sources Revenue Smart grid Smart grids Uncertainty Virtual power plant Virtual power plants |
| Title | Optimal Energy Trading With Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids |
| URI | https://ieeexplore.ieee.org/document/9563207 https://www.proquest.com/docview/2637439950 |
| Volume | 10 |
| WOSCitedRecordID | wos000766635400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2372-0018 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000851919 issn: 2168-7161 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG2QePAiKhpRND14MXGyrXRdjwZBT0gUldvSX4szMAwM_377dYPEaEy87fB1Wfa1fX1t3_cQuohoV8WMB5401FiCYqgnREC8SMXExKybEimc2QQbDuPJhI9q6GqjhTHGuMtn5hoe3Vm-nqsVbJV17FqehCAd32IsKrVam_0UWDrwgK9PIn3eGfd6lv-FgaWlFpQi8g15nJXKj_nXgcqg8b_P2UO71eIR35TZ3kc1kx-gxtqYAVfjtIneH-xEMLORfafswxaQAKLwa1a84VszE7nGj-XlWLPEWY570_lK4_JFENh3iiqNX7IF6EvwCLzUMBgcFRD-NLMdDt8tMr08RM-D_rh371WmCp4ihBRe1GWW0gWaRUxQ6XNBNFVcWNSmqaUjoVQBVUJSxlIt7WjXYRqHKZQxk0r5zJAjVM_nuTlGmMZMh3FgIsA448eCcUWolFAzzLfY20Kd9Q9PVFVxHIwvpoljHj5PbIoSSFFSpaiFLjctPspqG3_ENiElm7gqGy3UXuc0qYbjMgkj4ogX9U9-b3WKdkLQNbi9lTaqF4uVOUPb6rPIlotz19O-AFHJ0VA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH6qYNJ2WWFlolDAh10mLTSJ6zg-Tl2BaV1XbYVxi_wrIhNNUZru75-fm1ZCoEnccniOojzbnz_b3_sAPiRsoFMuokBZZh1BsSyQMqJBolNqUz7IqZLebIJPJuntrZi24NNWC2Ot9ZfP7Dk--rN8s9Ar3Crru7U8jVE6vovOWY1aa7ujgosHEYnNWWQo-rPh0DHAOHLE1MFSQh9hjzdTeTIDe1i5aL_sg_bgbbN8JJ_X-d6Hli3fQXtjzUCakdqBPz_cVDB3kSOv7SMOkhCkyO-iviNf7FyWhvxcX4-1S1KUZHi_WBmyfhEGjrymypCbokKFCZmimxpBi6Maw3_NXZcjl1VhlgdwfTGaDa-CxlYh0JTSOkgG3JG6yPCES6ZCIalhWkiH2yx3hCRWOmJaKsZ5bpQb7ybO0zjHQmZK65Bb-h52ykVpD4GwlJs4jWyCKGfDVHKhKVMKq4aFDn270N_88Ew3NcfR-uI-89wjFJlLUYYpypoUdeHjtsXDut7Gf2I7mJJtXJONLvQ2Oc2aAbnM4oR66sXCo-dbncHrq9n3cTb-Ovl2DG9iVDn4nZYe7NTVyp7AK_23LpbVqe91_wBiM9SZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Energy+Trading+With+Demand+Responses+in+Cloud+Computing+Enabled+Virtual+Power+Plant+in+Smart+Grids&rft.jtitle=IEEE+transactions+on+cloud+computing&rft.au=Chung%2C+Hwei-Ming&rft.au=Maharjan%2C+Sabita&rft.au=Zhang%2C+Yan&rft.au=Eliassen%2C+Frank&rft.date=2022-01-01&rft.issn=2168-7161&rft.eissn=2372-0018&rft.volume=10&rft.issue=1&rft.spage=17&rft.epage=30&rft_id=info:doi/10.1109%2FTCC.2021.3118563&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCC_2021_3118563 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-7161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-7161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-7161&client=summon |