Deep Neural Network Approximation Theory
This paper develops fundamental limits of deep neural network learning by characterizing what is possible if no constraints are imposed on the learning algorithm and on the amount of training data. Concretely, we consider Kolmogorov-optimal approximation through deep neural networks with the guiding...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 67; no. 5; pp. 2581 - 2623 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!