On Joint Source-Channel Coding for Correlated Sources Over Multiple-Access Relay Channels

We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels (MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with the sources. As the optimal transmission scheme is an open problem, in this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 60; H. 10; S. 6231 - 6253
Hauptverfasser: Murin, Yonathan, Dabora, Ron, Gündüz, Deniz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.10.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels (MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with the sources. As the optimal transmission scheme is an open problem, in this paper, we propose a new joint source-channel coding scheme based on a novel combination of the correlation preserving mapping (CPM) technique with Slepian-Wolf (SW) source coding, and obtain the corresponding sufficient conditions. The proposed coding scheme is based on the decode-and-forward strategy, and utilizes CPM for encoding information simultaneously to the relay and the destination, whereas the cooperation information from the relay is encoded via SW source coding. It is shown that there are cases in which the new scheme strictly outperforms the schemes available in the literature. This is the first instance of a source-channel code that uses CPM for encoding information to two different nodes (relay and destination). In addition to sufficient conditions, we present three different sets of single-letter necessary conditions for reliable transmission of correlated sources over DM MARCs. The newly derived conditions are shown to be at least as tight as the previously known necessary conditions.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2343626