Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control

Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE robotics and automation letters Ročník 5; číslo 2; s. 3049 - 3056
Hlavní autori: Nubert, Julian, Kohler, Johannes, Berenz, Vincent, Allgower, Frank, Trimpe, Sebastian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2377-3766, 2377-3766
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.
AbstractList Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model predictive control (MPC) with function approximation via (deep) neural networks (NNs). The result is a new approach for complex tasks with nonlinear, uncertain, and constrained dynamics as are common in robotics. Specifically, we leverage recent results in MPC research to propose a new robust setpoint tracking MPC algorithm, which achieves reliable and safe tracking of a dynamic setpoint while guaranteeing stability and constraint satisfaction. The presented robust MPC scheme constitutes a one-layer approach that unifies the often separated planning and control layers, by directly computing the control command based on a reference and possibly obstacle positions. As a separate contribution, we show how the computation time of the MPC can be drastically reduced by approximating the MPC law with a NN controller. The NN is trained and validated from offline samples of the MPC, yielding statistical guarantees, and used in lieu thereof at run time. Our experiments on a state-of-the-art robot manipulator are the first to show that both the proposed robust and approximate MPC schemes scale to real-world robotic systems.
Author Nubert, Julian
Berenz, Vincent
Allgower, Frank
Kohler, Johannes
Trimpe, Sebastian
Author_xml – sequence: 1
  givenname: Julian
  orcidid: 0000-0001-8949-6134
  surname: Nubert
  fullname: Nubert, Julian
  email: nubertj@ethz.ch
  organization: Intelligent Control Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
– sequence: 2
  givenname: Johannes
  orcidid: 0000-0002-5556-604X
  surname: Kohler
  fullname: Kohler, Johannes
  email: johannes.koehler@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
– sequence: 3
  givenname: Vincent
  orcidid: 0000-0003-2226-9660
  surname: Berenz
  fullname: Berenz, Vincent
  email: vberenz@tuebingen.mpg.de
  organization: Autonomous Motion Department, Max Planck Institute for Intelligent Systems, Tübingen, Germany
– sequence: 4
  givenname: Frank
  orcidid: 0000-0002-3702-3658
  surname: Allgower
  fullname: Allgower, Frank
  email: frank.allgower@ist.uni-stuttgart.de
  organization: Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
– sequence: 5
  givenname: Sebastian
  orcidid: 0000-0002-2785-2487
  surname: Trimpe
  fullname: Trimpe, Sebastian
  email: strimpe@tuebingen.mpg.de
  organization: Intelligent Control Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
BookMark eNp9kEFLw0AQhRepYK29C14CnlM3u0km660Eq0KrUut5mSYbSRt362aD-O_d2CLiwdMMw_vePN4pGWijFSHnEZ1EERVX8-V0wiijEyYgAQZHZMg4QMghTQe_9hMybtsNpTRKGHCRDMnqGSsVoC6DGbYuWFkstrV-DYwOMFiatXHBAnW96xp0xl73p87rFk_5N_SgOouNH-7D2G2QG-2sac7IcYVNq8aHOSIvs5tVfhfOH2_v8-k8LDjnLkxSxJKKSkC6jjIfkgsEH21d0QhFQROAMilTEBgD51lJVYYlQgxFDCXPBB-Ry73vzpr3TrVObkxntX8pvVsMjPE49qp0ryqsaVurKlnUDl3dZ8W6kRGVfYnSlyj7EuWhRA_SP-DO1m9oP_9DLvZIrZT6kQtK0yxJ-RfeaHwD
CODEN IRALC6
CitedBy_id crossref_primary_10_1016_j_jfranklin_2023_04_031
crossref_primary_10_1016_j_est_2025_116242
crossref_primary_10_1109_TCST_2022_3227451
crossref_primary_10_1016_j_conengprac_2024_105952
crossref_primary_10_1109_TRO_2025_3600125
crossref_primary_10_1109_TIE_2022_3165277
crossref_primary_10_1109_TII_2022_3215985
crossref_primary_10_3390_s24134416
crossref_primary_10_1016_j_neucom_2021_07_042
crossref_primary_10_1109_LRA_2025_3568315
crossref_primary_10_1002_rnc_6751
crossref_primary_10_1016_j_isatra_2022_11_024
crossref_primary_10_3390_automation5010002
crossref_primary_10_1109_TASE_2024_3515172
crossref_primary_10_1155_2022_7662264
crossref_primary_10_1002_rnc_7945
crossref_primary_10_1002_oca_3047
crossref_primary_10_1016_j_ejcon_2024_101118
crossref_primary_10_3390_act13070252
crossref_primary_10_1002_oca_3207
crossref_primary_10_3233_JAE_240003
crossref_primary_10_1126_scirobotics_adi6421
crossref_primary_10_1109_LRA_2021_3135569
crossref_primary_10_1016_j_jfranklin_2021_09_006
crossref_primary_10_1088_1674_1056_ad7e9a
crossref_primary_10_3390_app10207270
crossref_primary_10_1109_LRA_2025_3534519
crossref_primary_10_1016_j_oceaneng_2025_120682
crossref_primary_10_1016_j_arcontrol_2023_100929
crossref_primary_10_1016_j_mechatronics_2024_103222
crossref_primary_10_1002_asjc_3713
crossref_primary_10_3390_a16080387
crossref_primary_10_1007_s12555_021_0972_5
crossref_primary_10_1016_j_automatica_2020_109030
crossref_primary_10_1109_ACCESS_2024_3461756
crossref_primary_10_3390_math10081268
crossref_primary_10_1016_j_conengprac_2022_105367
crossref_primary_10_1007_s00170_021_07682_3
crossref_primary_10_3390_s25092676
crossref_primary_10_3390_app13021212
crossref_primary_10_1109_TIV_2023_3347203
crossref_primary_10_1109_LCSYS_2025_3560531
crossref_primary_10_1016_j_oceaneng_2025_122293
crossref_primary_10_1108_RIA_10_2024_0237
crossref_primary_10_1109_TCYB_2023_3305941
crossref_primary_10_1109_LRA_2023_3322899
crossref_primary_10_1038_s41598_022_08192_2
crossref_primary_10_1109_ACCESS_2020_3043247
crossref_primary_10_1109_ACCESS_2023_3306070
crossref_primary_10_1109_TRO_2022_3152705
crossref_primary_10_1109_TAC_2022_3216978
crossref_primary_10_1109_TASE_2023_3259428
crossref_primary_10_1109_TCDS_2023_3275217
crossref_primary_10_1016_j_conengprac_2024_106041
crossref_primary_10_1109_TAC_2025_3558376
crossref_primary_10_1007_s40997_023_00596_3
crossref_primary_10_1002_rnc_7626
crossref_primary_10_1016_j_solener_2023_112080
crossref_primary_10_1109_TIE_2022_3150090
crossref_primary_10_3390_math13101677
crossref_primary_10_1109_TII_2022_3217833
crossref_primary_10_1109_LCSYS_2021_3134914
crossref_primary_10_1016_j_isatra_2025_08_035
crossref_primary_10_1007_s12555_024_0321_6
crossref_primary_10_1109_TAC_2022_3200948
crossref_primary_10_1109_TAC_2024_3390870
crossref_primary_10_1017_S0263574724002042
crossref_primary_10_3390_app15010485
crossref_primary_10_1016_j_automatica_2025_112442
crossref_primary_10_1109_TAC_2022_3173494
crossref_primary_10_1016_j_oceaneng_2024_117508
crossref_primary_10_1109_TSMC_2023_3285603
crossref_primary_10_1016_j_compchemeng_2021_107266
crossref_primary_10_1109_ACCESS_2023_3326372
crossref_primary_10_1109_ACCESS_2022_3217239
crossref_primary_10_1109_TPEL_2022_3172681
crossref_primary_10_1109_TAC_2020_3030877
crossref_primary_10_1109_LRA_2025_3595037
crossref_primary_10_1109_LRA_2023_3264816
crossref_primary_10_3390_app13074411
crossref_primary_10_1109_JAS_2024_124929
crossref_primary_10_3390_machines10050392
crossref_primary_10_1016_j_ifacol_2022_11_039
crossref_primary_10_1002_asjc_3755
crossref_primary_10_3390_math11163593
crossref_primary_10_1109_TASE_2021_3074984
crossref_primary_10_3390_s24113573
crossref_primary_10_1109_TAC_2025_3550072
crossref_primary_10_1002_rnc_6839
crossref_primary_10_3390_s23020989
crossref_primary_10_3390_act11090259
crossref_primary_10_1109_TCYB_2024_3408254
crossref_primary_10_1109_TAC_2023_3283213
crossref_primary_10_1016_j_conengprac_2025_106238
crossref_primary_10_1016_j_cnsns_2025_108687
crossref_primary_10_1109_LRA_2025_3597863
crossref_primary_10_1109_TASE_2024_3453668
crossref_primary_10_1109_LRA_2021_3128697
crossref_primary_10_1016_j_isatra_2023_08_008
crossref_primary_10_1016_j_isatra_2021_03_035
crossref_primary_10_1109_TRO_2024_3400975
crossref_primary_10_1371_journal_pwat_0000361
crossref_primary_10_1109_LRA_2023_3246839
crossref_primary_10_1109_JPROC_2025_3557698
crossref_primary_10_1016_j_compag_2024_109627
crossref_primary_10_1007_s11071_023_08295_z
crossref_primary_10_1109_TAC_2020_2982585
Cites_doi 10.23919/ECC.2019.8796049
10.1109/ICRA.2017.7989693
10.1109/ICRA.2018.8460863
10.1016/j.jprocont.2009.11.007
10.3182/20140824-6-ZA-1003.01079
10.1109/TCST.2016.2601624
10.23919/ACC.2018.8431275
10.1016/j.automatica.2016.11.022
10.1007/s12532-018-0139-4
10.1080/01621459.1963.10500830
10.1109/LCSYS.2018.2843682
10.1109/TAC.2019.2949350
10.1177/0278364917712421
10.1109/LRA.2019.2929987
10.1109/LRA.2018.2795645
10.1109/TRO.2018.2871439
10.1109/TAC.2018.2798803
10.1016/j.ifacol.2017.08.1208
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LRA.2020.2975727
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2377-3766
EndPage 3056
ExternalDocumentID 10_1109_LRA_2020_2975727
9006856
Genre orig-research
GrantInformation_xml – fundername: German Research Foundation
  grantid: GRK 2198/1
– fundername: Max Planck Society
– fundername: Cyber Valley Initiative
GroupedDBID 0R~
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c333t-56aad09f976b1823739a7015bf01a9c0577d5d679a47338d0e8ada747c47d3893
IEDL.DBID RIE
ISICitedReferencesCount 163
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000526521700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2377-3766
IngestDate Mon Jun 30 05:58:07 EDT 2025
Tue Nov 18 22:33:11 EST 2025
Sat Nov 29 06:03:07 EST 2025
Wed Aug 27 02:35:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-56aad09f976b1823739a7015bf01a9c0577d5d679a47338d0e8ada747c47d3893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8949-6134
0000-0002-3702-3658
0000-0003-2226-9660
0000-0002-2785-2487
0000-0002-5556-604X
OpenAccessLink http://hdl.handle.net/20.500.11850/406451
PQID 2374722344
PQPubID 4437225
PageCount 8
ParticipantIDs ieee_primary_9006856
crossref_primary_10_1109_LRA_2020_2975727
proquest_journals_2374722344
crossref_citationtrail_10_1109_LRA_2020_2975727
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE robotics and automation letters
PublicationTitleAbbrev LRA
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref2
ref17
nubert (ref24) 2019
ref16
köhler (ref8) 2019
ref19
ref18
karg (ref11) 2018
köhler (ref5) 2019
siciliano (ref1) 2008
ref23
rawlings (ref3) 2009
ref26
zhang (ref25) 2017
ref20
zhang (ref10) 2019
ref22
ref21
ref27
chen (ref12) 2019
ref7
ref9
ref4
ref6
References_xml – year: 2019
  ident: ref10
  article-title: Near-optimal rapid MPC using neural networks: A primal-dual policy learning framework
  publication-title: arXiv 1912 04744
– ident: ref26
  doi: 10.23919/ECC.2019.8796049
– ident: ref18
  doi: 10.1109/ICRA.2017.7989693
– ident: ref19
  doi: 10.1109/ICRA.2018.8460863
– year: 2009
  ident: ref3
  publication-title: Model Predictive Control Theory and Design
– year: 2018
  ident: ref11
  article-title: Efficient representation and approximation of model predictive control laws via deep learning
  publication-title: arXiv 1806 10644
– ident: ref7
  doi: 10.1016/j.jprocont.2009.11.007
– ident: ref22
  doi: 10.3182/20140824-6-ZA-1003.01079
– ident: ref14
  doi: 10.1109/TCST.2016.2601624
– ident: ref9
  doi: 10.23919/ACC.2018.8431275
– year: 2019
  ident: ref8
  article-title: A nonlinear tracking model predictive control scheme for dynamic target signals
  publication-title: arXiv 1911 03304
– ident: ref4
  doi: 10.1016/j.automatica.2016.11.022
– ident: ref27
  doi: 10.1007/s12532-018-0139-4
– ident: ref21
  doi: 10.1080/01621459.1963.10500830
– year: 2019
  ident: ref24
  article-title: Learning-based Approximate Model Predictive Control With Guarantees - Joining Neural Networks with Recent Robust MPC
– year: 2019
  ident: ref12
  article-title: Large scale model predictive control with neural networks and primal active sets
  publication-title: arXiv 1910 10835
– year: 2008
  ident: ref1
  publication-title: Robotics Modelling Planning and Control
– ident: ref13
  doi: 10.1109/LCSYS.2018.2843682
– ident: ref20
  doi: 10.1109/TAC.2019.2949350
– ident: ref17
  doi: 10.1177/0278364917712421
– year: 2019
  ident: ref5
  article-title: A computationally efficient robust model predictive control framework for uncertain nonlinear systems
  publication-title: arXiv 1910 12081
– ident: ref15
  doi: 10.1109/LRA.2019.2929987
– ident: ref2
  doi: 10.1109/LRA.2018.2795645
– ident: ref16
  doi: 10.1109/TRO.2018.2871439
– ident: ref6
  doi: 10.1109/TAC.2018.2798803
– ident: ref23
  doi: 10.1016/j.ifacol.2017.08.1208
– year: 2017
  ident: ref25
  article-title: Optimization-based collision avoidance
  publication-title: arXiv 1711 03449
SSID ssj0001527395
Score 2.5594323
Snippet Fast feedback control and safety guarantees are essential in modern robotics. We present an approach that achieves both by combining novel robust model...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3049
SubjectTerms Algorithms
Constraints
Deep learning in robotics and automation
Dynamic stability
Electron tubes
Feedback control
Manipulators
motion control
Network control
Neural networks
optimization and optimal control
Predictive control
redundant robots
Robot arms
Robotics
Robust control
robust/adaptive control of robotic systems
Robustness
Run time (computers)
Safety
Statistical methods
Task analysis
Task complexity
Tracking
Uncertainty
Title Safe and Fast Tracking on a Robot Manipulator: Robust MPC and Neural Network Control
URI https://ieeexplore.ieee.org/document/9006856
https://www.proquest.com/docview/2374722344
Volume 5
WOSCitedRecordID wos000526521700020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: RIE
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2377-3766
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001527395
  issn: 2377-3766
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4A8aAHX2hEkezBi4mFlm27rDdCIB6EEMSEW7Pd3SYkpjVQPPrb3dkWJNGYeGuamT5mup3HznwDcIeFrSr2fEeEkjp-3JWOkDp0ErRGCXNFIIthE2wy6S0WfFqBh10vjNbaFp_pNh7avXyVyQ2myjocGxqCsApVxljRq_WdT0EkMR5sdyJd3nme9U3813Xb2DzKcGzMnuWxo1R-_H-tURmd_O9xTuG4dB5Jv9D2GVR0eg5He5CCdZi_iEQTkSoyEuucGFMkMRlOspQIMsviLCdjkS7t1K5s9YinNoZuPB1YJsTqMHeYFMXhZFAUsl_A62g4Hzw55eQER1JKcycIhVAuT4yvEXsIR0O5YEZEceJ6gkvjozEVqJBx4TMToypX94QSJrKQPlPowlxCLc1SfQWkGwpcSFqFxpobCu4lvUD5Pk8oSySjDehspRrJElYcp1u8RTa8cHlk9BChHqJSDw2433G8F5Aaf9DWUe47ulLkDWhuFReVa24dmddE5Evq-9e_c93AIV67qLtpQi1fbfQtHMiPfLletaA6_hy27Ef1BTH5x44
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mFNQHv8Xp1Dz4ItitXdNm8W0Mx8StjDlhbyVNUhhIK1vn32-u7eZAEXwr5Y60d03vI3e_A7jDwlYVOdQSvnQtGrWkJaT2rRitUcxs4cli2AQLgvZ0ykcVeFj3wmit8-Iz3cDL_CxfpXKJqbImx4YGz9-CbY_SllN0a31nVBBLjHurs0ibNwfjjokAW3YD20cZDo7ZsD35MJUff-DcrPQO__dAR3BQuo-kU-j7GCo6OYH9DVDBU5i8ilgTkSjSE4uMGGMkMR1O0oQIMk6jNCNDkczyuV3p_BFvLQ3dcNTNmRCtw6wQFOXhpFuUsp_BW-9p0u1b5ewES7qum1meL4SyeWy8jchBQBqXC2ZEFMW2I7g0XhpTnvIZF5SZKFXZui2UMLGFpEyhE3MO1SRN9AWQli9wK2nlG3tuKLgTtz1FKY9dFkvm1qC5kmooS2BxnG_xHuYBhs1Do4cQ9RCWeqjB_ZrjowDV-IP2FOW-pitFXoP6SnFhuesWoXlNxL50Kb38nesWdvuT4SAcPAcvV7CH6xRVOHWoZvOlvoYd-ZnNFvOb_NP6AgX0yaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safe+and+Fast+Tracking+on+a+Robot+Manipulator%3A+Robust+MPC+and+Neural+Network+Control&rft.jtitle=IEEE+robotics+and+automation+letters&rft.au=Nubert%2C+Julian&rft.au=Kohler%2C+Johannes&rft.au=Berenz%2C+Vincent&rft.au=Allgower%2C+Frank&rft.date=2020-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2377-3766&rft.volume=5&rft.issue=2&rft.spage=3050&rft_id=info:doi/10.1109%2FLRA.2020.2975727&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2377-3766&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2377-3766&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2377-3766&client=summon