Coverage Probability of Double-IRS Assisted Communication Systems

In this letter, we focus on the coverage probability of a double-intelligent reflecting surface (IRS) assisted wireless network and study the impact of multiplicative beamforming gain and correlated Rayleigh fading. In particular, we obtain a novel closed-form expression of the coverage probability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters Jg. 11; H. 1; S. 96 - 100
Hauptverfasser: Papazafeiropoulos, Anastasios, Kourtessis, Pandelis, Chatzinotas, Symeon, Senior, John M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-2337, 2162-2345
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we focus on the coverage probability of a double-intelligent reflecting surface (IRS) assisted wireless network and study the impact of multiplicative beamforming gain and correlated Rayleigh fading. In particular, we obtain a novel closed-form expression of the coverage probability of a single-input single-output (SISO) system assisted by two large IRSs while being dependent on the corresponding arbitrary reflecting beamforming matrices (RBMs) and large-scale statistics in terms of correlation matrices. Taking advantage of the large-scale statistics, i.e., statistical channel state information (CSI), we perform optimization of the RBMs of both IRSs once per several coherence intervals rather than at each interval. Hence, we achieve a reduction of the computational complexity, otherwise increased in multi-IRS-assisted networks during their RBM optimization. Numerical results validate the analytical expressions even for small IRSs, confirm enhanced performance over the conventional single-IRS counterpart, and reveal insightful properties.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2021.3121209