Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification

We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing ce...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:INFORMATION SCIENCES Ročník 720; s. 122520
Hlavní autoři: Zenil, Hector, Kiani, Narsis A., Adams, Alyssa, Abrahão, Felipe S., Rueda-Toicen, Antonio, Zea, Allan A., Ozelim, Luan, Tegnér, Jesper
Médium: Journal Article Publikace
Jazyk:angličtina
Vydáno: Elsevier Inc 01.12.2025
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing certain dimensionality aspects, such as the number of edges in a network, while retaining essential features of interest. These features include preserving crucial network properties like degree distribution, clustering coefficient, edge betweenness, and degree and eigenvector centralities but can also go beyond edges to nodes and weights for network pruning and trimming. Our approach outperforms classical statistical Machine Learning techniques and state-of-the-art dimensionality reduction algorithms by preserving a greater number of data features that statistical algorithms would miss, particularly nonlinear patterns stemming from deterministic recursive processes that may look statistically random but are not. Moreover, previous approaches heavily rely on a priori feature selection, which requires constant supervision. Our findings demonstrate the effectiveness of the algorithms in overcoming some of these limitations while maintaining a time-efficient computational profile. Our approach not only matches, but also exceeds, the performance of established and state-of-the-art dimensionality reduction algorithms. We extend the applicability of our method to lossy compression tasks involving images and any multi-dimensional data. This highlights the versatility and broad utility of the approach in multiple domains. •Unsupervised, model-free dimensionality reduction using complexity theory.•Preserves key data properties better than traditional techniques.•Captures nonlinear patterns missed by statistical ML methods.•No a priori feature selection or supervision required.•Next generation cognitive neuro-symbolic ML for multi-modal data.
AbstractList We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing certain dimensionality aspects, such as the number of edges in a network, while retaining essential features of interest. These features include preserving crucial network properties like degree distribution, clustering coefficient, edge betweenness, and degree and eigenvector centralities but can also go beyond edges to nodes and weights for network pruning and trimming. Our approach outperforms classical statistical Machine Learning techniques and state-of-the-art dimensionality reduction algorithms by preserving a greater number of data features that statistical algorithms would miss, particularly nonlinear patterns stemming from deterministic recursive processes that may look statistically random but are not. Moreover, previous approaches heavily rely on a priori feature selection, which requires constant supervision. Our findings demonstrate the effectiveness of the algorithms in overcoming some of these limitations while maintaining a time-efficient computational profile. Our approach not only matches, but also exceeds, the performance of established and state-of-the-art dimensionality reduction algorithms. We extend the applicability of our method to lossy compression tasks involving images and any multi-dimensional data. This highlights the versatility and broad utility of the approach in multiple domains. •Unsupervised, model-free dimensionality reduction using complexity theory.•Preserves key data properties better than traditional techniques.•Captures nonlinear patterns missed by statistical ML methods.•No a priori feature selection or supervision required.•Next generation cognitive neuro-symbolic ML for multi-modal data.
ArticleNumber 122520
Author Zenil, Hector
Rueda-Toicen, Antonio
Zea, Allan A.
Tegnér, Jesper
Ozelim, Luan
Kiani, Narsis A.
Abrahão, Felipe S.
Adams, Alyssa
Author_xml – sequence: 1
  givenname: Hector
  surname: Zenil
  fullname: Zenil, Hector
  email: hector.zenil@kcl.ac.uk
  organization: Department of Biomedical Computing, Department of Digital Twins, School of Biomedical Engineering and Imaging Sciences, King's Institute for AI, King's College, London, UK
– sequence: 2
  givenname: Narsis A.
  surname: Kiani
  fullname: Kiani, Narsis A.
  organization: Algorithmic Dynamics Lab and Department of Oncology-Pathology, Center of Molecular Medicine, Karolinska Institutet, Sweden
– sequence: 3
  givenname: Alyssa
  orcidid: 0000-0003-1869-7750
  surname: Adams
  fullname: Adams, Alyssa
  organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK
– sequence: 4
  givenname: Felipe S.
  orcidid: 0000-0001-7314-6543
  surname: Abrahão
  fullname: Abrahão, Felipe S.
  organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK
– sequence: 5
  givenname: Antonio
  surname: Rueda-Toicen
  fullname: Rueda-Toicen, Antonio
  organization: Universidad Central de Venezuela, Instituto Nacional de Bioingeniería, Venezuela
– sequence: 6
  givenname: Allan A.
  surname: Zea
  fullname: Zea, Allan A.
  organization: Universidad Central de Venezuela, Department of Mathematics, Venezuela
– sequence: 7
  givenname: Luan
  orcidid: 0000-0002-2581-0486
  surname: Ozelim
  fullname: Ozelim, Luan
  organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK
– sequence: 8
  givenname: Jesper
  surname: Tegnér
  fullname: Tegnér, Jesper
  organization: King Abdullah University of Science and Technology (KAUST), Biological and Environmental, Science and Engineering Division, Kingdom of Saudi Arabia
BackLink http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet)
BookMark eNp9kM1OAjEURrvAREAfwF0fQMbbFoYhrgzxL8G40XXTaW-lMNOSdpD49naAuHR1b7723OQ7IzLwwSMhNwwKBqy82xTOp4IDnxWM8xmHARkCcJjkZHZJRiltAGA6L8shiW_Ou1Y1VDVfIbpu3TpNnbchtqpzwdMmpERb7NbBJJpjalyLPvVPEc1e959uqUXV7SPShA0eI6q8oR67Q4hbmnYqJmedPp68IhdWNQmvz3NMPp8eP5Yvk9X78-vyYTXRQohuMp3Z0sw5WDa3wtSqtlUpKqErsygtLqZcK2Ysr9TCMKwrDkxbwVBxrKC2NYgxKU530wF3-1ruYi4af2RQTp6jbd5QMpiKEnqAnQAdc-mI9g9hIHuzciOzWdmblSezmbk_MZibfDuMMmmHXqNxMZuQJrh_6F8p4omW
Cites_doi 10.3233/COM-13019
10.1103/PhysRevE.96.012308
10.3390/e23070835
10.1016/0022-0000(89)90044-5
10.1080/10586458.2002.10504481
10.1007/978-0-387-68441-3
10.3390/e20080605
10.1093/comnet/cnv025
10.7717/peerj-cs.23
10.1162/0899766041732396
10.1126/science.1089167
10.1145/2492007.2492029
10.1016/j.semcdb.2016.01.012
10.1137/0201008
10.1145/3186727
10.1016/j.isci.2019.07.043
10.3390/e22060612
ContentType Journal Article
Publication
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
BZJLE
D8T
STUKM
DOI 10.1016/j.ins.2025.122520
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SwePub Other
SWEPUB Freely available online
SwePub Other full text
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
ExternalDocumentID oai_swepub_ki_se_1043600
10_1016_j_ins_2025_122520
S0020025525006528
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
77I
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
~HD
9DU
AAYXX
CITATION
ADTPV
BZJLE
D8T
STUKM
ID FETCH-LOGICAL-c333t-45f6d720f17f3dbabf86383c8d96fe942ca1df28a9d1eb8201cf31ea2e80bfb03
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542337700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 25 03:37:51 EST 2025
Sat Nov 29 06:48:59 EST 2025
Sat Oct 04 17:01:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Algorithmic image segmentation
Data dimensionality reduction
Lossy algorithmic complexity
Recursive compression
Machine learning
Network complexity
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-45f6d720f17f3dbabf86383c8d96fe942ca1df28a9d1eb8201cf31ea2e80bfb03
ORCID 0000-0003-1869-7750
0000-0002-2581-0486
0000-0001-7314-6543
OpenAccessLink http://kipublications.ki.se/Default.aspx?queryparsed=id
ParticipantIDs swepub_primary_oai_swepub_ki_se_1043600
crossref_primary_10_1016_j_ins_2025_122520
elsevier_sciencedirect_doi_10_1016_j_ins_2025_122520
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationTitle INFORMATION SCIENCES
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Benczur, Karger (br0080) May 1996
Zenil, Soler-Toscano, Kiani, Hernández-Orozco, Rueda-Toicen (br0140) 2018; 20
Zenil (br0230) 2017
Kiani, Zenil, Olczak, Tegnér (br0110) 2016; 51
Zenil (br0190) 2020; 22
Zenil, Kiani, Tegnér (br0100) 2017; 96
Calude, Dinneen, Shu (br0240) 2002; 11
Bengio, Delalleau, Roux, Paiement, Vincent, Ouimet (br0250) 2004; 16
Aho, Garey, Ullman (br0010) 1972; 1
Fodor (br0060) 2002
Downey, Hirschfeldt (br0210) 2010
Milo, Itzkovitz, Kashtan, Levitt, Shen-Orr, Ayzenshtat, Sheffer, Alon (br0260) 2004; 303
Zenil, Soler-Toscano, Delahaye, Gauvrit (br0160) 2015; 1
Zenil, Kiani, Marabita, Deng, Elias, Schmidt, Ball, Tegnér (br0180) Sep 2019; 19
Zenil, Kiani, Tegnér (br0120) 2016; 4
Zenil, Kiani, Tegner (br0200) 2023
Chew (br0040) 1989; 39
Cunningham (br0050) 2007
Boehmke, Greenwell (br0030) 2019
Batson, Spielman, Srivastava, Teng (br0020) 2013; 56
Calude (br0150) 2002
Abrahão, Wehmuth, Zenil, Ziviani (br0170) Jun. 2021; 23
Li, Vitányi (br0220) 2008
Liu, Safavi, Dighe, Koutra (br0070) Jun 2018; 51
Soler-Toscano, Zenil, Delahaye, Gauvrit (br0130) 2013; 2
Spielman, Srivastava (br0090) 2008
Fodor (10.1016/j.ins.2025.122520_br0060) 2002
Zenil (10.1016/j.ins.2025.122520_br0140) 2018; 20
Zenil (10.1016/j.ins.2025.122520_br0160) 2015; 1
Boehmke (10.1016/j.ins.2025.122520_br0030) 2019
Milo (10.1016/j.ins.2025.122520_br0260) 2004; 303
Downey (10.1016/j.ins.2025.122520_br0210) 2010
Calude (10.1016/j.ins.2025.122520_br0150) 2002
Benczur (10.1016/j.ins.2025.122520_br0080) 1996
Spielman (10.1016/j.ins.2025.122520_br0090) 2008
Zenil (10.1016/j.ins.2025.122520_br0100) 2017; 96
Aho (10.1016/j.ins.2025.122520_br0010) 1972; 1
Soler-Toscano (10.1016/j.ins.2025.122520_br0130) 2013; 2
Zenil (10.1016/j.ins.2025.122520_br0120) 2016; 4
Li (10.1016/j.ins.2025.122520_br0220) 2008
Zenil (10.1016/j.ins.2025.122520_br0200) 2023
Liu (10.1016/j.ins.2025.122520_br0070) 2018; 51
Chew (10.1016/j.ins.2025.122520_br0040) 1989; 39
Bengio (10.1016/j.ins.2025.122520_br0250) 2004; 16
Zenil (10.1016/j.ins.2025.122520_br0180) 2019; 19
Batson (10.1016/j.ins.2025.122520_br0020) 2013; 56
Cunningham (10.1016/j.ins.2025.122520_br0050) 2007
Abrahão (10.1016/j.ins.2025.122520_br0170) 2021; 23
Kiani (10.1016/j.ins.2025.122520_br0110) 2016; 51
Zenil (10.1016/j.ins.2025.122520_br0230) 2017
Calude (10.1016/j.ins.2025.122520_br0240) 2002; 11
Zenil (10.1016/j.ins.2025.122520_br0190) 2020; 22
References_xml – year: 2002
  ident: br0150
  article-title: Information and Randomness: An Algorithmic Perspective
– volume: 2
  start-page: 125
  year: 2013
  end-page: 140
  ident: br0130
  article-title: Correspondence and independence of numerical evaluations of algorithmic information measures
  publication-title: Computability
– volume: 19
  start-page: 1160
  year: Sep 2019
  end-page: 1172
  ident: br0180
  article-title: An algorithmic information calculus for causal discovery and reprogramming systems
  publication-title: iScience
– volume: 39
  start-page: 205
  year: 1989
  end-page: 219
  ident: br0040
  article-title: There are planar graphs almost as good as the complete graph
  publication-title: J. Comput. Syst. Sci.
– volume: 96
  year: 2017
  ident: br0100
  article-title: Low algorithmic complexity entropy-deceiving graphs
  publication-title: Phys. Rev. E
– start-page: 563
  year: 2008
  end-page: 568
  ident: br0090
  article-title: Graph sparsification by effective resistances
  publication-title: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC ‘08)
– year: 2010
  ident: br0210
  article-title: Algorithmic Randomness and Complexity
  publication-title: Theory and Applications of Computability
– volume: 20
  start-page: 605
  year: 2018
  ident: br0140
  article-title: A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity
  publication-title: Entropy
– volume: 56
  year: 2013
  ident: br0020
  article-title: Spectral sparsification of graphs: theory and algorithms
  publication-title: Commun. ACM
– year: 2008
  ident: br0220
  article-title: An Introduction to Kolmogorov Complexity and Its Applications
– volume: 22
  start-page: 612
  year: 2020
  ident: br0190
  article-title: A review of methods for estimating algorithmic complexity: options, challenges, and new directions
  publication-title: Entropy
– start-page: 453
  year: 2017
  end-page: 475
  ident: br0230
  article-title: Algorithmic data analytics, small data matters and correlation versus causation
  publication-title: Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data
– volume: 303
  start-page: 1538
  year: 2004
  end-page: 1542
  ident: br0260
  article-title: Superfamilies of designed and evolved networks
  publication-title: Science
– volume: 51
  start-page: 1
  year: Jun 2018
  end-page: 34
  ident: br0070
  article-title: Graph summarization methods and applications
  publication-title: ACM Comput. Surv.
– year: 2007
  ident: br0050
  article-title: Dimension Reduction
– volume: 11
  start-page: 361
  year: 2002
  end-page: 370
  ident: br0240
  article-title: Computing a glimpse of randomness
  publication-title: Exp. Math.
– volume: 16
  start-page: 2197
  year: 2004
  end-page: 2219
  ident: br0250
  article-title: Learning eigenfunctions links spectral embedding and kernel PCA
  publication-title: Neural Comput.
– year: 2002
  ident: br0060
  article-title: A survey of dimension reduction techniques
– volume: 4
  start-page: 342
  year: 2016
  end-page: 362
  ident: br0120
  article-title: Quantifying loss of information in network-based dimensionality reduction techniques
  publication-title: J. Complex Netw.
– start-page: 343
  year: 2019
  end-page: 396
  ident: br0030
  article-title: Dimension reduction
  publication-title: Hands-On Machine Learning with R
– year: 2023
  ident: br0200
  article-title: Algorithmic Information Dynamics
– volume: 1
  start-page: 131
  year: 1972
  end-page: 137
  ident: br0010
  article-title: The transitive reduction of a directed graph
  publication-title: SIAM J. Comput.
– volume: 51
  start-page: 44
  year: 2016
  end-page: 52
  ident: br0110
  article-title: Evaluating network inference methods in terms of their ability to preserve the topology and complexity of genetic networks
  publication-title: Semin. Cell Dev. Biol.
– volume: 23
  start-page: 835
  year: Jun. 2021
  ident: br0170
  article-title: Algorithmic information distortions in node-aligned and node-unaligned multidimensional networks
  publication-title: Entropy
– start-page: 47
  year: May 1996
  end-page: 55
  ident: br0080
  article-title: Approximating s-t minimum cuts in O(n2) time
  publication-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC 96)
– volume: 1
  start-page: e23
  year: 2015
  ident: br0160
  article-title: Two-dimensional Kolmogorov complexity and validation of the coding theorem method by compressibility
  publication-title: PeerJ Comput. Sci.
– start-page: 563
  year: 2008
  ident: 10.1016/j.ins.2025.122520_br0090
  article-title: Graph sparsification by effective resistances
– volume: 2
  start-page: 125
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2025.122520_br0130
  article-title: Correspondence and independence of numerical evaluations of algorithmic information measures
  publication-title: Computability
  doi: 10.3233/COM-13019
– start-page: 453
  year: 2017
  ident: 10.1016/j.ins.2025.122520_br0230
  article-title: Algorithmic data analytics, small data matters and correlation versus causation
– volume: 96
  year: 2017
  ident: 10.1016/j.ins.2025.122520_br0100
  article-title: Low algorithmic complexity entropy-deceiving graphs
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.96.012308
– year: 2008
  ident: 10.1016/j.ins.2025.122520_br0220
– volume: 23
  start-page: 835
  issue: 7
  year: 2021
  ident: 10.1016/j.ins.2025.122520_br0170
  article-title: Algorithmic information distortions in node-aligned and node-unaligned multidimensional networks
  publication-title: Entropy
  doi: 10.3390/e23070835
– start-page: 343
  year: 2019
  ident: 10.1016/j.ins.2025.122520_br0030
  article-title: Dimension reduction
– volume: 39
  start-page: 205
  year: 1989
  ident: 10.1016/j.ins.2025.122520_br0040
  article-title: There are planar graphs almost as good as the complete graph
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(89)90044-5
– volume: 11
  start-page: 361
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2025.122520_br0240
  article-title: Computing a glimpse of randomness
  publication-title: Exp. Math.
  doi: 10.1080/10586458.2002.10504481
– year: 2002
  ident: 10.1016/j.ins.2025.122520_br0150
– year: 2010
  ident: 10.1016/j.ins.2025.122520_br0210
  article-title: Algorithmic Randomness and Complexity
  doi: 10.1007/978-0-387-68441-3
– volume: 20
  start-page: 605
  issue: 8
  year: 2018
  ident: 10.1016/j.ins.2025.122520_br0140
  article-title: A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity
  publication-title: Entropy
  doi: 10.3390/e20080605
– volume: 4
  start-page: 342
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2025.122520_br0120
  article-title: Quantifying loss of information in network-based dimensionality reduction techniques
  publication-title: J. Complex Netw.
  doi: 10.1093/comnet/cnv025
– volume: 1
  start-page: e23
  year: 2015
  ident: 10.1016/j.ins.2025.122520_br0160
  article-title: Two-dimensional Kolmogorov complexity and validation of the coding theorem method by compressibility
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.23
– volume: 16
  start-page: 2197
  year: 2004
  ident: 10.1016/j.ins.2025.122520_br0250
  article-title: Learning eigenfunctions links spectral embedding and kernel PCA
  publication-title: Neural Comput.
  doi: 10.1162/0899766041732396
– volume: 303
  start-page: 1538
  year: 2004
  ident: 10.1016/j.ins.2025.122520_br0260
  article-title: Superfamilies of designed and evolved networks
  publication-title: Science
  doi: 10.1126/science.1089167
– volume: 56
  issue: 8
  year: 2013
  ident: 10.1016/j.ins.2025.122520_br0020
  article-title: Spectral sparsification of graphs: theory and algorithms
  publication-title: Commun. ACM
  doi: 10.1145/2492007.2492029
– volume: 51
  start-page: 44
  year: 2016
  ident: 10.1016/j.ins.2025.122520_br0110
  article-title: Evaluating network inference methods in terms of their ability to preserve the topology and complexity of genetic networks
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2016.01.012
– volume: 1
  start-page: 131
  issue: 2
  year: 1972
  ident: 10.1016/j.ins.2025.122520_br0010
  article-title: The transitive reduction of a directed graph
  publication-title: SIAM J. Comput.
  doi: 10.1137/0201008
– year: 2007
  ident: 10.1016/j.ins.2025.122520_br0050
– year: 2023
  ident: 10.1016/j.ins.2025.122520_br0200
– year: 2002
  ident: 10.1016/j.ins.2025.122520_br0060
– volume: 51
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.ins.2025.122520_br0070
  article-title: Graph summarization methods and applications
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3186727
– volume: 19
  start-page: 1160
  year: 2019
  ident: 10.1016/j.ins.2025.122520_br0180
  article-title: An algorithmic information calculus for causal discovery and reprogramming systems
  publication-title: iScience
  doi: 10.1016/j.isci.2019.07.043
– volume: 22
  start-page: 612
  issue: 6
  year: 2020
  ident: 10.1016/j.ins.2025.122520_br0190
  article-title: A review of methods for estimating algorithmic complexity: options, challenges, and new directions
  publication-title: Entropy
  doi: 10.3390/e22060612
– start-page: 47
  year: 1996
  ident: 10.1016/j.ins.2025.122520_br0080
  article-title: Approximating s-t minimum cuts in O(n2) time
SSID ssj0004766
Score 2.4782658
Snippet We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 122520
SubjectTerms Algorithmic image segmentation
Data dimensionality reduction
Lossy algorithmic complexity
Machine learning
Network complexity
Recursive compression
Title Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification
URI https://dx.doi.org/10.1016/j.ins.2025.122520
http://kipublications.ki.se/Default.aspx?queryparsed=id
Volume 720
WOSCitedRecordID wos001542337700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7W1gf7IFoVW63MgygYsyQzyWbyGKSlChbBCosvIXOJ3TVml2QtFfzxnrnk0hVFBV9CGDaZJd-Xk3NmzvkOQk-DQCnCZOhTnnBfK9LpNi_M54rGYSkCIhQ3zSaSszM2n6fvJpPvXS3MZZXUNbu6Stf_FWoYA7B16exfwN3fFAbgHECHI8AOxz8C_u2iXnzRCgDVpxVE_hc6-d3Joxqsq5VugGMaRxstBk9qgX-9aOY1WsfVZHvAgy-V0fz0WtMpp8tarm3auAeGqGl1mtGA7LJLih_mct_X3m__qGq75nxqNguGBADbWQpsfaMFUrLpkEbg1oKy6lvb9p-QDGL8C7PHT81S74mqFmvlvZ-OFzFIvJUQ0lfXXEv-1K6sr2OesbVOTO3cz5bfLkIsIVzRIuwknoZgqexvtwS19f60CaXA-wMHjLAbaJckcQpmfTd7fTx_M9TVJnavu_sf3a64yQ_cmuiXfs1YgNY4Led30G0XbeDMsuQumqh6H-2NNCj30ZGrXMHP8Ag57Gz-PdQ4PuERn_CIT1jzCTs-YRjGPZ9wz6eX2LEJ92zCwCbs2ISvs-k--nByfP7q1HeNOnxBKd34UVzOJABThklJJS94ycCsU8FkOitVGhFRhLIkrEhlqLj2OUVJQ1UQxQJe8oA-QDv1qlYPEaaymAUyYioKwG9ivCiEIGkowc8UHMLbA_Sie8z52uqx5F2i4jIHTHKNSW4xOUBRB0TuCG8dxRxY87vLnlvQ-hm0Brsb-gxnCi6MKIQKh_82wSN0a3gJHqOdTfNVHaGb4nKzaJsnjoU_ALi6rmU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+algorithmic+information+loss+methods+for+dimension+reduction%2C+feature+selection+and+network+sparsification&rft.jtitle=Information+sciences&rft.au=Zenil%2C+Hector&rft.au=Kiani%2C+Narsis+A.&rft.au=Adams%2C+Alyssa&rft.au=Abrah%C3%A3o%2C+Felipe+S.&rft.date=2025-12-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=720&rft_id=info:doi/10.1016%2Fj.ins.2025.122520&rft.externalDocID=S0020025525006528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon