Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification
We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing ce...
Gespeichert in:
| Veröffentlicht in: | INFORMATION SCIENCES Jg. 720; S. 122520 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article Verlag |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.12.2025
|
| Schlagworte: | |
| ISSN: | 0020-0255 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing certain dimensionality aspects, such as the number of edges in a network, while retaining essential features of interest. These features include preserving crucial network properties like degree distribution, clustering coefficient, edge betweenness, and degree and eigenvector centralities but can also go beyond edges to nodes and weights for network pruning and trimming. Our approach outperforms classical statistical Machine Learning techniques and state-of-the-art dimensionality reduction algorithms by preserving a greater number of data features that statistical algorithms would miss, particularly nonlinear patterns stemming from deterministic recursive processes that may look statistically random but are not. Moreover, previous approaches heavily rely on a priori feature selection, which requires constant supervision. Our findings demonstrate the effectiveness of the algorithms in overcoming some of these limitations while maintaining a time-efficient computational profile. Our approach not only matches, but also exceeds, the performance of established and state-of-the-art dimensionality reduction algorithms. We extend the applicability of our method to lossy compression tasks involving images and any multi-dimensional data. This highlights the versatility and broad utility of the approach in multiple domains.
•Unsupervised, model-free dimensionality reduction using complexity theory.•Preserves key data properties better than traditional techniques.•Captures nonlinear patterns missed by statistical ML methods.•No a priori feature selection or supervision required.•Next generation cognitive neuro-symbolic ML for multi-modal data. |
|---|---|
| AbstractList | We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based on the principles of algorithmic complexity. Specifically, but without loss of generality, we focus on addressing the challenge of reducing certain dimensionality aspects, such as the number of edges in a network, while retaining essential features of interest. These features include preserving crucial network properties like degree distribution, clustering coefficient, edge betweenness, and degree and eigenvector centralities but can also go beyond edges to nodes and weights for network pruning and trimming. Our approach outperforms classical statistical Machine Learning techniques and state-of-the-art dimensionality reduction algorithms by preserving a greater number of data features that statistical algorithms would miss, particularly nonlinear patterns stemming from deterministic recursive processes that may look statistically random but are not. Moreover, previous approaches heavily rely on a priori feature selection, which requires constant supervision. Our findings demonstrate the effectiveness of the algorithms in overcoming some of these limitations while maintaining a time-efficient computational profile. Our approach not only matches, but also exceeds, the performance of established and state-of-the-art dimensionality reduction algorithms. We extend the applicability of our method to lossy compression tasks involving images and any multi-dimensional data. This highlights the versatility and broad utility of the approach in multiple domains.
•Unsupervised, model-free dimensionality reduction using complexity theory.•Preserves key data properties better than traditional techniques.•Captures nonlinear patterns missed by statistical ML methods.•No a priori feature selection or supervision required.•Next generation cognitive neuro-symbolic ML for multi-modal data. |
| ArticleNumber | 122520 |
| Author | Zenil, Hector Rueda-Toicen, Antonio Zea, Allan A. Tegnér, Jesper Ozelim, Luan Kiani, Narsis A. Abrahão, Felipe S. Adams, Alyssa |
| Author_xml | – sequence: 1 givenname: Hector surname: Zenil fullname: Zenil, Hector email: hector.zenil@kcl.ac.uk organization: Department of Biomedical Computing, Department of Digital Twins, School of Biomedical Engineering and Imaging Sciences, King's Institute for AI, King's College, London, UK – sequence: 2 givenname: Narsis A. surname: Kiani fullname: Kiani, Narsis A. organization: Algorithmic Dynamics Lab and Department of Oncology-Pathology, Center of Molecular Medicine, Karolinska Institutet, Sweden – sequence: 3 givenname: Alyssa orcidid: 0000-0003-1869-7750 surname: Adams fullname: Adams, Alyssa organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK – sequence: 4 givenname: Felipe S. orcidid: 0000-0001-7314-6543 surname: Abrahão fullname: Abrahão, Felipe S. organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK – sequence: 5 givenname: Antonio surname: Rueda-Toicen fullname: Rueda-Toicen, Antonio organization: Universidad Central de Venezuela, Instituto Nacional de Bioingeniería, Venezuela – sequence: 6 givenname: Allan A. surname: Zea fullname: Zea, Allan A. organization: Universidad Central de Venezuela, Department of Mathematics, Venezuela – sequence: 7 givenname: Luan orcidid: 0000-0002-2581-0486 surname: Ozelim fullname: Ozelim, Luan organization: Oxford Immune Algorithmics, Oxford University Innovation and London Institute for Healthcare Engineering, UK – sequence: 8 givenname: Jesper surname: Tegnér fullname: Tegnér, Jesper organization: King Abdullah University of Science and Technology (KAUST), Biological and Environmental, Science and Engineering Division, Kingdom of Saudi Arabia |
| BackLink | http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index (Karolinska Institutet) |
| BookMark | eNp9kM1OAjEURrvAREAfwF0fQMbbFoYhrgzxL8G40XXTaW-lMNOSdpD49naAuHR1b7723OQ7IzLwwSMhNwwKBqy82xTOp4IDnxWM8xmHARkCcJjkZHZJRiltAGA6L8shiW_Ou1Y1VDVfIbpu3TpNnbchtqpzwdMmpERb7NbBJJpjalyLPvVPEc1e959uqUXV7SPShA0eI6q8oR67Q4hbmnYqJmedPp68IhdWNQmvz3NMPp8eP5Yvk9X78-vyYTXRQohuMp3Z0sw5WDa3wtSqtlUpKqErsygtLqZcK2Ysr9TCMKwrDkxbwVBxrKC2NYgxKU530wF3-1ruYi4af2RQTp6jbd5QMpiKEnqAnQAdc-mI9g9hIHuzciOzWdmblSezmbk_MZibfDuMMmmHXqNxMZuQJrh_6F8p4omW |
| Cites_doi | 10.3233/COM-13019 10.1103/PhysRevE.96.012308 10.3390/e23070835 10.1016/0022-0000(89)90044-5 10.1080/10586458.2002.10504481 10.1007/978-0-387-68441-3 10.3390/e20080605 10.1093/comnet/cnv025 10.7717/peerj-cs.23 10.1162/0899766041732396 10.1126/science.1089167 10.1145/2492007.2492029 10.1016/j.semcdb.2016.01.012 10.1137/0201008 10.1145/3186727 10.1016/j.isci.2019.07.043 10.3390/e22060612 |
| ContentType | Journal Article Publication |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTPV BZJLE D8T STUKM |
| DOI | 10.1016/j.ins.2025.122520 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef SwePub SwePub Other SWEPUB Freely available online SwePub Other full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| ExternalDocumentID | oai_swepub_ki_se_1043600 10_1016_j_ins_2025_122520 S0020025525006528 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 77I 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABUCO ABWVN ABXDB ACDAQ ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADJOM ADMUD ADNMO ADTZH ADVLN AEBSH AECPX AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- ~HD 9DU AAYXX CITATION ADTPV BZJLE D8T STUKM |
| ID | FETCH-LOGICAL-c333t-45f6d720f17f3dbabf86383c8d96fe942ca1df28a9d1eb8201cf31ea2e80bfb03 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001542337700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Tue Nov 25 03:37:51 EST 2025 Sat Nov 29 06:48:59 EST 2025 Sat Oct 04 17:01:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Algorithmic image segmentation Data dimensionality reduction Lossy algorithmic complexity Recursive compression Machine learning Network complexity |
| Language | English |
| License | This is an open access article under the CC BY license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-45f6d720f17f3dbabf86383c8d96fe942ca1df28a9d1eb8201cf31ea2e80bfb03 |
| ORCID | 0000-0003-1869-7750 0000-0002-2581-0486 0000-0001-7314-6543 |
| OpenAccessLink | http://kipublications.ki.se/Default.aspx?queryparsed=id |
| ParticipantIDs | swepub_primary_oai_swepub_ki_se_1043600 crossref_primary_10_1016_j_ins_2025_122520 elsevier_sciencedirect_doi_10_1016_j_ins_2025_122520 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-01 |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | INFORMATION SCIENCES |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Benczur, Karger (br0080) May 1996 Zenil, Soler-Toscano, Kiani, Hernández-Orozco, Rueda-Toicen (br0140) 2018; 20 Zenil (br0230) 2017 Kiani, Zenil, Olczak, Tegnér (br0110) 2016; 51 Zenil (br0190) 2020; 22 Zenil, Kiani, Tegnér (br0100) 2017; 96 Calude, Dinneen, Shu (br0240) 2002; 11 Bengio, Delalleau, Roux, Paiement, Vincent, Ouimet (br0250) 2004; 16 Aho, Garey, Ullman (br0010) 1972; 1 Fodor (br0060) 2002 Downey, Hirschfeldt (br0210) 2010 Milo, Itzkovitz, Kashtan, Levitt, Shen-Orr, Ayzenshtat, Sheffer, Alon (br0260) 2004; 303 Zenil, Soler-Toscano, Delahaye, Gauvrit (br0160) 2015; 1 Zenil, Kiani, Marabita, Deng, Elias, Schmidt, Ball, Tegnér (br0180) Sep 2019; 19 Zenil, Kiani, Tegnér (br0120) 2016; 4 Zenil, Kiani, Tegner (br0200) 2023 Chew (br0040) 1989; 39 Cunningham (br0050) 2007 Boehmke, Greenwell (br0030) 2019 Batson, Spielman, Srivastava, Teng (br0020) 2013; 56 Calude (br0150) 2002 Abrahão, Wehmuth, Zenil, Ziviani (br0170) Jun. 2021; 23 Li, Vitányi (br0220) 2008 Liu, Safavi, Dighe, Koutra (br0070) Jun 2018; 51 Soler-Toscano, Zenil, Delahaye, Gauvrit (br0130) 2013; 2 Spielman, Srivastava (br0090) 2008 Fodor (10.1016/j.ins.2025.122520_br0060) 2002 Zenil (10.1016/j.ins.2025.122520_br0140) 2018; 20 Zenil (10.1016/j.ins.2025.122520_br0160) 2015; 1 Boehmke (10.1016/j.ins.2025.122520_br0030) 2019 Milo (10.1016/j.ins.2025.122520_br0260) 2004; 303 Downey (10.1016/j.ins.2025.122520_br0210) 2010 Calude (10.1016/j.ins.2025.122520_br0150) 2002 Benczur (10.1016/j.ins.2025.122520_br0080) 1996 Spielman (10.1016/j.ins.2025.122520_br0090) 2008 Zenil (10.1016/j.ins.2025.122520_br0100) 2017; 96 Aho (10.1016/j.ins.2025.122520_br0010) 1972; 1 Soler-Toscano (10.1016/j.ins.2025.122520_br0130) 2013; 2 Zenil (10.1016/j.ins.2025.122520_br0120) 2016; 4 Li (10.1016/j.ins.2025.122520_br0220) 2008 Zenil (10.1016/j.ins.2025.122520_br0200) 2023 Liu (10.1016/j.ins.2025.122520_br0070) 2018; 51 Chew (10.1016/j.ins.2025.122520_br0040) 1989; 39 Bengio (10.1016/j.ins.2025.122520_br0250) 2004; 16 Zenil (10.1016/j.ins.2025.122520_br0180) 2019; 19 Batson (10.1016/j.ins.2025.122520_br0020) 2013; 56 Cunningham (10.1016/j.ins.2025.122520_br0050) 2007 Abrahão (10.1016/j.ins.2025.122520_br0170) 2021; 23 Kiani (10.1016/j.ins.2025.122520_br0110) 2016; 51 Zenil (10.1016/j.ins.2025.122520_br0230) 2017 Calude (10.1016/j.ins.2025.122520_br0240) 2002; 11 Zenil (10.1016/j.ins.2025.122520_br0190) 2020; 22 |
| References_xml | – year: 2002 ident: br0150 article-title: Information and Randomness: An Algorithmic Perspective – volume: 2 start-page: 125 year: 2013 end-page: 140 ident: br0130 article-title: Correspondence and independence of numerical evaluations of algorithmic information measures publication-title: Computability – volume: 19 start-page: 1160 year: Sep 2019 end-page: 1172 ident: br0180 article-title: An algorithmic information calculus for causal discovery and reprogramming systems publication-title: iScience – volume: 39 start-page: 205 year: 1989 end-page: 219 ident: br0040 article-title: There are planar graphs almost as good as the complete graph publication-title: J. Comput. Syst. Sci. – volume: 96 year: 2017 ident: br0100 article-title: Low algorithmic complexity entropy-deceiving graphs publication-title: Phys. Rev. E – start-page: 563 year: 2008 end-page: 568 ident: br0090 article-title: Graph sparsification by effective resistances publication-title: Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing (STOC ‘08) – year: 2010 ident: br0210 article-title: Algorithmic Randomness and Complexity publication-title: Theory and Applications of Computability – volume: 20 start-page: 605 year: 2018 ident: br0140 article-title: A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity publication-title: Entropy – volume: 56 year: 2013 ident: br0020 article-title: Spectral sparsification of graphs: theory and algorithms publication-title: Commun. ACM – year: 2008 ident: br0220 article-title: An Introduction to Kolmogorov Complexity and Its Applications – volume: 22 start-page: 612 year: 2020 ident: br0190 article-title: A review of methods for estimating algorithmic complexity: options, challenges, and new directions publication-title: Entropy – start-page: 453 year: 2017 end-page: 475 ident: br0230 article-title: Algorithmic data analytics, small data matters and correlation versus causation publication-title: Berechenbarkeit der Welt? Philosophie und Wissenschaft im Zeitalter von Big Data – volume: 303 start-page: 1538 year: 2004 end-page: 1542 ident: br0260 article-title: Superfamilies of designed and evolved networks publication-title: Science – volume: 51 start-page: 1 year: Jun 2018 end-page: 34 ident: br0070 article-title: Graph summarization methods and applications publication-title: ACM Comput. Surv. – year: 2007 ident: br0050 article-title: Dimension Reduction – volume: 11 start-page: 361 year: 2002 end-page: 370 ident: br0240 article-title: Computing a glimpse of randomness publication-title: Exp. Math. – volume: 16 start-page: 2197 year: 2004 end-page: 2219 ident: br0250 article-title: Learning eigenfunctions links spectral embedding and kernel PCA publication-title: Neural Comput. – year: 2002 ident: br0060 article-title: A survey of dimension reduction techniques – volume: 4 start-page: 342 year: 2016 end-page: 362 ident: br0120 article-title: Quantifying loss of information in network-based dimensionality reduction techniques publication-title: J. Complex Netw. – start-page: 343 year: 2019 end-page: 396 ident: br0030 article-title: Dimension reduction publication-title: Hands-On Machine Learning with R – year: 2023 ident: br0200 article-title: Algorithmic Information Dynamics – volume: 1 start-page: 131 year: 1972 end-page: 137 ident: br0010 article-title: The transitive reduction of a directed graph publication-title: SIAM J. Comput. – volume: 51 start-page: 44 year: 2016 end-page: 52 ident: br0110 article-title: Evaluating network inference methods in terms of their ability to preserve the topology and complexity of genetic networks publication-title: Semin. Cell Dev. Biol. – volume: 23 start-page: 835 year: Jun. 2021 ident: br0170 article-title: Algorithmic information distortions in node-aligned and node-unaligned multidimensional networks publication-title: Entropy – start-page: 47 year: May 1996 end-page: 55 ident: br0080 article-title: Approximating s-t minimum cuts in O(n2) time publication-title: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC 96) – volume: 1 start-page: e23 year: 2015 ident: br0160 article-title: Two-dimensional Kolmogorov complexity and validation of the coding theorem method by compressibility publication-title: PeerJ Comput. Sci. – start-page: 563 year: 2008 ident: 10.1016/j.ins.2025.122520_br0090 article-title: Graph sparsification by effective resistances – volume: 2 start-page: 125 issue: 2 year: 2013 ident: 10.1016/j.ins.2025.122520_br0130 article-title: Correspondence and independence of numerical evaluations of algorithmic information measures publication-title: Computability doi: 10.3233/COM-13019 – start-page: 453 year: 2017 ident: 10.1016/j.ins.2025.122520_br0230 article-title: Algorithmic data analytics, small data matters and correlation versus causation – volume: 96 year: 2017 ident: 10.1016/j.ins.2025.122520_br0100 article-title: Low algorithmic complexity entropy-deceiving graphs publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.96.012308 – year: 2008 ident: 10.1016/j.ins.2025.122520_br0220 – volume: 23 start-page: 835 issue: 7 year: 2021 ident: 10.1016/j.ins.2025.122520_br0170 article-title: Algorithmic information distortions in node-aligned and node-unaligned multidimensional networks publication-title: Entropy doi: 10.3390/e23070835 – start-page: 343 year: 2019 ident: 10.1016/j.ins.2025.122520_br0030 article-title: Dimension reduction – volume: 39 start-page: 205 year: 1989 ident: 10.1016/j.ins.2025.122520_br0040 article-title: There are planar graphs almost as good as the complete graph publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(89)90044-5 – volume: 11 start-page: 361 issue: 3 year: 2002 ident: 10.1016/j.ins.2025.122520_br0240 article-title: Computing a glimpse of randomness publication-title: Exp. Math. doi: 10.1080/10586458.2002.10504481 – year: 2002 ident: 10.1016/j.ins.2025.122520_br0150 – year: 2010 ident: 10.1016/j.ins.2025.122520_br0210 article-title: Algorithmic Randomness and Complexity doi: 10.1007/978-0-387-68441-3 – volume: 20 start-page: 605 issue: 8 year: 2018 ident: 10.1016/j.ins.2025.122520_br0140 article-title: A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity publication-title: Entropy doi: 10.3390/e20080605 – volume: 4 start-page: 342 issue: 3 year: 2016 ident: 10.1016/j.ins.2025.122520_br0120 article-title: Quantifying loss of information in network-based dimensionality reduction techniques publication-title: J. Complex Netw. doi: 10.1093/comnet/cnv025 – volume: 1 start-page: e23 year: 2015 ident: 10.1016/j.ins.2025.122520_br0160 article-title: Two-dimensional Kolmogorov complexity and validation of the coding theorem method by compressibility publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.23 – volume: 16 start-page: 2197 year: 2004 ident: 10.1016/j.ins.2025.122520_br0250 article-title: Learning eigenfunctions links spectral embedding and kernel PCA publication-title: Neural Comput. doi: 10.1162/0899766041732396 – volume: 303 start-page: 1538 year: 2004 ident: 10.1016/j.ins.2025.122520_br0260 article-title: Superfamilies of designed and evolved networks publication-title: Science doi: 10.1126/science.1089167 – volume: 56 issue: 8 year: 2013 ident: 10.1016/j.ins.2025.122520_br0020 article-title: Spectral sparsification of graphs: theory and algorithms publication-title: Commun. ACM doi: 10.1145/2492007.2492029 – volume: 51 start-page: 44 year: 2016 ident: 10.1016/j.ins.2025.122520_br0110 article-title: Evaluating network inference methods in terms of their ability to preserve the topology and complexity of genetic networks publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.01.012 – volume: 1 start-page: 131 issue: 2 year: 1972 ident: 10.1016/j.ins.2025.122520_br0010 article-title: The transitive reduction of a directed graph publication-title: SIAM J. Comput. doi: 10.1137/0201008 – year: 2007 ident: 10.1016/j.ins.2025.122520_br0050 – year: 2023 ident: 10.1016/j.ins.2025.122520_br0200 – year: 2002 ident: 10.1016/j.ins.2025.122520_br0060 – volume: 51 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.ins.2025.122520_br0070 article-title: Graph summarization methods and applications publication-title: ACM Comput. Surv. doi: 10.1145/3186727 – volume: 19 start-page: 1160 year: 2019 ident: 10.1016/j.ins.2025.122520_br0180 article-title: An algorithmic information calculus for causal discovery and reprogramming systems publication-title: iScience doi: 10.1016/j.isci.2019.07.043 – volume: 22 start-page: 612 issue: 6 year: 2020 ident: 10.1016/j.ins.2025.122520_br0190 article-title: A review of methods for estimating algorithmic complexity: options, challenges, and new directions publication-title: Entropy doi: 10.3390/e22060612 – start-page: 47 year: 1996 ident: 10.1016/j.ins.2025.122520_br0080 article-title: Approximating s-t minimum cuts in O(n2) time |
| SSID | ssj0004766 |
| Score | 2.4782658 |
| Snippet | We present a novel, domain-agnostic, model-independent, unsupervised, and universally applicable Machine Learning approach for dimensionality reduction based... |
| SourceID | swepub crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 122520 |
| SubjectTerms | Algorithmic image segmentation Data dimensionality reduction Lossy algorithmic complexity Machine learning Network complexity Recursive compression |
| Title | Minimal algorithmic information loss methods for dimension reduction, feature selection and network sparsification |
| URI | https://dx.doi.org/10.1016/j.ins.2025.122520 http://kipublications.ki.se/Default.aspx?queryparsed=id |
| Volume | 720 |
| WOSCitedRecordID | wos001542337700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fa9RAEF7O1gf7IFoVW63sgygYc1yy-bWPQVqqYBGscPgSssmuvTPmjuQsFfzjndnd_OiJooIvISyX7JHvy2RmduZbQp4GQcyLGc9dpXgAAUpRugk4Fm4Z-SpSgqtCmM0m4rOzZD7n7yaT710vzGUV13VydcXX_xVqGAOwsXX2L-DubwoDcA6gwxFgh-MfAf92US--oAJA9WkFkf8FFr9beVSNdbXCDXD0xtFai8EpUeAfk2ZOgzquutoDHrySWvPTafVOOV3Vcm3Kxh0wRE2LZUYDssuuKH6Yy35fe7_9o6xNzvlULxYMBQBmZymw9Q0KpKTToYzA5oLS6lvb9p-QFGL8C73Gz3Sq90RWi7V03k_HSQw_3CoI6btrrhV_oivrYswzttax7p372fKbJMQSwhUUYffDqQeWyvx2S1Ab16d1KAXeHzhgfnKD7PpxyMGs76avj-dvhr7a2Kx1d_-jWxXX9YFbE_3SrxkL0Gqn5fwOuW2jDZoaltwlE1nvk72RBuU-ObKdK_QZHSFHrc2_RxrLJzriEx3xiSKfqOUThWHa84n2fHpJLZtozyYKbKKWTfQ6m-6TDyfH569OXbtRh1swxjZuEKqoBGCUFytWilyoBMw6K5KSR0rywC9yr1R-kvPSkwJ9zkIxT-a-TGZCiRl7QHbqVS0fEqpiD0UDYnCDc8wtiLyMIuGB287DfMaCA_Kie8zZ2uixZF2h4jIDTDLEJDOYHJCgAyKzhDeOYgas-d1lzw1o_QyowW6HPsOZhAsDBqHC4b9N8IjcGl6Cx2Rn03yVR-RmcblZtM0Ty8Ifj86tpw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Minimal+algorithmic+information+loss+methods+for+dimension+reduction%2C+feature+selection+and+network+sparsification&rft.jtitle=Information+sciences&rft.au=Zenil%2C+Hector&rft.au=Kiani%2C+Narsis+A.&rft.au=Adams%2C+Alyssa&rft.au=Abrah%C3%A3o%2C+Felipe+S.&rft.date=2025-12-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=720&rft_id=info:doi/10.1016%2Fj.ins.2025.122520&rft.externalDocID=S0020025525006528 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |