Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities
Two trust-region methods for systems of mixed nonlinear equalities, general inequalities and simple bounds are proposed. The first method is based on a Gauss–Newton model, the second one is based on a regularized Gauss–Newton model and results to be a Levenberg–Marquardt method. The globalization st...
Gespeichert in:
| Veröffentlicht in: | Applied numerical mathematics Jg. 59; H. 5; S. 859 - 876 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
01.05.2009
Elsevier |
| Schlagworte: | |
| ISSN: | 0168-9274, 1873-5460 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Two trust-region methods for systems of mixed nonlinear equalities, general inequalities and simple bounds are proposed. The first method is based on a Gauss–Newton model, the second one is based on a regularized Gauss–Newton model and results to be a Levenberg–Marquardt method. The globalization strategy uses affine scaling matrices arising in bound-constrained optimization. Global convergence results are established and quadratic rate is achieved under an error bound assumption. The numerical efficiency of the new methods is experimentally studied. |
|---|---|
| ISSN: | 0168-9274 1873-5460 |
| DOI: | 10.1016/j.apnum.2008.03.028 |