Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities
Two trust-region methods for systems of mixed nonlinear equalities, general inequalities and simple bounds are proposed. The first method is based on a Gauss–Newton model, the second one is based on a regularized Gauss–Newton model and results to be a Levenberg–Marquardt method. The globalization st...
Uloženo v:
| Vydáno v: | Applied numerical mathematics Ročník 59; číslo 5; s. 859 - 876 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier B.V
01.05.2009
Elsevier |
| Témata: | |
| ISSN: | 0168-9274, 1873-5460 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Two trust-region methods for systems of mixed nonlinear equalities, general inequalities and simple bounds are proposed. The first method is based on a Gauss–Newton model, the second one is based on a regularized Gauss–Newton model and results to be a Levenberg–Marquardt method. The globalization strategy uses affine scaling matrices arising in bound-constrained optimization. Global convergence results are established and quadratic rate is achieved under an error bound assumption. The numerical efficiency of the new methods is experimentally studied. |
|---|---|
| ISSN: | 0168-9274 1873-5460 |
| DOI: | 10.1016/j.apnum.2008.03.028 |