A simple sub-quadratic algorithm for computing the subset partial order
A given collection of sets has a natural partial order induced by the subset relation. Let the size N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal...
Uložené v:
| Vydané v: | Information processing letters Ročník 56; číslo 6; s. 337 - 341 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
22.12.1995
Elsevier Science |
| Predmet: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | A given collection of sets has a natural partial order induced by the subset relation. Let the size
N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal sets, i.e., extremal sets) in worst-case time
O(
N
2
log N
)
. This paper develops a simple algorithm that uses only simple data structures, and gives a simple analysis that establishes the above worst-case bound on its running time. The algorithm exploits a variation on lexicographic order that may be of independent interest. |
|---|---|
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/0020-0190(95)00165-4 |