A simple sub-quadratic algorithm for computing the subset partial order

A given collection of sets has a natural partial order induced by the subset relation. Let the size N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 56; číslo 6; s. 337 - 341
Hlavný autor: Pritchard, Paul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 22.12.1995
Elsevier Science
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A given collection of sets has a natural partial order induced by the subset relation. Let the size N of the collection be defined as the sum of the cardinalities of the sets that comprise it. Algorithms have recently been presented that compute the partial order (and thereby the minimal and maximal sets, i.e., extremal sets) in worst-case time O( N 2 log N ) . This paper develops a simple algorithm that uses only simple data structures, and gives a simple analysis that establishes the above worst-case bound on its running time. The algorithm exploits a variation on lexicographic order that may be of independent interest.
ISSN:0020-0190
1872-6119
DOI:10.1016/0020-0190(95)00165-4