Direction-of-Arrival Estimation Based on Deep Neural Networks With Robustness to Array Imperfections
Lacking of adaptation to various array imperfections is an open problem for most high-precision direction-of-arrival (DOA) estimation methods. Machine learning-based methods are data-driven, they do not rely on prior assumptions about array geometries, and are expected to adapt better to array imper...
Uloženo v:
| Vydáno v: | IEEE transactions on antennas and propagation Ročník 66; číslo 12; s. 7315 - 7327 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-926X, 1558-2221 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Lacking of adaptation to various array imperfections is an open problem for most high-precision direction-of-arrival (DOA) estimation methods. Machine learning-based methods are data-driven, they do not rely on prior assumptions about array geometries, and are expected to adapt better to array imperfections when compared with model-based counterparts. This paper introduces a framework of the deep neural network to address the DOA estimation problem, so as to obtain good adaptation to array imperfections and enhanced generalization to unseen scenarios. The framework consists of a multitask autoencoder and a series of parallel multilayer classifiers. The autoencoder acts like a group of spatial filters, it decomposes the input into multiple components in different spatial subregions. These components thus have more concentrated distributions than the original input, which helps to reduce the burden of generalization for subsequent DOA estimation classifiers. The classifiers follow a one-versus-all classification guideline to determine if there are signal components near preseted directional grids, and the classification results are concatenated to reconstruct a spatial spectrum and estimate signal directions. Simulations are carried out to show that the proposed method performs satisfyingly in both generalization and imperfection adaptation. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-926X 1558-2221 |
| DOI: | 10.1109/TAP.2018.2874430 |