An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes

It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To address this issue, this paper is devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this end,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 13; číslo 4; s. 807
Hlavní autori: Tang, Mingzhu, Zhao, Qi, Ding, Steven X., Wu, Huawei, Li, Linlin, Long, Wen, Huang, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: MDPI AG 01.02.2020
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To address this issue, this paper is devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this end, the realization of feature selection for fault detection is firstly achieved by utilizing the maximum information coefficient to analyze the correlation among features in supervisory control and data acquisition (SCADA) of wind turbines. After that, a performance evaluation criterion is proposed for the improved LightGBM model to support fault detections. In this scheme, by embedding the confusion matrix as a performance indicator, an improved LightGBM fault detection approach is then developed. Based on the adaptive LightGBM fault detection model, a fault detection strategy for wind turbine gearboxes is investigated. To demonstrate the applications of the proposed algorithms and methods, a case study with a three-year SCADA dataset obtained from a wind farm sited in Southern China is conducted. Results indicate that the proposed approaches established a fault detection framework of wind turbine systems with either lower false alarm rate or lower missing detection rate.
AbstractList It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To address this issue, this paper is devoted to the application of an adaptive LightGBM method for wind turbine fault detections. To this end, the realization of feature selection for fault detection is firstly achieved by utilizing the maximum information coefficient to analyze the correlation among features in supervisory control and data acquisition (SCADA) of wind turbines. After that, a performance evaluation criterion is proposed for the improved LightGBM model to support fault detections. In this scheme, by embedding the confusion matrix as a performance indicator, an improved LightGBM fault detection approach is then developed. Based on the adaptive LightGBM fault detection model, a fault detection strategy for wind turbine gearboxes is investigated. To demonstrate the applications of the proposed algorithms and methods, a case study with a three-year SCADA dataset obtained from a wind farm sited in Southern China is conducted. Results indicate that the proposed approaches established a fault detection framework of wind turbine systems with either lower false alarm rate or lower missing detection rate.
Author Zhao, Qi
Li, Linlin
Ding, Steven X.
Huang, Bin
Tang, Mingzhu
Wu, Huawei
Long, Wen
Author_xml – sequence: 1
  givenname: Mingzhu
  orcidid: 0000-0002-9371-3207
  surname: Tang
  fullname: Tang, Mingzhu
– sequence: 2
  givenname: Qi
  surname: Zhao
  fullname: Zhao, Qi
– sequence: 3
  givenname: Steven X.
  surname: Ding
  fullname: Ding, Steven X.
– sequence: 4
  givenname: Huawei
  surname: Wu
  fullname: Wu, Huawei
– sequence: 5
  givenname: Linlin
  surname: Li
  fullname: Li, Linlin
– sequence: 6
  givenname: Wen
  surname: Long
  fullname: Long, Wen
– sequence: 7
  givenname: Bin
  orcidid: 0000-0003-4292-0860
  surname: Huang
  fullname: Huang, Bin
BookMark eNptUE1PAjEQbQwmInLxF_Rsstpuu9v2iChIguEgxmPTr4WSZUu6xei_dxGNxjiXeZmZ92benINeExoHwCVG14QIdOMaTBBFHLET0MdClBlGjPR-4TMwbNsN6oIQTAjpg6dRA2fbXQyvzsK5X63T9PYRjupViD6tt7AKES6a2jcOTtS-TvDOJWeSDw0MFXzxjYXLfdSH_tSpqMObay_AaaXq1g2_8gA8T-6X44dsvpjOxqN5ZrrVKSMlyzUymJaYCiqsNtgyQgpcVJbzyjAhGM7zMqe4ENRqynmpC6wcYryDigzA7Khrg9rIXfRbFd9lUF5-FkJcSRWTN7WTlnTuK6MZF4QywZVQ2BY2N5YKrVDZaaGjlomhbaOrpPFJHXymqHwtMZKHH8ufH3eUqz-U7xP-Gf4Acid7qw
CitedBy_id crossref_primary_10_1177_0309524X221113013
crossref_primary_10_1016_j_psep_2024_06_038
crossref_primary_10_1109_ACCESS_2022_3185259
crossref_primary_10_1007_s11053_023_10240_1
crossref_primary_10_3390_app14135849
crossref_primary_10_1016_j_petlm_2021_04_006
crossref_primary_10_1109_JSEN_2024_3396881
crossref_primary_10_3389_fenrg_2021_701574
crossref_primary_10_1007_s10836_024_06134_6
crossref_primary_10_3390_pr12050975
crossref_primary_10_3390_en15165780
crossref_primary_10_1080_23335777_2022_2135610
crossref_primary_10_3390_en17051215
crossref_primary_10_1016_j_segan_2023_101126
crossref_primary_10_3390_math12101514
crossref_primary_10_1177_14759217231178652
crossref_primary_10_1007_s10462_022_10233_1
crossref_primary_10_1088_1361_6501_ad366a
crossref_primary_10_3389_fenrg_2021_751066
crossref_primary_10_3390_e22040478
crossref_primary_10_3390_s22186826
crossref_primary_10_1016_j_resourpol_2024_105014
crossref_primary_10_1177_14759217211009780
crossref_primary_10_3390_en14196127
crossref_primary_10_12677_sa_2024_135180
crossref_primary_10_1109_JSEN_2023_3303223
crossref_primary_10_1002_rvr2_71
crossref_primary_10_1080_01431161_2024_2307945
crossref_primary_10_3390_en15197423
crossref_primary_10_1016_j_measurement_2022_110722
crossref_primary_10_3390_mi14020265
crossref_primary_10_1007_s12204_022_2495_5
crossref_primary_10_3390_w13070920
crossref_primary_10_2478_fiqf_2025_0004
crossref_primary_10_3390_pr11010068
crossref_primary_10_3390_s21062228
crossref_primary_10_1007_s40722_024_00335_z
crossref_primary_10_1016_j_jclepro_2022_134011
crossref_primary_10_3389_fenrg_2021_686616
crossref_primary_10_1088_1742_6596_2184_1_012020
crossref_primary_10_1155_2020_2091382
crossref_primary_10_1049_cim2_12055
crossref_primary_10_3389_fenrg_2021_750983
crossref_primary_10_1016_j_engstruct_2025_120350
crossref_primary_10_3390_s21186215
crossref_primary_10_5004_dwt_2022_29110
crossref_primary_10_1016_j_enbuild_2021_111423
crossref_primary_10_3390_en14123572
crossref_primary_10_3390_jmse13071337
crossref_primary_10_3390_en16155793
crossref_primary_10_1080_15435075_2023_2217901
crossref_primary_10_3390_rs13101952
crossref_primary_10_3390_s22186763
crossref_primary_10_7717_peerj_cs_2016
crossref_primary_10_1007_s13563_024_00437_y
crossref_primary_10_1007_s42417_024_01440_x
crossref_primary_10_1016_j_advengsoft_2024_103635
crossref_primary_10_3390_en14196283
crossref_primary_10_1016_j_asoc_2021_107146
Cites_doi 10.1126/science.1205438
10.1214/18-BA1110
10.1016/j.chemolab.2019.06.003
10.1109/ACCESS.2019.2940470
10.1016/j.enbuild.2018.12.032
10.3390/ijgi8020097
10.1145/2939672.2939785
10.1016/j.neucom.2015.12.061
10.1007/s10845-019-01522-8
10.1016/j.renene.2018.09.027
10.1109/TNNLS.2018.2881143
10.1016/j.jprocont.2017.08.010
10.1109/TSTE.2018.2801625
10.1016/j.procir.2018.12.021
10.1214/aos/1013203451
10.1016/j.apenergy.2012.04.037
10.3390/en9060379
10.1016/j.asoc.2016.01.039
10.1016/j.ifacsc.2019.100071
10.1109/TIE.2016.2538745
10.1007/s10586-018-1854-3
10.1016/j.comnet.2019.01.026
10.1016/j.renene.2018.10.031
10.1016/j.automatica.2018.10.047
10.1006/jcss.1997.1504
10.1109/TNNLS.2017.2754319
10.3390/s19143092
10.3390/en12173396
10.1016/j.ymssp.2018.02.016
10.1016/j.jtbi.2016.12.010
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/en13040807
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_d3073fcb78934798a9a1d5d2cd49ba06
10_3390_en13040807
GroupedDBID 29G
2WC
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ID FETCH-LOGICAL-c333t-3672b0c14614949dbc1d733515fd88fc79971226241594db4886b51ae078886a3
IEDL.DBID DOA
ISICitedReferencesCount 70
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000522492700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:45:27 EDT 2025
Tue Nov 18 22:17:49 EST 2025
Sat Nov 29 07:17:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-3672b0c14614949dbc1d733515fd88fc79971226241594db4886b51ae078886a3
ORCID 0000-0002-9371-3207
0000-0003-4292-0860
OpenAccessLink https://doaj.org/article/d3073fcb78934798a9a1d5d2cd49ba06
ParticipantIDs doaj_primary_oai_doaj_org_article_d3073fcb78934798a9a1d5d2cd49ba06
crossref_citationtrail_10_3390_en13040807
crossref_primary_10_3390_en13040807
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Energies (Basel)
PublicationYear 2020
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ge (ref_3) 2018; 65
Weber (ref_27) 2019; 80
Zheng (ref_32) 2019; 7
Friedman (ref_16) 2001; 29
ref_36
ref_12
Kong (ref_4) 2019; 132
ref_11
Bjurgert (ref_20) 2017; 29
ref_33
Lei (ref_6) 2019; 133
Pontes (ref_29) 2016; 186
Jenifer (ref_19) 2016; 42
Freund (ref_15) 1997; 55
Wang (ref_1) 2018; 9
ref_18
ref_17
Basha (ref_14) 2018; 11
Chakraborty (ref_35) 2019; 185
Marvuglia (ref_13) 2012; 98
Tang (ref_8) 2019; 22
Reshef (ref_24) 2011; 334
Bischl (ref_26) 2016; 17
Chen (ref_7) 2018; 27
Nemzer (ref_25) 2017; 415
Sun (ref_23) 2018; 30
Guo (ref_31) 2019; 151
Letham (ref_30) 2019; 14
Chen (ref_28) 2019; 191
Liu (ref_34) 2019; 10
Yin (ref_2) 2016; 63
Chen (ref_21) 2019; 7
ref_5
Gomes (ref_22) 2017; 50
Liu (ref_9) 2018; 108
Li (ref_10) 2019; 99
References_xml – volume: 334
  start-page: 1518
  year: 2011
  ident: ref_24
  article-title: Detecting novel associations in large data sets
  publication-title: Science
  doi: 10.1126/science.1205438
– volume: 14
  start-page: 495
  year: 2019
  ident: ref_30
  article-title: Constrained bayesian optimization with noisy experiments
  publication-title: Bayesian Anal.
  doi: 10.1214/18-BA1110
– volume: 27
  start-page: 2773
  year: 2018
  ident: ref_7
  article-title: Probability-relevant incipient fault detection and diagnosis methodology with applications to electric drive systems
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 191
  start-page: 54
  year: 2019
  ident: ref_28
  article-title: Lightgbm-ppi: Predicting protein-protein interactions through lightgbm with multi-information fusion
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2019.06.003
– volume: 7
  start-page: 133314
  year: 2019
  ident: ref_32
  article-title: CGMDA: An Approach to Predict and Validate MicroRNA-Disease Associations by Utilizing Chaos Game Representation and LightGBM
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940470
– volume: 185
  start-page: 326
  year: 2019
  ident: ref_35
  article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.12.032
– ident: ref_36
  doi: 10.3390/ijgi8020097
– ident: ref_17
  doi: 10.1145/2939672.2939785
– volume: 186
  start-page: 22
  year: 2016
  ident: ref_29
  article-title: Design of experiments and focused grid search for neural network parameter optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.061
– ident: ref_33
  doi: 10.1007/s10845-019-01522-8
– volume: 132
  start-page: 1373
  year: 2019
  ident: ref_4
  article-title: Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.09.027
– ident: ref_18
– volume: 30
  start-page: 2295
  year: 2018
  ident: ref_23
  article-title: A particle swarm optimization-based flexible convolutional autoencoder for image classification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2881143
– volume: 65
  start-page: 107
  year: 2018
  ident: ref_3
  article-title: Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide processes
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.08.010
– volume: 17
  start-page: 5938
  year: 2016
  ident: ref_26
  article-title: Mlr: Machine learning in r
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1627
  year: 2018
  ident: ref_1
  article-title: Wind turbine fault detection and identification through PCA-based optimal variable selection
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2018.2801625
– volume: 80
  start-page: 683
  year: 2019
  ident: ref_27
  article-title: Machine learning based system identification tool for data-based energy and resource modeling and simulation
  publication-title: Procedia CIRP
  doi: 10.1016/j.procir.2018.12.021
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_16
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
– volume: 98
  start-page: 574
  year: 2012
  ident: ref_13
  article-title: Monitoring of wind farms’ power curves using machine learning techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.04.037
– ident: ref_12
  doi: 10.3390/en9060379
– volume: 42
  start-page: 167
  year: 2016
  ident: ref_19
  article-title: Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.039
– volume: 50
  start-page: 23
  year: 2017
  ident: ref_22
  article-title: A survey on ensemble learning for data stream classification
  publication-title: ACM Comput. Surv. (CSUR)
– volume: 10
  start-page: 100071
  year: 2019
  ident: ref_34
  article-title: Deep ensemble forests for industrial fault classification
  publication-title: IFAC J. Syst. Control
  doi: 10.1016/j.ifacsc.2019.100071
– volume: 63
  start-page: 3201
  year: 2016
  ident: ref_2
  article-title: Diagnosis and prognosis for complicated industrial systems—Part II
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2538745
– volume: 22
  start-page: 7525
  year: 2019
  ident: ref_8
  article-title: Cost-sensitive large margin distribution machine for fault detection of wind turbines
  publication-title: Cluster. Comput.
  doi: 10.1007/s10586-018-1854-3
– volume: 11
  start-page: 41
  year: 2018
  ident: ref_14
  article-title: Impact of gradient ascent and boosting algorithm in classification
  publication-title: Int. J. Intell. Eng. Syst.
– volume: 151
  start-page: 166
  year: 2019
  ident: ref_31
  article-title: An xgboost-based physical fitness evaluation model using advanced feature selection and bayesian hyper-parameter optimization for wearable running monitoring
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.01.026
– volume: 133
  start-page: 422
  year: 2019
  ident: ref_6
  article-title: Fault diagnosis of wind turbine based on Long Short-term memory networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.10.031
– volume: 99
  start-page: 308
  year: 2019
  ident: ref_10
  article-title: Performance-based fault detection and fault-tolerant control for automatic control systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2018.10.047
– volume: 7
  start-page: 1
  year: 2019
  ident: ref_21
  article-title: Real-world Image Denoising with Deep Boosting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 119
  year: 1997
  ident: ref_15
  article-title: A decision-theoretic generalization of on-line learning and an application to boosting
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1997.1504
– volume: 29
  start-page: 4510
  year: 2017
  ident: ref_20
  article-title: On Adaptive Boosting for System Identification
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2754319
– ident: ref_11
  doi: 10.3390/s19143092
– ident: ref_5
  doi: 10.3390/en12173396
– volume: 108
  start-page: 33
  year: 2018
  ident: ref_9
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: A review
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 415
  start-page: 158
  year: 2017
  ident: ref_25
  article-title: Shannon information entropy in the canonical genetic code
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.12.010
SSID ssj0000331333
Score 2.5014465
Snippet It is widely accepted that conventional boost algorithms are of low efficiency and accuracy in dealing with big data collected from wind turbine operations. To...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 807
SubjectTerms bayesian hyper-parameter optimization
fault diagnosis
gradient boosting algorithm
lightgbm
maximum information coefficient
Title An Improved LightGBM Algorithm for Online Fault Detection of Wind Turbine Gearboxes
URI https://doaj.org/article/d3073fcb78934798a9a1d5d2cd49ba06
Volume 13
WOSCitedRecordID wos000522492700035&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF5EPOhBfGJ9saAXD6FpdpPNHltt66EtglV7C_uKCjWRNhVP_nZns7FGELx4ySEZwu7M7M73wfANQucsDjUPA-lFUUg8alLpcS2JFxqqtAi49ssu3_sBG43iyYTf1EZ92Z4wJw_sHNfUNglTJRkUVsp4LLho6VAHSlMuhRPb9hmvkanyDiYEyBdxeqQEeH3TZHBbU8BH7EcFqgn1lxWlt4U2KyiI224J22jFZDtooyYQuItu2xl2tN9oPLA8ut8Z4vb0MQdO__SCAXFiJxaKe2IxLfCVKcreqgznKX4Avo3Hi5m03_uQ0jJ_N_M9dNfrji-vvWoMgqdgC4VHIhZIX9kB3FZKRkvV0owQACKpjuNUMc5ZC1CUrcWcaglHMpJhSxjf0ttIkH20muWZOUCYahX5XFHBiIBCZCSnTBkq0ljrKOWygS6-XJOoSiPcjqqYJsAVrBuTbzc20NnS9tUpY_xq1bEeXlpYNevyBcQ4qWKc_BXjw__4yRFaDyxXLjuuj9FqMVuYE7Sm3orn-ey0TB94Dj-6n22tybY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+LightGBM+Algorithm+for+Online+Fault+Detection+of+Wind+Turbine+Gearboxes&rft.jtitle=Energies+%28Basel%29&rft.au=Tang%2C+Mingzhu&rft.au=Zhao%2C+Qi&rft.au=Ding%2C+Steven+X.&rft.au=Wu%2C+Huawei&rft.date=2020-02-01&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=13&rft.issue=4&rft.spage=807&rft_id=info:doi/10.3390%2Fen13040807&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_en13040807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon