Convergence Analysis of Dual Decomposition Algorithm in Distributed Optimization: Asynchrony and Inexactness

Dual decomposition is widely utilized in the distributed optimization of multiagent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet drop. In addition, computational errors also exi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 8; s. 4767 - 4782
Hlavní autoři: Su, Yifan, Wang, Zhaojian, Cao, Ming, Jia, Mengshuo, Liu, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dual decomposition is widely utilized in the distributed optimization of multiagent systems. In practice, the dual decomposition algorithm is desired to admit an asynchronous implementation due to imperfect communication, such as time delay and packet drop. In addition, computational errors also exist when the individual agents solve their own subproblems. In this article, we analyze the convergence of the dual decomposition algorithm in the distributed optimization when both the communication asynchrony and the subproblem solution inexactness exist. We find that the interaction between asynchrony and inexactness slows down the convergence rate from <inline-formula><tex-math notation="LaTeX">\mathcal {O} (1 / k)</tex-math></inline-formula> to <inline-formula><tex-math notation="LaTeX">\mathcal {O} (1 / \sqrt{k})</tex-math></inline-formula>. Specifically, with a constant step size, the value of the objective function converges to a neighborhood of the optimal value, and the solution converges to a neighborhood of the optimal solution. Moreover, the violation of the constraints diminishes in <inline-formula><tex-math notation="LaTeX">\mathcal {O} (1 / \sqrt{k})</tex-math></inline-formula>. Our result generalizes and unifies the existing ones that only consider either asynchrony or inexactness. Finally, numerical simulations validate the theoretical results.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2022.3213608