Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning
This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable gen...
Uloženo v:
| Vydáno v: | IEEE transactions on smart grid Ročník 10; číslo 4; s. 4435 - 4445 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1949-3053, 1949-3061 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method. |
|---|---|
| AbstractList | This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method. |
| Author | Li, Shuhui He, Haibo Zeng, Peng Li, Hepeng |
| Author_xml | – sequence: 1 givenname: Peng orcidid: 0000-0001-7863-3260 surname: Zeng fullname: Zeng, Peng email: zp@sia.cn organization: Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China – sequence: 2 givenname: Hepeng surname: Li fullname: Li, Hepeng email: cn.h.li@ieee.org organization: Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China – sequence: 3 givenname: Haibo orcidid: 0000-0002-5247-9370 surname: He fullname: He, Haibo email: he@ele.uri.edu organization: Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA – sequence: 4 givenname: Shuhui orcidid: 0000-0001-6754-8976 surname: Li fullname: Li, Shuhui email: sli@eng.ua.edu organization: Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL, USA |
| BookMark | eNp9kMFPwjAUxhujiYjcTbw08Qy2fdtYjwQQTUCNwnnpurelyDrsRpT_3i4gBw_28pq87_e9974rcm4ri4TccDbgnMn75ftsIBiPByIOZSz4GelwGcg-sIifn_4hXJJeXa-ZfwAQCdkh-8neqtJoOrXoij1dKKsKLNE2tMqpogujXVU4k9FVbWxBR9utq75NqRqkv-hrq1Bl2faVzegEcUvfUO-ca32ecefUxpfmq3IfdI7KWS-9Jhe52tTYO9YuWT1Ml-PH_vxl9jQezfva79j0RcxAiACY0JKJWAudgY7CKIuGKdepSPM0D3NAySEYogwQQGaIIAPmm2EEXXJ38PWLf-6wbpJ1tXPWj0y8bwAhg3joVeyg8ufWtcM82Tp_pdsnnCVtxonPOGkzTo4ZeyT6g2jTqMZUtnHKbP4Dbw-gQcTTnDjgUrAIfgARX4tM |
| CODEN | ITSGBQ |
| CitedBy_id | crossref_primary_10_1109_JIOT_2020_3042007 crossref_primary_10_3390_su12041653 crossref_primary_10_1016_j_epsr_2022_108000 crossref_primary_10_1016_j_nahs_2024_101535 crossref_primary_10_1007_s40435_023_01178_6 crossref_primary_10_1049_iet_gtd_2019_1744 crossref_primary_10_1109_TSG_2024_3509642 crossref_primary_10_1016_j_ijepes_2021_107620 crossref_primary_10_32604_cmc_2024_051289 crossref_primary_10_1109_ACCESS_2024_3440885 crossref_primary_10_1049_iet_rpg_2019_0794 crossref_primary_10_3390_jmse13030434 crossref_primary_10_3389_fenrg_2022_916996 crossref_primary_10_1016_j_enconman_2023_117723 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1016_j_energy_2022_126105 crossref_primary_10_1016_j_apenergy_2023_121573 crossref_primary_10_1016_j_applthermaleng_2025_126773 crossref_primary_10_1007_s11432_020_3176_x crossref_primary_10_1016_j_apenergy_2021_116772 crossref_primary_10_1016_j_asoc_2019_105876 crossref_primary_10_1016_j_engappai_2024_109360 crossref_primary_10_1109_JSYST_2020_3043342 crossref_primary_10_1016_j_epsr_2020_106852 crossref_primary_10_1016_j_ijhydene_2024_08_096 crossref_primary_10_3390_en14082120 crossref_primary_10_1080_15325008_2023_2227200 crossref_primary_10_3390_en14061562 crossref_primary_10_1109_TSG_2021_3103783 crossref_primary_10_1007_s11081_023_09848_2 crossref_primary_10_1016_j_rser_2022_112651 crossref_primary_10_3390_en15082879 crossref_primary_10_1109_COMST_2020_2988367 crossref_primary_10_1109_TSG_2023_3251956 crossref_primary_10_1016_j_jclepro_2022_135414 crossref_primary_10_1109_TSG_2024_3371221 crossref_primary_10_1109_TIA_2021_3057356 crossref_primary_10_1109_TSG_2024_3395497 crossref_primary_10_1007_s00500_023_08920_4 crossref_primary_10_1145_3586006 crossref_primary_10_1109_JSYST_2023_3283996 crossref_primary_10_3389_fenrg_2022_772561 crossref_primary_10_1016_j_ijepes_2025_110931 crossref_primary_10_1016_j_apenergy_2021_118026 crossref_primary_10_1109_JIOT_2021_3109057 crossref_primary_10_1007_s10111_023_00728_4 crossref_primary_10_1016_j_rser_2022_113052 crossref_primary_10_1109_TSG_2020_3034827 crossref_primary_10_3389_fenrg_2022_965669 crossref_primary_10_1049_rpg2_13115 crossref_primary_10_1109_TII_2020_3007644 crossref_primary_10_1016_j_gloei_2020_11_004 crossref_primary_10_1016_j_geits_2023_100095 crossref_primary_10_1016_j_egyr_2024_07_016 crossref_primary_10_1109_ACCESS_2020_2989795 crossref_primary_10_1109_TSG_2024_3423321 crossref_primary_10_1109_TSG_2019_2930299 crossref_primary_10_1016_j_apenergy_2022_120094 crossref_primary_10_3390_en16010090 crossref_primary_10_1109_TSG_2024_3435549 crossref_primary_10_1109_ACCESS_2024_3382982 crossref_primary_10_1109_TPWRS_2022_3204065 crossref_primary_10_1109_TPWRS_2022_3199238 crossref_primary_10_1016_j_ijepes_2023_109064 crossref_primary_10_1080_15567249_2025_2530518 crossref_primary_10_3390_en14092700 crossref_primary_10_1080_01430750_2024_2442602 crossref_primary_10_1016_j_apenergy_2022_120028 crossref_primary_10_1109_ACCESS_2025_3557961 crossref_primary_10_1109_ACCESS_2020_3045754 crossref_primary_10_3390_math13050754 crossref_primary_10_1109_TNNLS_2024_3362800 crossref_primary_10_1109_TPWRS_2021_3099336 crossref_primary_10_1109_TPWRS_2024_3421272 crossref_primary_10_1016_j_energy_2022_124513 crossref_primary_10_1016_j_neunet_2021_04_010 crossref_primary_10_1016_j_tej_2020_106890 crossref_primary_10_1155_2021_6635638 crossref_primary_10_1049_cth2_12508 crossref_primary_10_1109_TSG_2021_3116598 crossref_primary_10_1016_j_apenergy_2022_118982 crossref_primary_10_1049_rpg2_13012 crossref_primary_10_3390_en13061321 crossref_primary_10_1016_j_compeleceng_2025_110442 crossref_primary_10_1109_TSG_2022_3179567 crossref_primary_10_1016_j_rser_2023_114088 crossref_primary_10_1049_stg2_12063 crossref_primary_10_1016_j_epsr_2022_108045 crossref_primary_10_1016_j_ijepes_2021_107427 crossref_primary_10_1109_TSG_2024_3400982 crossref_primary_10_1016_j_ijepes_2022_108359 crossref_primary_10_1016_j_apenergy_2022_118636 crossref_primary_10_1109_ACCESS_2020_3021613 crossref_primary_10_1016_j_asoc_2024_111724 crossref_primary_10_3390_app14093682 crossref_primary_10_1002_er_6745 crossref_primary_10_1007_s43621_024_00681_w crossref_primary_10_1109_TSTE_2021_3061776 crossref_primary_10_1049_gtd2_12866 crossref_primary_10_1016_j_ijepes_2022_108768 crossref_primary_10_1109_TSG_2025_3527347 crossref_primary_10_1007_s00202_023_01947_8 crossref_primary_10_1016_j_jclepro_2020_125419 crossref_primary_10_1111_itor_13296 crossref_primary_10_1007_s00202_022_01635_z crossref_primary_10_1016_j_renene_2022_09_125 crossref_primary_10_1109_TPWRS_2024_3391920 crossref_primary_10_3390_en14185976 crossref_primary_10_1109_JSYST_2021_3062491 crossref_primary_10_1109_TSTE_2020_3021226 crossref_primary_10_1007_s40998_019_00226_2 crossref_primary_10_1109_TPWRS_2022_3227345 crossref_primary_10_1016_j_ijepes_2023_109701 crossref_primary_10_1109_TSG_2020_3020983 crossref_primary_10_1109_TASE_2023_3342054 crossref_primary_10_1109_TPWRS_2022_3214432 crossref_primary_10_1016_j_apenergy_2022_119184 crossref_primary_10_1016_j_apenergy_2023_121156 crossref_primary_10_1109_TSG_2019_2942593 crossref_primary_10_3390_en15239114 crossref_primary_10_1002_er_6449 crossref_primary_10_1016_j_apenergy_2021_118492 crossref_primary_10_1109_TNNLS_2022_3170070 crossref_primary_10_1016_j_egyr_2022_11_195 crossref_primary_10_1049_rpg2_12195 crossref_primary_10_1016_j_asoc_2020_106882 crossref_primary_10_46904_eea_23_71_1_1108008 crossref_primary_10_1016_j_ijepes_2021_107798 crossref_primary_10_1049_cps2_12007 crossref_primary_10_1109_TSG_2021_3111029 crossref_primary_10_1016_j_epsr_2023_109989 crossref_primary_10_3390_electronics12071685 crossref_primary_10_1109_TCC_2021_3133540 crossref_primary_10_1109_TSG_2021_3099133 crossref_primary_10_3390_en16165974 crossref_primary_10_1016_j_asoc_2025_113180 crossref_primary_10_1016_j_segan_2022_100636 crossref_primary_10_1016_j_egyr_2020_11_041 crossref_primary_10_1016_j_renene_2024_120627 crossref_primary_10_3390_act12110410 crossref_primary_10_3390_su14031877 crossref_primary_10_1049_rpg2_12089 crossref_primary_10_1109_TSTE_2025_3528952 crossref_primary_10_3390_en13194997 crossref_primary_10_1016_j_apenergy_2020_115473 crossref_primary_10_3390_batteries10090297 |
| Cites_doi | 10.1109/TII.2016.2585379 10.1109/TSG.2017.2713947 10.1109/TCST.2017.2699159 10.1109/TCST.2015.2421334 10.1109/TCST.2013.2295737 10.1016/j.apenergy.2016.01.014 10.1109/IJCNN.1991.155276 10.1109/PESGM.2015.7285730 10.1016/j.apenergy.2017.07.007 10.1016/j.apenergy.2016.05.025 10.1109/TSTE.2013.2255135 10.1109/TSG.2014.2368077 10.1109/PESW.2002.985003 10.1016/j.apenergy.2017.05.068 10.1287/ijoc.2017.0768 10.1109/TSG.2014.2302396 10.1109/TSG.2014.2359004 10.1109/TSG.2014.2329846 10.1109/ADPRL.2014.7010626 10.1109/TPWRS.2010.2051168 10.1002/9781118029176 10.1016/j.jprocont.2016.04.008 10.1109/TSG.2014.2384031 10.1109/TSG.2013.2280645 10.1016/j.rser.2015.10.141 10.1016/j.ijepes.2017.02.008 10.1109/TPWRS.2015.2455491 10.1109/TSTE.2016.2577040 10.1109/TSG.2017.2716382 10.1007/s11768-011-1005-3 10.1109/TIE.2012.2188873 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TSG.2018.2859821 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1949-3061 |
| EndPage | 4445 |
| ExternalDocumentID | 10_1109_TSG_2018_2859821 8419206 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Office of Naval Research grantid: N00014-18-1-2396 funderid: 10.13039/100000006 – fundername: National Natural Science Foundation of China grantid: 61533015 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M RIG |
| ID | FETCH-LOGICAL-c333t-2803224302c9028c2cd3c656d67b1cb2bfbf5f3e91347e94e339dee3940b2b563 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 182 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472577500083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1949-3053 |
| IngestDate | Mon Jun 30 09:32:22 EDT 2025 Tue Nov 18 22:05:37 EST 2025 Sat Nov 29 03:45:55 EST 2025 Wed Aug 27 05:56:11 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-2803224302c9028c2cd3c656d67b1cb2bfbf5f3e91347e94e339dee3940b2b563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6754-8976 0000-0001-7863-3260 0000-0002-5247-9370 |
| OpenAccessLink | https://digitalcommons.uri.edu/ele_facpubs/345 |
| PQID | 2244350387 |
| PQPubID | 2040408 |
| PageCount | 11 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSG_2018_2859821 proquest_journals_2244350387 crossref_primary_10_1109_TSG_2018_2859821 ieee_primary_8419206 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-07-01 |
| PublicationDateYYYYMMDD | 2019-07-01 |
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on smart grid |
| PublicationTitleAbbrev | TSG |
| PublicationYear | 2019 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref32 ref10 (ref3) 2010 ref2 ref1 ref17 ref16 ref19 ref18 cheng (ref27) 2005; 9 papathanassiou (ref37) 2005 theodoridis (ref34) 2015 ref24 ref23 ref26 ref25 (ref33) 2017 ref20 ref22 ref21 perkins (ref36) 2002 (ref38) 2016 ref28 ref29 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/TII.2016.2585379 – ident: ref29 doi: 10.1109/TSG.2017.2713947 – ident: ref20 doi: 10.1109/TCST.2017.2699159 – ident: ref11 doi: 10.1109/TCST.2015.2421334 – year: 2010 ident: ref3 publication-title: Advanced Architectures and Control Concepts for More Microgrids – ident: ref15 doi: 10.1109/TCST.2013.2295737 – year: 2015 ident: ref34 publication-title: Machine Learning A Bayesian and Optimization Perspective – ident: ref17 doi: 10.1016/j.apenergy.2016.01.014 – ident: ref35 doi: 10.1109/IJCNN.1991.155276 – ident: ref26 doi: 10.1109/PESGM.2015.7285730 – ident: ref12 doi: 10.1016/j.apenergy.2017.07.007 – ident: ref32 doi: 10.1016/j.apenergy.2016.05.025 – ident: ref10 doi: 10.1109/TSTE.2013.2255135 – ident: ref7 doi: 10.1109/TSG.2014.2368077 – ident: ref2 doi: 10.1109/PESW.2002.985003 – year: 2016 ident: ref38 publication-title: California ISO Open Access Same-Time Information System (OASIS) – ident: ref18 doi: 10.1016/j.apenergy.2017.05.068 – ident: ref25 doi: 10.1287/ijoc.2017.0768 – year: 2017 ident: ref33 publication-title: PJM Manual 11 Energy & Ancillary Services Market Operations – ident: ref14 doi: 10.1109/TSG.2014.2302396 – ident: ref16 doi: 10.1109/TSG.2014.2359004 – ident: ref6 doi: 10.1109/TSG.2014.2329846 – ident: ref24 doi: 10.1109/ADPRL.2014.7010626 – ident: ref31 doi: 10.1109/TPWRS.2010.2051168 – ident: ref23 doi: 10.1002/9781118029176 – ident: ref19 doi: 10.1016/j.jprocont.2016.04.008 – ident: ref21 doi: 10.1109/TSG.2014.2384031 – start-page: 13 year: 2005 ident: ref37 article-title: A benchmark low voltage microgrid network publication-title: Proc Symp Power Syst Dispersed Gener (CIGRE) – ident: ref5 doi: 10.1109/TSG.2013.2280645 – ident: ref4 doi: 10.1016/j.rser.2015.10.141 – ident: ref13 doi: 10.1016/j.ijepes.2017.02.008 – ident: ref8 doi: 10.1109/TPWRS.2015.2455491 – start-page: 1627 year: 2002 ident: ref36 article-title: A convergent form of approximate policy iteration publication-title: Proc 15th Int Conf Neural Inf Process Syst (NIPS) Vancouver BC Canada – ident: ref22 doi: 10.1109/TSTE.2016.2577040 – ident: ref28 doi: 10.1109/TSG.2017.2716382 – ident: ref30 doi: 10.1007/s11768-011-1005-3 – volume: 9 start-page: 1997 year: 2005 ident: ref27 article-title: Co-optimizing battery storage for the frequency regulation and energy arbitrage using multi-scale dynamic programming publication-title: IEEE Trans Smart Grid – ident: ref1 doi: 10.1109/TIE.2012.2188873 |
| SSID | ssj0000333629 |
| Score | 2.633754 |
| Snippet | This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4435 |
| SubjectTerms | approximate dynamic programming Computer simulation deep learning Distributed generation dynamic energy management system Dynamic programming Electric power transmission Electricity distribution Electricity pricing Energy management Energy storage Learning Markov chains Microgrid Neural networks Operating costs Optimization Power flow Reactive power Real-time systems recurrent neural network Recurrent neural networks Scheduling Uncertainty |
| Title | Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning |
| URI | https://ieeexplore.ieee.org/document/8419206 https://www.proquest.com/docview/2244350387 |
| Volume | 10 |
| WOSCitedRecordID | wos000472577500083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1949-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000333629 issn: 1949-3053 databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBVxWrVXLwIrh9bLKPHItt9aClaJXeliaZLQXdlj5E_72Z7ENFEbwtJFmy-XYzs5lvviHk3OfSN1bddZQvtcNVyB3Jm9JhLjPWypcB2MpzT7dBrxcOh6K_Ri6LXBgAsOQzqOGljeXrqVrhUVk9xJAl6muvB0GQ5moV5ykNxsxeLGwQmWM432N5VLIh6oOHa6RxhTXUawvd5jcrZMuq_NiLrYHp7vxvartkO3MkaStFfo-sQbJPtr7IC5bJezstN087NsGPflJd6DSmI3qHZLzxfKKpJQ7QFuqLv02MDws0H9pP-Vsv2D5KNG0DzOg9HtKjrBNFbQ8zi15KJqeZWuv4gDx2O4OrGycrteAos25LB2tUGWPOGq5CORflKs2UcfW0H8imkq6MZezFDDBOH4DgwJjQAFhW3TR6PjskpWSawBGh3OUj19PaCw3wIGMBvs8FCpMJzFuXFVLPlz5SmQ45lsN4juz_SENEBqwIwYoysCrkohgxSzU4_uhbRnCKfhkuFVLN0Y2yj3QRmQc2ziLG749_H3VCNs29RcrOrZLScr6CU7KhXpeTxfzMvn8fMN3XAA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sEXwbotSbvmUXR-4DZEp_hWluQ6BrqNbYr-9-bSbiqK4FshCU3za3PX3O9-B3AQSR05q84DE2kbSBPLQMuyDgQXzlpFuoK-8txDrdJoxI-P6mYKjia5MIjoyWd4TJc-lm975oWOyooxhSxJX3smlJKXs2ytyYlKSQi3GysfRpYU0A_FOC5ZUsXm3QURueJjUmyLefmbHfKFVX7sxt7EnC_9b3LLsJi7kuwkw34FprC7CgtfBAbX4P0sKzjPqj7Fj32SXVgvZS1WJzpee9CxzFMH2AkpjL91nBeLbDz0JmNwPVN7q2vZGWKf3dIxPQk7MVL3cLNoZHRyluu1ttfh_rzaPL0M8mILgXHrNgqoSpUz56LEDQm6GG6sMM7Zs1FFl43mOtVpmAqkSH0FlUQhlEWkwuquMYzEBkx3e13cBCa5bPHQ2jB20KNOFUaRVCRNpihzXRegOF76xORK5FQQ4ynxfyQllTiwEgIrycEqwOFkRD9T4fij7xqBM-mX41KAnTG6Sf6ZDhP3wM5dpAj-1u-j9mHuslmvJbWrxvU2zLv7qIyruwPTo8EL7sKseR11hoM9_y5-AIa42kc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Energy+Management+of+a+Microgrid+Using+Approximate+Dynamic+Programming+and+Deep+Recurrent+Neural+Network+Learning&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Zeng%2C+Peng&rft.au=Li%2C+Hepeng&rft.au=He%2C+Haibo&rft.au=Li%2C+Shuhui&rft.date=2019-07-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=10&rft.issue=4&rft.spage=4435&rft.epage=4445&rft_id=info:doi/10.1109%2FTSG.2018.2859821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2018_2859821 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon |