Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning

This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable gen...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on smart grid Ročník 10; číslo 4; s. 4435 - 4445
Hlavní autoři: Zeng, Peng, Li, Hepeng, He, Haibo, Li, Shuhui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.07.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1949-3053, 1949-3061
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method.
AbstractList This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient management of energy storage system into MG real-time dispatch while considering power flow constraints and uncertainties in load, renewable generation and real-time electricity price. The developed dynamic energy management mechanism does not require long-term forecast and optimization or distribution knowledge of the uncertainty, but can still optimize the long-term operational costs of MGs. First, the real-time scheduling problem is modeled as a finite-horizon Markov decision process over a day. Then, approximate dynamic programming and deep recurrent neural network learning are employed to derive a near optimal real-time scheduling policy. Last, using real power grid data from California independent system operator, a detailed simulation study is carried out to validate the effectiveness of the proposed method.
Author Li, Shuhui
He, Haibo
Zeng, Peng
Li, Hepeng
Author_xml – sequence: 1
  givenname: Peng
  orcidid: 0000-0001-7863-3260
  surname: Zeng
  fullname: Zeng, Peng
  email: zp@sia.cn
  organization: Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 2
  givenname: Hepeng
  surname: Li
  fullname: Li, Hepeng
  email: cn.h.li@ieee.org
  organization: Laboratory of Networked Control Systems, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
– sequence: 3
  givenname: Haibo
  orcidid: 0000-0002-5247-9370
  surname: He
  fullname: He, Haibo
  email: he@ele.uri.edu
  organization: Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA
– sequence: 4
  givenname: Shuhui
  orcidid: 0000-0001-6754-8976
  surname: Li
  fullname: Li, Shuhui
  email: sli@eng.ua.edu
  organization: Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL, USA
BookMark eNp9kMFPwjAUxhujiYjcTbw08Qy2fdtYjwQQTUCNwnnpurelyDrsRpT_3i4gBw_28pq87_e9974rcm4ri4TccDbgnMn75ftsIBiPByIOZSz4GelwGcg-sIifn_4hXJJeXa-ZfwAQCdkh-8neqtJoOrXoij1dKKsKLNE2tMqpogujXVU4k9FVbWxBR9utq75NqRqkv-hrq1Bl2faVzegEcUvfUO-ca32ecefUxpfmq3IfdI7KWS-9Jhe52tTYO9YuWT1Ml-PH_vxl9jQezfva79j0RcxAiACY0JKJWAudgY7CKIuGKdepSPM0D3NAySEYogwQQGaIIAPmm2EEXXJ38PWLf-6wbpJ1tXPWj0y8bwAhg3joVeyg8ufWtcM82Tp_pdsnnCVtxonPOGkzTo4ZeyT6g2jTqMZUtnHKbP4Dbw-gQcTTnDjgUrAIfgARX4tM
CODEN ITSGBQ
CitedBy_id crossref_primary_10_1109_JIOT_2020_3042007
crossref_primary_10_3390_su12041653
crossref_primary_10_1016_j_epsr_2022_108000
crossref_primary_10_1016_j_nahs_2024_101535
crossref_primary_10_1007_s40435_023_01178_6
crossref_primary_10_1049_iet_gtd_2019_1744
crossref_primary_10_1109_TSG_2024_3509642
crossref_primary_10_1016_j_ijepes_2021_107620
crossref_primary_10_32604_cmc_2024_051289
crossref_primary_10_1109_ACCESS_2024_3440885
crossref_primary_10_1049_iet_rpg_2019_0794
crossref_primary_10_3390_jmse13030434
crossref_primary_10_3389_fenrg_2022_916996
crossref_primary_10_1016_j_enconman_2023_117723
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1016_j_energy_2022_126105
crossref_primary_10_1016_j_apenergy_2023_121573
crossref_primary_10_1016_j_applthermaleng_2025_126773
crossref_primary_10_1007_s11432_020_3176_x
crossref_primary_10_1016_j_apenergy_2021_116772
crossref_primary_10_1016_j_asoc_2019_105876
crossref_primary_10_1016_j_engappai_2024_109360
crossref_primary_10_1109_JSYST_2020_3043342
crossref_primary_10_1016_j_epsr_2020_106852
crossref_primary_10_1016_j_ijhydene_2024_08_096
crossref_primary_10_3390_en14082120
crossref_primary_10_1080_15325008_2023_2227200
crossref_primary_10_3390_en14061562
crossref_primary_10_1109_TSG_2021_3103783
crossref_primary_10_1007_s11081_023_09848_2
crossref_primary_10_1016_j_rser_2022_112651
crossref_primary_10_3390_en15082879
crossref_primary_10_1109_COMST_2020_2988367
crossref_primary_10_1109_TSG_2023_3251956
crossref_primary_10_1016_j_jclepro_2022_135414
crossref_primary_10_1109_TSG_2024_3371221
crossref_primary_10_1109_TIA_2021_3057356
crossref_primary_10_1109_TSG_2024_3395497
crossref_primary_10_1007_s00500_023_08920_4
crossref_primary_10_1145_3586006
crossref_primary_10_1109_JSYST_2023_3283996
crossref_primary_10_3389_fenrg_2022_772561
crossref_primary_10_1016_j_ijepes_2025_110931
crossref_primary_10_1016_j_apenergy_2021_118026
crossref_primary_10_1109_JIOT_2021_3109057
crossref_primary_10_1007_s10111_023_00728_4
crossref_primary_10_1016_j_rser_2022_113052
crossref_primary_10_1109_TSG_2020_3034827
crossref_primary_10_3389_fenrg_2022_965669
crossref_primary_10_1049_rpg2_13115
crossref_primary_10_1109_TII_2020_3007644
crossref_primary_10_1016_j_gloei_2020_11_004
crossref_primary_10_1016_j_geits_2023_100095
crossref_primary_10_1016_j_egyr_2024_07_016
crossref_primary_10_1109_ACCESS_2020_2989795
crossref_primary_10_1109_TSG_2024_3423321
crossref_primary_10_1109_TSG_2019_2930299
crossref_primary_10_1016_j_apenergy_2022_120094
crossref_primary_10_3390_en16010090
crossref_primary_10_1109_TSG_2024_3435549
crossref_primary_10_1109_ACCESS_2024_3382982
crossref_primary_10_1109_TPWRS_2022_3204065
crossref_primary_10_1109_TPWRS_2022_3199238
crossref_primary_10_1016_j_ijepes_2023_109064
crossref_primary_10_1080_15567249_2025_2530518
crossref_primary_10_3390_en14092700
crossref_primary_10_1080_01430750_2024_2442602
crossref_primary_10_1016_j_apenergy_2022_120028
crossref_primary_10_1109_ACCESS_2025_3557961
crossref_primary_10_1109_ACCESS_2020_3045754
crossref_primary_10_3390_math13050754
crossref_primary_10_1109_TNNLS_2024_3362800
crossref_primary_10_1109_TPWRS_2021_3099336
crossref_primary_10_1109_TPWRS_2024_3421272
crossref_primary_10_1016_j_energy_2022_124513
crossref_primary_10_1016_j_neunet_2021_04_010
crossref_primary_10_1016_j_tej_2020_106890
crossref_primary_10_1155_2021_6635638
crossref_primary_10_1049_cth2_12508
crossref_primary_10_1109_TSG_2021_3116598
crossref_primary_10_1016_j_apenergy_2022_118982
crossref_primary_10_1049_rpg2_13012
crossref_primary_10_3390_en13061321
crossref_primary_10_1016_j_compeleceng_2025_110442
crossref_primary_10_1109_TSG_2022_3179567
crossref_primary_10_1016_j_rser_2023_114088
crossref_primary_10_1049_stg2_12063
crossref_primary_10_1016_j_epsr_2022_108045
crossref_primary_10_1016_j_ijepes_2021_107427
crossref_primary_10_1109_TSG_2024_3400982
crossref_primary_10_1016_j_ijepes_2022_108359
crossref_primary_10_1016_j_apenergy_2022_118636
crossref_primary_10_1109_ACCESS_2020_3021613
crossref_primary_10_1016_j_asoc_2024_111724
crossref_primary_10_3390_app14093682
crossref_primary_10_1002_er_6745
crossref_primary_10_1007_s43621_024_00681_w
crossref_primary_10_1109_TSTE_2021_3061776
crossref_primary_10_1049_gtd2_12866
crossref_primary_10_1016_j_ijepes_2022_108768
crossref_primary_10_1109_TSG_2025_3527347
crossref_primary_10_1007_s00202_023_01947_8
crossref_primary_10_1016_j_jclepro_2020_125419
crossref_primary_10_1111_itor_13296
crossref_primary_10_1007_s00202_022_01635_z
crossref_primary_10_1016_j_renene_2022_09_125
crossref_primary_10_1109_TPWRS_2024_3391920
crossref_primary_10_3390_en14185976
crossref_primary_10_1109_JSYST_2021_3062491
crossref_primary_10_1109_TSTE_2020_3021226
crossref_primary_10_1007_s40998_019_00226_2
crossref_primary_10_1109_TPWRS_2022_3227345
crossref_primary_10_1016_j_ijepes_2023_109701
crossref_primary_10_1109_TSG_2020_3020983
crossref_primary_10_1109_TASE_2023_3342054
crossref_primary_10_1109_TPWRS_2022_3214432
crossref_primary_10_1016_j_apenergy_2022_119184
crossref_primary_10_1016_j_apenergy_2023_121156
crossref_primary_10_1109_TSG_2019_2942593
crossref_primary_10_3390_en15239114
crossref_primary_10_1002_er_6449
crossref_primary_10_1016_j_apenergy_2021_118492
crossref_primary_10_1109_TNNLS_2022_3170070
crossref_primary_10_1016_j_egyr_2022_11_195
crossref_primary_10_1049_rpg2_12195
crossref_primary_10_1016_j_asoc_2020_106882
crossref_primary_10_46904_eea_23_71_1_1108008
crossref_primary_10_1016_j_ijepes_2021_107798
crossref_primary_10_1049_cps2_12007
crossref_primary_10_1109_TSG_2021_3111029
crossref_primary_10_1016_j_epsr_2023_109989
crossref_primary_10_3390_electronics12071685
crossref_primary_10_1109_TCC_2021_3133540
crossref_primary_10_1109_TSG_2021_3099133
crossref_primary_10_3390_en16165974
crossref_primary_10_1016_j_asoc_2025_113180
crossref_primary_10_1016_j_segan_2022_100636
crossref_primary_10_1016_j_egyr_2020_11_041
crossref_primary_10_1016_j_renene_2024_120627
crossref_primary_10_3390_act12110410
crossref_primary_10_3390_su14031877
crossref_primary_10_1049_rpg2_12089
crossref_primary_10_1109_TSTE_2025_3528952
crossref_primary_10_3390_en13194997
crossref_primary_10_1016_j_apenergy_2020_115473
crossref_primary_10_3390_batteries10090297
Cites_doi 10.1109/TII.2016.2585379
10.1109/TSG.2017.2713947
10.1109/TCST.2017.2699159
10.1109/TCST.2015.2421334
10.1109/TCST.2013.2295737
10.1016/j.apenergy.2016.01.014
10.1109/IJCNN.1991.155276
10.1109/PESGM.2015.7285730
10.1016/j.apenergy.2017.07.007
10.1016/j.apenergy.2016.05.025
10.1109/TSTE.2013.2255135
10.1109/TSG.2014.2368077
10.1109/PESW.2002.985003
10.1016/j.apenergy.2017.05.068
10.1287/ijoc.2017.0768
10.1109/TSG.2014.2302396
10.1109/TSG.2014.2359004
10.1109/TSG.2014.2329846
10.1109/ADPRL.2014.7010626
10.1109/TPWRS.2010.2051168
10.1002/9781118029176
10.1016/j.jprocont.2016.04.008
10.1109/TSG.2014.2384031
10.1109/TSG.2013.2280645
10.1016/j.rser.2015.10.141
10.1016/j.ijepes.2017.02.008
10.1109/TPWRS.2015.2455491
10.1109/TSTE.2016.2577040
10.1109/TSG.2017.2716382
10.1007/s11768-011-1005-3
10.1109/TIE.2012.2188873
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TSG.2018.2859821
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1949-3061
EndPage 4445
ExternalDocumentID 10_1109_TSG_2018_2859821
8419206
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research
  grantid: N00014-18-1-2396
  funderid: 10.13039/100000006
– fundername: National Natural Science Foundation of China
  grantid: 61533015
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
RIG
ID FETCH-LOGICAL-c333t-2803224302c9028c2cd3c656d67b1cb2bfbf5f3e91347e94e339dee3940b2b563
IEDL.DBID RIE
ISICitedReferencesCount 182
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472577500083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1949-3053
IngestDate Mon Jun 30 09:32:22 EDT 2025
Tue Nov 18 22:05:37 EST 2025
Sat Nov 29 03:45:55 EST 2025
Wed Aug 27 05:56:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-2803224302c9028c2cd3c656d67b1cb2bfbf5f3e91347e94e339dee3940b2b563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6754-8976
0000-0001-7863-3260
0000-0002-5247-9370
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/345
PQID 2244350387
PQPubID 2040408
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TSG_2018_2859821
proquest_journals_2244350387
crossref_primary_10_1109_TSG_2018_2859821
ieee_primary_8419206
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on smart grid
PublicationTitleAbbrev TSG
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref10
(ref3) 2010
ref2
ref1
ref17
ref16
ref19
ref18
cheng (ref27) 2005; 9
papathanassiou (ref37) 2005
theodoridis (ref34) 2015
ref24
ref23
ref26
ref25
(ref33) 2017
ref20
ref22
ref21
perkins (ref36) 2002
(ref38) 2016
ref28
ref29
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref9
  doi: 10.1109/TII.2016.2585379
– ident: ref29
  doi: 10.1109/TSG.2017.2713947
– ident: ref20
  doi: 10.1109/TCST.2017.2699159
– ident: ref11
  doi: 10.1109/TCST.2015.2421334
– year: 2010
  ident: ref3
  publication-title: Advanced Architectures and Control Concepts for More Microgrids
– ident: ref15
  doi: 10.1109/TCST.2013.2295737
– year: 2015
  ident: ref34
  publication-title: Machine Learning A Bayesian and Optimization Perspective
– ident: ref17
  doi: 10.1016/j.apenergy.2016.01.014
– ident: ref35
  doi: 10.1109/IJCNN.1991.155276
– ident: ref26
  doi: 10.1109/PESGM.2015.7285730
– ident: ref12
  doi: 10.1016/j.apenergy.2017.07.007
– ident: ref32
  doi: 10.1016/j.apenergy.2016.05.025
– ident: ref10
  doi: 10.1109/TSTE.2013.2255135
– ident: ref7
  doi: 10.1109/TSG.2014.2368077
– ident: ref2
  doi: 10.1109/PESW.2002.985003
– year: 2016
  ident: ref38
  publication-title: California ISO Open Access Same-Time Information System (OASIS)
– ident: ref18
  doi: 10.1016/j.apenergy.2017.05.068
– ident: ref25
  doi: 10.1287/ijoc.2017.0768
– year: 2017
  ident: ref33
  publication-title: PJM Manual 11 Energy & Ancillary Services Market Operations
– ident: ref14
  doi: 10.1109/TSG.2014.2302396
– ident: ref16
  doi: 10.1109/TSG.2014.2359004
– ident: ref6
  doi: 10.1109/TSG.2014.2329846
– ident: ref24
  doi: 10.1109/ADPRL.2014.7010626
– ident: ref31
  doi: 10.1109/TPWRS.2010.2051168
– ident: ref23
  doi: 10.1002/9781118029176
– ident: ref19
  doi: 10.1016/j.jprocont.2016.04.008
– ident: ref21
  doi: 10.1109/TSG.2014.2384031
– start-page: 13
  year: 2005
  ident: ref37
  article-title: A benchmark low voltage microgrid network
  publication-title: Proc Symp Power Syst Dispersed Gener (CIGRE)
– ident: ref5
  doi: 10.1109/TSG.2013.2280645
– ident: ref4
  doi: 10.1016/j.rser.2015.10.141
– ident: ref13
  doi: 10.1016/j.ijepes.2017.02.008
– ident: ref8
  doi: 10.1109/TPWRS.2015.2455491
– start-page: 1627
  year: 2002
  ident: ref36
  article-title: A convergent form of approximate policy iteration
  publication-title: Proc 15th Int Conf Neural Inf Process Syst (NIPS) Vancouver BC Canada
– ident: ref22
  doi: 10.1109/TSTE.2016.2577040
– ident: ref28
  doi: 10.1109/TSG.2017.2716382
– ident: ref30
  doi: 10.1007/s11768-011-1005-3
– volume: 9
  start-page: 1997
  year: 2005
  ident: ref27
  article-title: Co-optimizing battery storage for the frequency regulation and energy arbitrage using multi-scale dynamic programming
  publication-title: IEEE Trans Smart Grid
– ident: ref1
  doi: 10.1109/TIE.2012.2188873
SSID ssj0000333629
Score 2.633754
Snippet This paper focuses on economical operation of a microgrid (MG) in real-time. A novel dynamic energy management system is developed to incorporate efficient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4435
SubjectTerms approximate dynamic programming
Computer simulation
deep learning
Distributed generation
dynamic energy management system
Dynamic programming
Electric power transmission
Electricity distribution
Electricity pricing
Energy management
Energy storage
Learning
Markov chains
Microgrid
Neural networks
Operating costs
Optimization
Power flow
Reactive power
Real-time systems
recurrent neural network
Recurrent neural networks
Scheduling
Uncertainty
Title Dynamic Energy Management of a Microgrid Using Approximate Dynamic Programming and Deep Recurrent Neural Network Learning
URI https://ieeexplore.ieee.org/document/8419206
https://www.proquest.com/docview/2244350387
Volume 10
WOSCitedRecordID wos000472577500083&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1949-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000333629
  issn: 1949-3053
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPOjBVxWrVXLwIrh9bLKPHItt9aClaJXeliaZLQXdlj5E_72Z7ENFEbwtJFmy-XYzs5lvviHk3OfSN1bddZQvtcNVyB3Jm9JhLjPWypcB2MpzT7dBrxcOh6K_Ri6LXBgAsOQzqOGljeXrqVrhUVk9xJAl6muvB0GQ5moV5ykNxsxeLGwQmWM432N5VLIh6oOHa6RxhTXUawvd5jcrZMuq_NiLrYHp7vxvartkO3MkaStFfo-sQbJPtr7IC5bJezstN087NsGPflJd6DSmI3qHZLzxfKKpJQ7QFuqLv02MDws0H9pP-Vsv2D5KNG0DzOg9HtKjrBNFbQ8zi15KJqeZWuv4gDx2O4OrGycrteAos25LB2tUGWPOGq5CORflKs2UcfW0H8imkq6MZezFDDBOH4DgwJjQAFhW3TR6PjskpWSawBGh3OUj19PaCw3wIGMBvs8FCpMJzFuXFVLPlz5SmQ45lsN4juz_SENEBqwIwYoysCrkohgxSzU4_uhbRnCKfhkuFVLN0Y2yj3QRmQc2ziLG749_H3VCNs29RcrOrZLScr6CU7KhXpeTxfzMvn8fMN3XAA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED9EBfXBb3F-5sEXwbotSbvmUXR-4DZEp_hWluQ6BrqNbYr-9-bSbiqK4FshCU3za3PX3O9-B3AQSR05q84DE2kbSBPLQMuyDgQXzlpFuoK-8txDrdJoxI-P6mYKjia5MIjoyWd4TJc-lm975oWOyooxhSxJX3smlJKXs2ytyYlKSQi3GysfRpYU0A_FOC5ZUsXm3QURueJjUmyLefmbHfKFVX7sxt7EnC_9b3LLsJi7kuwkw34FprC7CgtfBAbX4P0sKzjPqj7Fj32SXVgvZS1WJzpee9CxzFMH2AkpjL91nBeLbDz0JmNwPVN7q2vZGWKf3dIxPQk7MVL3cLNoZHRyluu1ttfh_rzaPL0M8mILgXHrNgqoSpUz56LEDQm6GG6sMM7Zs1FFl43mOtVpmAqkSH0FlUQhlEWkwuquMYzEBkx3e13cBCa5bPHQ2jB20KNOFUaRVCRNpihzXRegOF76xORK5FQQ4ynxfyQllTiwEgIrycEqwOFkRD9T4fij7xqBM-mX41KAnTG6Sf6ZDhP3wM5dpAj-1u-j9mHuslmvJbWrxvU2zLv7qIyruwPTo8EL7sKseR11hoM9_y5-AIa42kc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Energy+Management+of+a+Microgrid+Using+Approximate+Dynamic+Programming+and+Deep+Recurrent+Neural+Network+Learning&rft.jtitle=IEEE+transactions+on+smart+grid&rft.au=Zeng%2C+Peng&rft.au=Li%2C+Hepeng&rft.au=He%2C+Haibo&rft.au=Li%2C+Shuhui&rft.date=2019-07-01&rft.issn=1949-3053&rft.eissn=1949-3061&rft.volume=10&rft.issue=4&rft.spage=4435&rft.epage=4445&rft_id=info:doi/10.1109%2FTSG.2018.2859821&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSG_2018_2859821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3053&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3053&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3053&client=summon