Linear-projection diffusion on smooth Euclidean submanifolds
To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented...
Uložené v:
| Vydané v: | Applied and computational harmonic analysis Ročník 34; číslo 1; s. 1 - 14 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.01.2013
|
| Predmet: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space.
We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold. |
|---|---|
| AbstractList | To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space.
We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold. To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space. We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold. |
| Author | Averbuch, Amir Wolf, Guy |
| Author_xml | – sequence: 1 givenname: Guy surname: Wolf fullname: Wolf, Guy – sequence: 2 givenname: Amir surname: Averbuch fullname: Averbuch, Amir email: amir@math.tau.ac.il |
| BookMark | eNp9kE9LwzAYh4NMcE6_gKcdvbQmTZOlsIuM-QcGXhS8heztG5bSNjNpBb-9KfPkYRDIj_B7wvs-12TW-x4JuWM0Z5TJhyY3cDB5QVmRU55Tyi_InNFKZpLyz9mUJc9EQfkVuY6xoZSxUlRzst65Hk3IjsE3CIPz_bJ21o5xSunEzvvhsNyO0LoaTXoY953pnfVtHW_IpTVtxNu_e0E-nrbvm5ds9_b8unncZcA5H7JCVsqCojXdC6lWWJawUnvBrJXS1KUAgxIVA6i4hBqBK2FLVZWSMyVQGr4g96d_05RfI8ZBdy4Ctq3p0Y9Rs0JxKVJ9larFqQrBxxjQ6mNwnQk_mlE9qdKNnlTpSZWmXCdVCVL_IHCDmWQMwbj2PLo-oZj2_3YYdASHPWDtQvKpa-_O4b_noIaW |
| CitedBy_id | crossref_primary_10_1016_j_acha_2013_03_001 crossref_primary_10_1016_j_acha_2017_11_003 crossref_primary_10_1007_s10994_015_5538_4 |
| Cites_doi | 10.1126/science.290.5500.2323 10.1037/h0071325 10.1162/089976698300017467 10.1073/pnas.1031596100 10.1137/040616024 10.1016/j.acha.2010.10.001 10.1126/science.290.5500.2319 10.1109/CSSE.2008.1332 10.1162/089976603321780317 10.1016/j.acha.2006.04.006 10.1109/SSP.2009.5278634 10.1007/BF02289565 10.1016/j.acha.2005.07.005 10.1023/A:1023705401078 10.1016/j.acha.2011.11.003 10.1007/s11263-007-0056-x |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Inc. |
| Copyright_xml | – notice: 2012 Elsevier Inc. |
| DBID | 6I. AAFTH AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1016/j.acha.2012.03.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1096-603X |
| EndPage | 14 |
| ExternalDocumentID | 10_1016_j_acha_2012_03_003 S1063520312000425 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AASFE AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M26 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c333t-2698fc80d0b5687e44c78b51ff66ad45cae6e81cc936cdec385f489463185e6a3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310671700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-5203 |
| IngestDate | Wed Oct 01 13:44:22 EDT 2025 Sat Nov 29 05:58:34 EST 2025 Tue Nov 18 21:51:21 EST 2025 Fri Feb 23 02:28:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Vector processing Stochastic processing Manifold learning Diffusion maps Kernel method |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c333t-2698fc80d0b5687e44c78b51ff66ad45cae6e81cc936cdec385f489463185e6a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.acha.2012.03.003 |
| PQID | 1283656317 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1283656317 crossref_primary_10_1016_j_acha_2012_03_003 crossref_citationtrail_10_1016_j_acha_2012_03_003 elsevier_sciencedirect_doi_10_1016_j_acha_2012_03_003 |
| PublicationCentury | 2000 |
| PublicationDate | January 2013 2013-01-00 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: January 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied and computational harmonic analysis |
| PublicationYear | 2013 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | A. Haddad, D. Kushnir, R.R. Coifman, Filtering via a reference set, Technical report, Yale University, 2011. Singer, Wu (br0210) 2011 Roweis, Saul (br0170) December 2000; 290 Hotelling (br0100) 1933; 24 Donoho, Grimes (br0080) May 2003; 100 Coifman, Lafon (br0060) 2006; 21 G. Yang, X. Xu, J. Zhang, Manifold alignment via local tangent space alignment, in: International Conference on Computer Science and Software Engineering, December 2008. S. Lafon, Diffusion maps and geometric harmonics, PhD thesis, Yale University, May 2004. Cox, Cox (br0070) 1994 Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, Technical Report CSE-02-019, Department of Computer Science and Engineering, Pennsylvania State University, 2002. Singer, Wu (br0200) 2011; 31 Chung (br0040) 1997; vol. 92 Jolliffe (br0110) 1986 Coifman, Lafon (br0050) 2006; 21 Buades, Coll, Morel (br0020) 2005; 4 Kruskal (br0120) 1964; 29 Tenenbaum, de Silva, Langford (br0230) 2000; 290 Carlsson, Ishkhanov, de Silva, Zomorodian (br0030) 2008; 76 Lee, Pedersen, Mumford (br0140) 2003; 54 Belkin, Niyogi (br0010) 2003; 15 A.V. Little, J. Lee, Yoon-Mo Jung, M. Maggioni, Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD, in: SSPʼ09: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, pp. 85–88. Mika, Schölkopf, Smola, Müller, Scholz, Rätsch (br0160) 1999 Salhov, Wolf, Averbuch (br0180) 2012; 33 Szlam, Maggioni, Coifman (br0220) 2008; 9 Schölkopf, Smola, Müller (br0190) July 1998; 10 Szlam (10.1016/j.acha.2012.03.003_br0220) 2008; 9 Tenenbaum (10.1016/j.acha.2012.03.003_br0230) 2000; 290 Cox (10.1016/j.acha.2012.03.003_br0070) 1994 Coifman (10.1016/j.acha.2012.03.003_br0060) 2006; 21 Donoho (10.1016/j.acha.2012.03.003_br0080) 2003; 100 Schölkopf (10.1016/j.acha.2012.03.003_br0190) 1998; 10 Mika (10.1016/j.acha.2012.03.003_br0160) 1999 10.1016/j.acha.2012.03.003_br0150 Kruskal (10.1016/j.acha.2012.03.003_br0120) 1964; 29 Lee (10.1016/j.acha.2012.03.003_br0140) 2003; 54 Buades (10.1016/j.acha.2012.03.003_br0020) 2005; 4 Belkin (10.1016/j.acha.2012.03.003_br0010) 2003; 15 10.1016/j.acha.2012.03.003_br0090 Singer (10.1016/j.acha.2012.03.003_br0200) 2011; 31 Salhov (10.1016/j.acha.2012.03.003_br0180) 2012; 33 10.1016/j.acha.2012.03.003_br0130 10.1016/j.acha.2012.03.003_br0250 Roweis (10.1016/j.acha.2012.03.003_br0170) 2000; 290 Chung (10.1016/j.acha.2012.03.003_br0040) 1997; vol. 92 Jolliffe (10.1016/j.acha.2012.03.003_br0110) 1986 Hotelling (10.1016/j.acha.2012.03.003_br0100) 1933; 24 Singer (10.1016/j.acha.2012.03.003_br0210) Carlsson (10.1016/j.acha.2012.03.003_br0030) 2008; 76 10.1016/j.acha.2012.03.003_br0240 Coifman (10.1016/j.acha.2012.03.003_br0050) 2006; 21 |
| References_xml | – volume: 4 start-page: 490 year: 2005 end-page: 530 ident: br0020 article-title: A review of image denoising algorithms, with a new one publication-title: SIAM Multiscale Model. Simul. – volume: 24 year: 1933 ident: br0100 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. – reference: G. Yang, X. Xu, J. Zhang, Manifold alignment via local tangent space alignment, in: International Conference on Computer Science and Software Engineering, December 2008. – reference: A.V. Little, J. Lee, Yoon-Mo Jung, M. Maggioni, Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD, in: SSPʼ09: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, pp. 85–88. – volume: 100 start-page: 5591 year: May 2003 end-page: 5596 ident: br0080 article-title: Hessian eigenmaps: New locally linear embedding techniques for high dimensional data publication-title: Proc. Natl. Acad. Sci. USA – reference: S. Lafon, Diffusion maps and geometric harmonics, PhD thesis, Yale University, May 2004. – volume: 21 start-page: 5 year: 2006 end-page: 30 ident: br0050 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. – year: 1994 ident: br0070 article-title: Multidimensional Scaling – volume: 21 start-page: 31 year: 2006 end-page: 52 ident: br0060 article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions publication-title: Appl. Comput. Harmon. Anal. – volume: 33 start-page: 182 year: 2012 end-page: 203 ident: br0180 article-title: Patch-to-tensor embedding publication-title: Appl. Comput. Harmon. Anal. – volume: 15 start-page: 1373 year: 2003 end-page: 1396 ident: br0010 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. – volume: 9 start-page: 1711 year: 2008 end-page: 1739 ident: br0220 article-title: Regularization on graphs with function-adapted diffusion processes publication-title: J. Mach. Learn. Res. – year: 2011 ident: br0210 article-title: Vector diffusion maps and the connection laplacian – start-page: 536 year: 1999 end-page: 542 ident: br0160 article-title: Kernel PCA and de-noising in feature spaces publication-title: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II – reference: Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, Technical Report CSE-02-019, Department of Computer Science and Engineering, Pennsylvania State University, 2002. – reference: A. Haddad, D. Kushnir, R.R. Coifman, Filtering via a reference set, Technical report, Yale University, 2011. – volume: 290 start-page: 2323 year: December 2000 end-page: 2326 ident: br0170 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science – volume: 290 start-page: 2319 year: 2000 end-page: 2323 ident: br0230 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science – volume: 29 start-page: 1 year: 1964 end-page: 27 ident: br0120 article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis publication-title: Psychometrika – volume: 54 start-page: 83 year: 2003 end-page: 103 ident: br0140 article-title: The nonlinear statistics of high-contrast patches in natural images publication-title: Int. J. Comput. Vis. – volume: 76 start-page: 1 year: 2008 end-page: 12 ident: br0030 article-title: On the local behavior of spaces of natural images publication-title: Int. J. Comput. Vis. – volume: 31 start-page: 44 year: 2011 end-page: 58 ident: br0200 article-title: Orientability and diffusion maps publication-title: Appl. Comput. Harmon. Anal. – volume: vol. 92 year: 1997 ident: br0040 article-title: Spectral Graph Theory publication-title: CBMS Regional Conference Series in Mathematics – year: 1986 ident: br0110 article-title: Principal Component Analysis – volume: 10 start-page: 1299 year: July 1998 end-page: 1319 ident: br0190 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. – ident: 10.1016/j.acha.2012.03.003_br0130 – volume: 290 start-page: 2323 year: 2000 ident: 10.1016/j.acha.2012.03.003_br0170 article-title: Nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – volume: 24 year: 1933 ident: 10.1016/j.acha.2012.03.003_br0100 article-title: Analysis of a complex of statistical variables into principal components publication-title: J. Educ. Psychol. doi: 10.1037/h0071325 – year: 1994 ident: 10.1016/j.acha.2012.03.003_br0070 – volume: 10 start-page: 1299 year: 1998 ident: 10.1016/j.acha.2012.03.003_br0190 article-title: Nonlinear component analysis as a kernel eigenvalue problem publication-title: Neural Comput. doi: 10.1162/089976698300017467 – volume: vol. 92 year: 1997 ident: 10.1016/j.acha.2012.03.003_br0040 article-title: Spectral Graph Theory – volume: 100 start-page: 5591 year: 2003 ident: 10.1016/j.acha.2012.03.003_br0080 article-title: Hessian eigenmaps: New locally linear embedding techniques for high dimensional data publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1031596100 – volume: 4 start-page: 490 issue: 2 year: 2005 ident: 10.1016/j.acha.2012.03.003_br0020 article-title: A review of image denoising algorithms, with a new one publication-title: SIAM Multiscale Model. Simul. doi: 10.1137/040616024 – ident: 10.1016/j.acha.2012.03.003_br0090 – volume: 31 start-page: 44 issue: 1 year: 2011 ident: 10.1016/j.acha.2012.03.003_br0200 article-title: Orientability and diffusion maps publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2010.10.001 – start-page: 536 year: 1999 ident: 10.1016/j.acha.2012.03.003_br0160 article-title: Kernel PCA and de-noising in feature spaces – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 10.1016/j.acha.2012.03.003_br0230 article-title: A global geometric framework for nonlinear dimensionality reduction publication-title: Science doi: 10.1126/science.290.5500.2319 – year: 1986 ident: 10.1016/j.acha.2012.03.003_br0110 – ident: 10.1016/j.acha.2012.03.003_br0240 doi: 10.1109/CSSE.2008.1332 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 10.1016/j.acha.2012.03.003_br0010 article-title: Laplacian eigenmaps for dimensionality reduction and data representation publication-title: Neural Comput. doi: 10.1162/089976603321780317 – volume: 9 start-page: 1711 year: 2008 ident: 10.1016/j.acha.2012.03.003_br0220 article-title: Regularization on graphs with function-adapted diffusion processes publication-title: J. Mach. Learn. Res. – volume: 21 start-page: 5 issue: 1 year: 2006 ident: 10.1016/j.acha.2012.03.003_br0050 article-title: Diffusion maps publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.006 – ident: 10.1016/j.acha.2012.03.003_br0150 doi: 10.1109/SSP.2009.5278634 – volume: 29 start-page: 1 year: 1964 ident: 10.1016/j.acha.2012.03.003_br0120 article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis publication-title: Psychometrika doi: 10.1007/BF02289565 – volume: 21 start-page: 31 issue: 1 year: 2006 ident: 10.1016/j.acha.2012.03.003_br0060 article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2005.07.005 – volume: 54 start-page: 83 year: 2003 ident: 10.1016/j.acha.2012.03.003_br0140 article-title: The nonlinear statistics of high-contrast patches in natural images publication-title: Int. J. Comput. Vis. doi: 10.1023/A:1023705401078 – ident: 10.1016/j.acha.2012.03.003_br0210 – ident: 10.1016/j.acha.2012.03.003_br0250 – volume: 33 start-page: 182 issue: 2 year: 2012 ident: 10.1016/j.acha.2012.03.003_br0180 article-title: Patch-to-tensor embedding publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2011.11.003 – volume: 76 start-page: 1 year: 2008 ident: 10.1016/j.acha.2012.03.003_br0030 article-title: On the local behavior of spaces of natural images publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-007-0056-x |
| SSID | ssj0011459 |
| Score | 2.0287187 |
| Snippet | To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Density Diffusion Diffusion maps Generators Kernel method Manifold learning Manifolds Mathematical analysis Operators Projection Stochastic processing Tangents Vector processing |
| Title | Linear-projection diffusion on smooth Euclidean submanifolds |
| URI | https://dx.doi.org/10.1016/j.acha.2012.03.003 https://www.proquest.com/docview/1283656317 |
| Volume | 34 |
| WOSCitedRecordID | wos000310671700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-603X dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0011459 issn: 1063-5203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBYj3WE7jP1k7drhwW7BYEWyJMMuoWTdBis7dJCbkCWZpaR2iOPSP39PlqyalJb1MAgmNraw_T0_PT3pfR9Cn6ui1KLQWWqzmU0p5Swt89KmtioyUVlujPJiE_z8XCyXxa8gb9X2cgK8rsXNTbH5r1DDMQDblc4-Au7YKByA_wA6bAF22P4T8DC6hEdKQ4rFoetEULq2jwzraXvVADjTRafXK-PS8C30iKpeVc3a1_xGTtoQn4bCt023G_KGju26F85RgdEkevZm3XM8nnUxUT-_drh5van51Wo7zjI4xYeYZfCOEUIZGLRmZOw5QxpybCHeDeJRf-prRO94ap80uASr-ePon1xK1nHNktt-aZiL3-uu4iLCYX3apXRtSNeGzIjsuV8PZjzn2QQdzL8vlj_itBKmvXpefJhQReUX_O3fyX2Ryl6f3QciFy_RizCCSOYe-Vfoia1fo-cjXknY-xnJeNs36Msdi0iiRSTw8xaRRItIxhbxFv3-urg4_ZYG0YxUE0J26YwVotIiM1mZM8EtpZqLMsdVxZgyNNfKMiuw1gVh2lhNRF5RUVDmyugtU-QdmtRNbd-jxBCiMKElFtRSbU2JucIlNkQbCLwJOUR4eEFSB0Z5J2yylvdDc4im8ZqN51N58Ox8eO8yRIQ-0pNgRg9e92kASYK7dHNgqrZN10oIxwgMYSBqPnrUnXxAz24_i2M02W07e4Ke6uvdqt1-DHb2F0B9j2o |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear-projection+diffusion+on+smooth+Euclidean+submanifolds&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Wolf%2C+Guy&rft.au=Averbuch%2C+Amir&rft.date=2013-01-01&rft.issn=1063-5203&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1016%2Fj.acha.2012.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2012_03_003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon |