Linear-projection diffusion on smooth Euclidean submanifolds

To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied and computational harmonic analysis Ročník 34; číslo 1; s. 1 - 14
Hlavní autori: Wolf, Guy, Averbuch, Amir
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.01.2013
Predmet:
ISSN:1063-5203, 1096-603X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space. We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold.
AbstractList To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space. We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold.
To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches (or neighborhoods of points) that are sampled with sufficient density from the manifold. Under this assumption, each patch can be represented (up to a small approximation error) by a tangent space of the manifold in its area and the tangential point of this tangent space. We extend previously obtained results (Salhov et al., 2012 [18]) for the finite construction of a linear-projection diffusion (LPD) super-kernel by exploring its properties when it becomes continuous. Specifically, its infinitesimal generator and the stochastic process defined by it are explored. We show that the resulting infinitesimal generator of this super-kernel converges to a natural extension of the original diffusion operator from scalar functions to vector fields. This operator is shown to be locally equivalent to a composition of linear projections between tangent spaces and the vector-Laplacians on them. We define a LPD process by using the LPD super-kernel as a transition operator while extending the process to be continuous. The obtained LPD process is demonstrated on a synthetic manifold.
Author Averbuch, Amir
Wolf, Guy
Author_xml – sequence: 1
  givenname: Guy
  surname: Wolf
  fullname: Wolf, Guy
– sequence: 2
  givenname: Amir
  surname: Averbuch
  fullname: Averbuch, Amir
  email: amir@math.tau.ac.il
BookMark eNp9kE9LwzAYh4NMcE6_gKcdvbQmTZOlsIuM-QcGXhS8heztG5bSNjNpBb-9KfPkYRDIj_B7wvs-12TW-x4JuWM0Z5TJhyY3cDB5QVmRU55Tyi_InNFKZpLyz9mUJc9EQfkVuY6xoZSxUlRzst65Hk3IjsE3CIPz_bJ21o5xSunEzvvhsNyO0LoaTXoY953pnfVtHW_IpTVtxNu_e0E-nrbvm5ds9_b8unncZcA5H7JCVsqCojXdC6lWWJawUnvBrJXS1KUAgxIVA6i4hBqBK2FLVZWSMyVQGr4g96d_05RfI8ZBdy4Ctq3p0Y9Rs0JxKVJ9larFqQrBxxjQ6mNwnQk_mlE9qdKNnlTpSZWmXCdVCVL_IHCDmWQMwbj2PLo-oZj2_3YYdASHPWDtQvKpa-_O4b_noIaW
CitedBy_id crossref_primary_10_1016_j_acha_2013_03_001
crossref_primary_10_1016_j_acha_2017_11_003
crossref_primary_10_1007_s10994_015_5538_4
Cites_doi 10.1126/science.290.5500.2323
10.1037/h0071325
10.1162/089976698300017467
10.1073/pnas.1031596100
10.1137/040616024
10.1016/j.acha.2010.10.001
10.1126/science.290.5500.2319
10.1109/CSSE.2008.1332
10.1162/089976603321780317
10.1016/j.acha.2006.04.006
10.1109/SSP.2009.5278634
10.1007/BF02289565
10.1016/j.acha.2005.07.005
10.1023/A:1023705401078
10.1016/j.acha.2011.11.003
10.1007/s11263-007-0056-x
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID 6I.
AAFTH
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/j.acha.2012.03.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1096-603X
EndPage 14
ExternalDocumentID 10_1016_j_acha_2012_03_003
S1063520312000425
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M26
M41
MCRUF
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
L7M
ID FETCH-LOGICAL-c333t-2698fc80d0b5687e44c78b51ff66ad45cae6e81cc936cdec385f489463185e6a3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000310671700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-5203
IngestDate Wed Oct 01 13:44:22 EDT 2025
Sat Nov 29 05:58:34 EST 2025
Tue Nov 18 21:51:21 EST 2025
Fri Feb 23 02:28:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Vector processing
Stochastic processing
Manifold learning
Diffusion maps
Kernel method
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c333t-2698fc80d0b5687e44c78b51ff66ad45cae6e81cc936cdec385f489463185e6a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.acha.2012.03.003
PQID 1283656317
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1283656317
crossref_primary_10_1016_j_acha_2012_03_003
crossref_citationtrail_10_1016_j_acha_2012_03_003
elsevier_sciencedirect_doi_10_1016_j_acha_2012_03_003
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationTitle Applied and computational harmonic analysis
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References A. Haddad, D. Kushnir, R.R. Coifman, Filtering via a reference set, Technical report, Yale University, 2011.
Singer, Wu (br0210) 2011
Roweis, Saul (br0170) December 2000; 290
Hotelling (br0100) 1933; 24
Donoho, Grimes (br0080) May 2003; 100
Coifman, Lafon (br0060) 2006; 21
G. Yang, X. Xu, J. Zhang, Manifold alignment via local tangent space alignment, in: International Conference on Computer Science and Software Engineering, December 2008.
S. Lafon, Diffusion maps and geometric harmonics, PhD thesis, Yale University, May 2004.
Cox, Cox (br0070) 1994
Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, Technical Report CSE-02-019, Department of Computer Science and Engineering, Pennsylvania State University, 2002.
Singer, Wu (br0200) 2011; 31
Chung (br0040) 1997; vol. 92
Jolliffe (br0110) 1986
Coifman, Lafon (br0050) 2006; 21
Buades, Coll, Morel (br0020) 2005; 4
Kruskal (br0120) 1964; 29
Tenenbaum, de Silva, Langford (br0230) 2000; 290
Carlsson, Ishkhanov, de Silva, Zomorodian (br0030) 2008; 76
Lee, Pedersen, Mumford (br0140) 2003; 54
Belkin, Niyogi (br0010) 2003; 15
A.V. Little, J. Lee, Yoon-Mo Jung, M. Maggioni, Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD, in: SSPʼ09: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, pp. 85–88.
Mika, Schölkopf, Smola, Müller, Scholz, Rätsch (br0160) 1999
Salhov, Wolf, Averbuch (br0180) 2012; 33
Szlam, Maggioni, Coifman (br0220) 2008; 9
Schölkopf, Smola, Müller (br0190) July 1998; 10
Szlam (10.1016/j.acha.2012.03.003_br0220) 2008; 9
Tenenbaum (10.1016/j.acha.2012.03.003_br0230) 2000; 290
Cox (10.1016/j.acha.2012.03.003_br0070) 1994
Coifman (10.1016/j.acha.2012.03.003_br0060) 2006; 21
Donoho (10.1016/j.acha.2012.03.003_br0080) 2003; 100
Schölkopf (10.1016/j.acha.2012.03.003_br0190) 1998; 10
Mika (10.1016/j.acha.2012.03.003_br0160) 1999
10.1016/j.acha.2012.03.003_br0150
Kruskal (10.1016/j.acha.2012.03.003_br0120) 1964; 29
Lee (10.1016/j.acha.2012.03.003_br0140) 2003; 54
Buades (10.1016/j.acha.2012.03.003_br0020) 2005; 4
Belkin (10.1016/j.acha.2012.03.003_br0010) 2003; 15
10.1016/j.acha.2012.03.003_br0090
Singer (10.1016/j.acha.2012.03.003_br0200) 2011; 31
Salhov (10.1016/j.acha.2012.03.003_br0180) 2012; 33
10.1016/j.acha.2012.03.003_br0130
10.1016/j.acha.2012.03.003_br0250
Roweis (10.1016/j.acha.2012.03.003_br0170) 2000; 290
Chung (10.1016/j.acha.2012.03.003_br0040) 1997; vol. 92
Jolliffe (10.1016/j.acha.2012.03.003_br0110) 1986
Hotelling (10.1016/j.acha.2012.03.003_br0100) 1933; 24
Singer (10.1016/j.acha.2012.03.003_br0210)
Carlsson (10.1016/j.acha.2012.03.003_br0030) 2008; 76
10.1016/j.acha.2012.03.003_br0240
Coifman (10.1016/j.acha.2012.03.003_br0050) 2006; 21
References_xml – volume: 4
  start-page: 490
  year: 2005
  end-page: 530
  ident: br0020
  article-title: A review of image denoising algorithms, with a new one
  publication-title: SIAM Multiscale Model. Simul.
– volume: 24
  year: 1933
  ident: br0100
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
– reference: G. Yang, X. Xu, J. Zhang, Manifold alignment via local tangent space alignment, in: International Conference on Computer Science and Software Engineering, December 2008.
– reference: A.V. Little, J. Lee, Yoon-Mo Jung, M. Maggioni, Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD, in: SSPʼ09: IEEE/SP 15th Workshop on Statistical Signal Processing, 2009, pp. 85–88.
– volume: 100
  start-page: 5591
  year: May 2003
  end-page: 5596
  ident: br0080
  article-title: Hessian eigenmaps: New locally linear embedding techniques for high dimensional data
  publication-title: Proc. Natl. Acad. Sci. USA
– reference: S. Lafon, Diffusion maps and geometric harmonics, PhD thesis, Yale University, May 2004.
– volume: 21
  start-page: 5
  year: 2006
  end-page: 30
  ident: br0050
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
– year: 1994
  ident: br0070
  article-title: Multidimensional Scaling
– volume: 21
  start-page: 31
  year: 2006
  end-page: 52
  ident: br0060
  article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 33
  start-page: 182
  year: 2012
  end-page: 203
  ident: br0180
  article-title: Patch-to-tensor embedding
  publication-title: Appl. Comput. Harmon. Anal.
– volume: 15
  start-page: 1373
  year: 2003
  end-page: 1396
  ident: br0010
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
– volume: 9
  start-page: 1711
  year: 2008
  end-page: 1739
  ident: br0220
  article-title: Regularization on graphs with function-adapted diffusion processes
  publication-title: J. Mach. Learn. Res.
– year: 2011
  ident: br0210
  article-title: Vector diffusion maps and the connection laplacian
– start-page: 536
  year: 1999
  end-page: 542
  ident: br0160
  article-title: Kernel PCA and de-noising in feature spaces
  publication-title: Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II
– reference: Z. Zhang, H. Zha, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, Technical Report CSE-02-019, Department of Computer Science and Engineering, Pennsylvania State University, 2002.
– reference: A. Haddad, D. Kushnir, R.R. Coifman, Filtering via a reference set, Technical report, Yale University, 2011.
– volume: 290
  start-page: 2323
  year: December 2000
  end-page: 2326
  ident: br0170
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
– volume: 290
  start-page: 2319
  year: 2000
  end-page: 2323
  ident: br0230
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
– volume: 29
  start-page: 1
  year: 1964
  end-page: 27
  ident: br0120
  article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
  publication-title: Psychometrika
– volume: 54
  start-page: 83
  year: 2003
  end-page: 103
  ident: br0140
  article-title: The nonlinear statistics of high-contrast patches in natural images
  publication-title: Int. J. Comput. Vis.
– volume: 76
  start-page: 1
  year: 2008
  end-page: 12
  ident: br0030
  article-title: On the local behavior of spaces of natural images
  publication-title: Int. J. Comput. Vis.
– volume: 31
  start-page: 44
  year: 2011
  end-page: 58
  ident: br0200
  article-title: Orientability and diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
– volume: vol. 92
  year: 1997
  ident: br0040
  article-title: Spectral Graph Theory
  publication-title: CBMS Regional Conference Series in Mathematics
– year: 1986
  ident: br0110
  article-title: Principal Component Analysis
– volume: 10
  start-page: 1299
  year: July 1998
  end-page: 1319
  ident: br0190
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– ident: 10.1016/j.acha.2012.03.003_br0130
– volume: 290
  start-page: 2323
  year: 2000
  ident: 10.1016/j.acha.2012.03.003_br0170
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume: 24
  year: 1933
  ident: 10.1016/j.acha.2012.03.003_br0100
  article-title: Analysis of a complex of statistical variables into principal components
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– year: 1994
  ident: 10.1016/j.acha.2012.03.003_br0070
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.acha.2012.03.003_br0190
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: vol. 92
  year: 1997
  ident: 10.1016/j.acha.2012.03.003_br0040
  article-title: Spectral Graph Theory
– volume: 100
  start-page: 5591
  year: 2003
  ident: 10.1016/j.acha.2012.03.003_br0080
  article-title: Hessian eigenmaps: New locally linear embedding techniques for high dimensional data
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1031596100
– volume: 4
  start-page: 490
  issue: 2
  year: 2005
  ident: 10.1016/j.acha.2012.03.003_br0020
  article-title: A review of image denoising algorithms, with a new one
  publication-title: SIAM Multiscale Model. Simul.
  doi: 10.1137/040616024
– ident: 10.1016/j.acha.2012.03.003_br0090
– volume: 31
  start-page: 44
  issue: 1
  year: 2011
  ident: 10.1016/j.acha.2012.03.003_br0200
  article-title: Orientability and diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2010.10.001
– start-page: 536
  year: 1999
  ident: 10.1016/j.acha.2012.03.003_br0160
  article-title: Kernel PCA and de-noising in feature spaces
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 10.1016/j.acha.2012.03.003_br0230
  article-title: A global geometric framework for nonlinear dimensionality reduction
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– year: 1986
  ident: 10.1016/j.acha.2012.03.003_br0110
– ident: 10.1016/j.acha.2012.03.003_br0240
  doi: 10.1109/CSSE.2008.1332
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 10.1016/j.acha.2012.03.003_br0010
  article-title: Laplacian eigenmaps for dimensionality reduction and data representation
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume: 9
  start-page: 1711
  year: 2008
  ident: 10.1016/j.acha.2012.03.003_br0220
  article-title: Regularization on graphs with function-adapted diffusion processes
  publication-title: J. Mach. Learn. Res.
– volume: 21
  start-page: 5
  issue: 1
  year: 2006
  ident: 10.1016/j.acha.2012.03.003_br0050
  article-title: Diffusion maps
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.006
– ident: 10.1016/j.acha.2012.03.003_br0150
  doi: 10.1109/SSP.2009.5278634
– volume: 29
  start-page: 1
  year: 1964
  ident: 10.1016/j.acha.2012.03.003_br0120
  article-title: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
  publication-title: Psychometrika
  doi: 10.1007/BF02289565
– volume: 21
  start-page: 31
  issue: 1
  year: 2006
  ident: 10.1016/j.acha.2012.03.003_br0060
  article-title: Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2005.07.005
– volume: 54
  start-page: 83
  year: 2003
  ident: 10.1016/j.acha.2012.03.003_br0140
  article-title: The nonlinear statistics of high-contrast patches in natural images
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1023705401078
– ident: 10.1016/j.acha.2012.03.003_br0210
– ident: 10.1016/j.acha.2012.03.003_br0250
– volume: 33
  start-page: 182
  issue: 2
  year: 2012
  ident: 10.1016/j.acha.2012.03.003_br0180
  article-title: Patch-to-tensor embedding
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2011.11.003
– volume: 76
  start-page: 1
  year: 2008
  ident: 10.1016/j.acha.2012.03.003_br0030
  article-title: On the local behavior of spaces of natural images
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-007-0056-x
SSID ssj0011459
Score 2.0287187
Snippet To process massive high-dimensional datasets, we utilize the underlying assumption that data on manifold is approximately linear in sufficiently small patches...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Density
Diffusion
Diffusion maps
Generators
Kernel method
Manifold learning
Manifolds
Mathematical analysis
Operators
Projection
Stochastic processing
Tangents
Vector processing
Title Linear-projection diffusion on smooth Euclidean submanifolds
URI https://dx.doi.org/10.1016/j.acha.2012.03.003
https://www.proquest.com/docview/1283656317
Volume 34
WOSCitedRecordID wos000310671700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-603X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0011459
  issn: 1063-5203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBYj3WE7jP1k7drhwW7BYEWyJMMuoWTdBis7dJCbkCWZpaR2iOPSP39PlqyalJb1MAgmNraw_T0_PT3pfR9Cn6ui1KLQWWqzmU0p5Swt89KmtioyUVlujPJiE_z8XCyXxa8gb9X2cgK8rsXNTbH5r1DDMQDblc4-Au7YKByA_wA6bAF22P4T8DC6hEdKQ4rFoetEULq2jwzraXvVADjTRafXK-PS8C30iKpeVc3a1_xGTtoQn4bCt023G_KGju26F85RgdEkevZm3XM8nnUxUT-_drh5van51Wo7zjI4xYeYZfCOEUIZGLRmZOw5QxpybCHeDeJRf-prRO94ap80uASr-ePon1xK1nHNktt-aZiL3-uu4iLCYX3apXRtSNeGzIjsuV8PZjzn2QQdzL8vlj_itBKmvXpefJhQReUX_O3fyX2Ryl6f3QciFy_RizCCSOYe-Vfoia1fo-cjXknY-xnJeNs36Msdi0iiRSTw8xaRRItIxhbxFv3-urg4_ZYG0YxUE0J26YwVotIiM1mZM8EtpZqLMsdVxZgyNNfKMiuw1gVh2lhNRF5RUVDmyugtU-QdmtRNbd-jxBCiMKElFtRSbU2JucIlNkQbCLwJOUR4eEFSB0Z5J2yylvdDc4im8ZqN51N58Ox8eO8yRIQ-0pNgRg9e92kASYK7dHNgqrZN10oIxwgMYSBqPnrUnXxAz24_i2M02W07e4Ke6uvdqt1-DHb2F0B9j2o
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear-projection+diffusion+on+smooth+Euclidean+submanifolds&rft.jtitle=Applied+and+computational+harmonic+analysis&rft.au=Wolf%2C+Guy&rft.au=Averbuch%2C+Amir&rft.date=2013-01-01&rft.issn=1063-5203&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1016%2Fj.acha.2012.03.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_acha_2012_03_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-5203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-5203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-5203&client=summon