Heat kernel for open manifolds

It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Differential geometry and its applications Ročník 28; číslo 5; s. 518 - 522
Hlavní autor: Jones, Trevor H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2010
Témata:
ISSN:0926-2245, 1872-6984
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condition for complete manifolds with Ricci curvature bounded below, and then use it to give an integral representation of the heat kernel of degree k.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2010.02.003