Heat kernel for open manifolds
It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condit...
Gespeichert in:
| Veröffentlicht in: | Differential geometry and its applications Jg. 28; H. 5; S. 518 - 522 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2010
|
| Schlagworte: | |
| ISSN: | 0926-2245, 1872-6984 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condition for complete manifolds with Ricci curvature bounded below, and then use it to give an integral representation of the heat kernel of degree
k. |
|---|---|
| Bibliographie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0926-2245 1872-6984 |
| DOI: | 10.1016/j.difgeo.2010.02.003 |