Heat kernel for open manifolds

It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential geometry and its applications Jg. 28; H. 5; S. 518 - 522
1. Verfasser: Jones, Trevor H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2010
Schlagworte:
ISSN:0926-2245, 1872-6984
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is known that for open manifolds with bounded geometry, the differential form heat kernel exists and is unique. Furthermore, it has been shown that the components of the differential form heat kernel are related via the exterior derivative and the coderivative. We will give a proof of this condition for complete manifolds with Ricci curvature bounded below, and then use it to give an integral representation of the heat kernel of degree k.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0926-2245
1872-6984
DOI:10.1016/j.difgeo.2010.02.003