Impeller geometry optimization using a machine learning-based algorithm with physics embedded dynamic sampling method for a high-speed miniature pump
This paper proposes an optimization approach leveraging machine learning, integrated with physics-informed dynamic sampling, to improve the hydraulic efficiency of highspeed pumps utilized in aerospace. These pumps are difficult to optimize due to their sensitivity to various impeller geometrical pa...
Saved in:
| Published in: | Journal of mechanical science and technology Vol. 39; no. 7; pp. 4043 - 4065 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Seoul
Korean Society of Mechanical Engineers
01.07.2025
Springer Nature B.V 대한기계학회 |
| Subjects: | |
| ISSN: | 1738-494X, 1976-3824 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes an optimization approach leveraging machine learning, integrated with physics-informed dynamic sampling, to improve the hydraulic efficiency of highspeed pumps utilized in aerospace. These pumps are difficult to optimize due to their sensitivity to various impeller geometrical parameters. To address the large design space and reduce computational cost, the study introduces fundamental design physics equations and integrates a distance criterion within the optimization algorithm. The optimization process focuses on 13 key design variables and utilizes CFD simulations to predict hydraulic performance, with the goal of maximizing efficiency while ensuring the pump head within specified limits. The results show a 4.35 % increase in hydraulic efficiency and improved flow uniformity. Analysis of entropy generation rates and boundary vorticity flux reveals more uniform flow along the blades’ suction side and reduced vorticity near the trailing edge, indicating reduced flow separation and turbulence. This study offers an effective tool for optimizing high-speed miniature pumps, providing insights for future pump designs. |
|---|---|
| AbstractList | This paper proposes an optimization approach leveraging machine learning, integrated with physics-informed dynamic sampling, to improve the hydraulic efficiency of highspeed pumps utilized in aerospace. These pumps are difficult to optimize due to their sensitivity to various impeller geometrical parameters. To address the large design space and reduce computational cost, the study introduces fundamental design physics equations and integrates a distance criterion within the optimization algorithm. The optimization process focuses on 13 key design variables and utilizes CFD simulations to predict hydraulic performance, with the goal of maximizing efficiency while ensuring the pump head within specified limits. The results show a 4.35 % increase in hydraulic efficiency and improved flow uniformity. Analysis of entropy generation rates and boundary vorticity flux reveals more uniform flow along the blades’ suction side and reduced vorticity near the trailing edge, indicating reduced flow separation and turbulence. This study offers an effective tool for optimizing high-speed miniature pumps, providing insights for future pump designs. This paper proposes an optimization approach leveraging machine learning, integrated with physics-informed dynamic sampling, to improve the hydraulic efficiency of highspeed pumps utilized in aerospace. These pumps are difficult to optimize due to their sensitivity to various impeller geometrical parameters. To address the large design space and reduce computational cost, the study introduces fundamental design physics equations and integrates a distance criterion within the optimization algorithm. The optimization process focuses on 13 key design variables and utilizes CFD simulations to predict hydraulic performance, with the goal of maximizing efficiency while ensuring the pump head within specified limits. The results show a 4.35 % increase in hydraulic efficiency and improved flow uniformity. Analysis of entropy generation rates and boundary vorticity flux reveals more uniform flow along the blades’ suction side and reduced vorticity near the trailing edge, indicating reduced flow separation and turbulence. This study offers an effective tool for optimizing high-speed miniature pumps, providing insights for future pump designs. KCI Citation Count: 0 |
| Author | Song, Xueyi Zheng, Kexin Luo, Xianwu |
| Author_xml | – sequence: 1 givenname: Xueyi surname: Song fullname: Song, Xueyi organization: State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University – sequence: 2 givenname: Kexin surname: Zheng fullname: Zheng, Kexin organization: State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University – sequence: 3 givenname: Xianwu surname: Luo fullname: Luo, Xianwu email: luoxw@tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003224667$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kctq3TAQhk1JoLn0AboTdFdQq6tlL0Po5UCgUBLoTkiybCuxLpVsyul79H2jUxe6ajczw-j7_xH8l81ZiME2zWuM3mGExPuCCUEtRIRD1JIOohfNBe5FC2lH2FmdBe0g69m3l81lKY-oQgzji-bXwSe7LDaDyUZv13wEMa3Ou59qdTGArbgwAQW8MrMLFixW5VBXUKtiB6CWKWa3zh78qBWk-VicKcB6bYehvg_HoLwzoCiflpNTPTHHAYwxV9PZTTMsyVbQu-DUumUL0ubTdXM-qqXYV3_6VfPw8cP97Wd49-XT4fbmDhpK6Qrx2PaYMMY5F9oMRqC2FWa0rdIGUWr5SDXqheaaMtQyog1hGuleCMYGM2h61bzdfUMe5ZNxMir3u09RPmV58_X-IDESlGPRVvjNDqccv2-2rPIxbjnU_0lKBKdM8Ir-lyJdRViHKoV3yuRYSrajTNl5lY_1nDwFKvdAZQ1UngKVJw3ZNaWyYbL5r_O_Rc_C-aZ_ |
| Cites_doi | 10.1007/s12206-024-0521-2 10.1177/1687814017745251 10.3390/jmse9020236 10.1017/dsj.2021.25 10.1016/j.energy.2020.117582 10.1007/s12206-023-0120-7 10.1016/j.enconman.2014.12.006 10.1080/0305215X.2021.2015585 10.1126/sciadv.abi7203 10.1115/1.4043056 10.1016/j.energy.2024.132691 10.1016/j.applthermaleng.2018.06.067 10.1155/2014/234615 10.1088/1742-6596/1909/1/012072 10.1016/j.compfluid.2008.01.002 10.1111/aor.13366 10.1016/j.flowmeasinst.2024.102521 10.1007/s00158-019-02280-0 10.1007/s00158-019-02367-8 10.1080/19942060.2011.11015351 10.1080/19942060.2023.2227686 10.1155/2014/464363 10.1515/tjj-2020-0008 10.1142/S0217984923501178 10.1007/s10047-018-1072-z 10.1016/j.ast.2015.12.003 10.1016/S1001-6058(16)60816-8 10.1016/j.renene.2021.10.094 10.1007/s11431-015-5865-5 10.1115/1.4049178 10.1016/j.energy.2023.126677 10.3901/CJME.2015.0116.016 10.1016/j.apenergy.2021.116455 10.1002/er.3845 10.3390/pr7050246 10.3390/app14104313 10.3390/en17040853 |
| ContentType | Journal Article |
| Copyright | The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025 The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025 – notice: The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7TB 8FD FR3 ACYCR |
| DOI | 10.1007/s12206-025-0628-0 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Korean Citation Index |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1976-3824 |
| EndPage | 4065 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10735176 10_1007_s12206_025_0628_0 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 1N0 2.D 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 6NX 8FE 8FG 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ ASPBG ATHPR AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ CAG CCPQU COF CS3 CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GW5 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KVFHK L6V LLZTM M7S MA- MK~ ML~ MZR NDZJH NF0 NPVJJ NQJWS O9- P9P PF0 PHGZM PHGZT PQGLB PT4 PTHSS Q2X QOS R89 R9I RHV ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TDB TSG TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 ZMTXR ZZE ~A9 AAYXX ABRTQ AFFHD ARAPS CITATION 7TB 8FD FR3 ACYCR |
| ID | FETCH-LOGICAL-c333t-1f6912445557bcdc70667cfe6abc033e5f3b097b5b340642bc24b0b97744dcdb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001520722900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1738-494X |
| IngestDate | Sun Jul 13 03:14:50 EDT 2025 Thu Nov 27 04:24:12 EST 2025 Thu Sep 18 00:02:06 EDT 2025 Sat Nov 29 07:48:44 EST 2025 Thu Jul 10 06:07:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Machine learning-based algorithm Physics embedded dynamic sampling method High-speed miniature pump Optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-1f6912445557bcdc70667cfe6abc033e5f3b097b5b340642bc24b0b97744dcdb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3228507480 |
| PQPubID | 326249 |
| PageCount | 23 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10735176 proquest_journals_3275347507 proquest_journals_3228507480 crossref_primary_10_1007_s12206_025_0628_0 springer_journals_10_1007_s12206_025_0628_0 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul – name: Heidelberg |
| PublicationTitle | Journal of mechanical science and technology |
| PublicationTitleAbbrev | J Mech Sci Technol |
| PublicationYear | 2025 |
| Publisher | Korean Society of Mechanical Engineers Springer Nature B.V 대한기계학회 |
| Publisher_xml | – name: Korean Society of Mechanical Engineers – name: Springer Nature B.V – name: 대한기계학회 |
| References | X Song (628_CR38) 2022; 2217 M H Shojaeefard (628_CR24) 2019; 60 B Zhao (628_CR34) 2015; 28 628_CR4 Q Liu (628_CR8) 2024; 96 J Yang (628_CR39) 2008; 39 X Song (628_CR5) 2024; 38 B Ghadimi (628_CR32) 2019; 43 O Owoyele (628_CR37) 2021; 285 Y Gu (628_CR10) 2024; 307 H Xiang (628_CR13) 2022; 39 628_CR11 628_CR12 B Ghadimi (628_CR25) 2019; 22 628_CR35 D D Yand (628_CR41) 2022; 65 O Owoyele (628_CR36) 2021; 143 K Ekradi (628_CR15) 2020; 201 H Safikhani (628_CR22) 2011; 5 L Zhang (628_CR6) 2023; 268 K Xu (628_CR23) 2021; 9 Y X Zhang (628_CR43) 2012; 15 M J Montazeri (628_CR16) 2016; 49 S Massoudi (628_CR27) 2022; 8 A R Starke (628_CR19) 2018; 142 D Yang (628_CR40) 2021; 40 A Yu (628_CR42) 2022; 183 X Gan (628_CR31) 2023; 55 X Song (628_CR7) 2022; 2217 X Song (628_CR30) 2024; 2707 B Cui (628_CR9) 2023; 37 R Lamba (628_CR18) 2018; 42 M H Ahmadi (628_CR20) 2015; 91 628_CR21 R F Huang (628_CR26) 2015; 58 628_CR44 Y Yuan (628_CR14) 2017; 9 J Pei (628_CR28) 2019; 141 M Zhou (628_CR3) 2021; 7 S Derakhshan (628_CR29) 2008; 37 H Li (628_CR2) 2023; 37 628_CR1 X Han (628_CR33) 2020; 61 J Zhang (628_CR17) 2017; 29 |
| References_xml | – volume: 38 start-page: 3009 issue: 6 year: 2024 ident: 628_CR5 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-024-0521-2 – volume: 9 start-page: 1 issue: 12 year: 2017 ident: 628_CR14 publication-title: Advances in Mechanical Engineering doi: 10.1177/1687814017745251 – volume: 9 start-page: 1 issue: 2 year: 2021 ident: 628_CR23 publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse9020236 – volume: 8 start-page: 1 issue: 2009 year: 2022 ident: 628_CR27 publication-title: Design Science doi: 10.1017/dsj.2021.25 – volume: 201 start-page: 117582 year: 2020 ident: 628_CR15 publication-title: Energy doi: 10.1016/j.energy.2020.117582 – volume: 37 start-page: 767 issue: 2 year: 2023 ident: 628_CR2 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-023-0120-7 – volume: 2217 start-page: 012049 issue: 1 year: 2022 ident: 628_CR7 publication-title: Journal of Physics: Conference Series – volume: 91 start-page: 315 year: 2015 ident: 628_CR20 publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.12.006 – volume: 55 start-page: 580 issue: 4 year: 2023 ident: 628_CR31 publication-title: Engineering Optimization doi: 10.1080/0305215X.2021.2015585 – volume: 2707 start-page: 012154 issue: 1 year: 2024 ident: 628_CR30 publication-title: Journal of Physics: Conference Series – volume: 7 start-page: 1 issue: 44 year: 2021 ident: 628_CR3 publication-title: Science Advances doi: 10.1126/sciadv.abi7203 – volume: 141 start-page: 061108 issue: 6 year: 2019 ident: 628_CR28 publication-title: Journal of Fluids Engineering, Transactions of the ASME doi: 10.1115/1.4043056 – volume: 307 start-page: 132691 year: 2024 ident: 628_CR10 publication-title: Energy doi: 10.1016/j.energy.2024.132691 – volume: 142 start-page: 118 year: 2018 ident: 628_CR19 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2018.06.067 – ident: 628_CR21 doi: 10.1155/2014/234615 – ident: 628_CR12 doi: 10.1088/1742-6596/1909/1/012072 – volume: 37 start-page: 1354 issue: 10 year: 2008 ident: 628_CR29 publication-title: Computers and Fluids doi: 10.1016/j.compfluid.2008.01.002 – volume: 43 start-page: E76 issue: 5 year: 2019 ident: 628_CR32 publication-title: Artificial Organs doi: 10.1111/aor.13366 – volume: 96 start-page: 102521 year: 2024 ident: 628_CR8 publication-title: Flow Measurement and Instrumentation doi: 10.1016/j.flowmeasinst.2024.102521 – volume: 60 start-page: 1509 issue: 4 year: 2019 ident: 628_CR24 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-019-02280-0 – volume: 61 start-page: 381 issue: 1 year: 2020 ident: 628_CR33 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-019-02367-8 – volume: 39 start-page: 89 issue: 12 year: 2008 ident: 628_CR39 publication-title: Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery – volume: 5 start-page: 37 issue: 1 year: 2011 ident: 628_CR22 publication-title: Engineering Applications of Computational Fluid Mechanics doi: 10.1080/19942060.2011.11015351 – ident: 628_CR11 doi: 10.1080/19942060.2023.2227686 – volume: 65 start-page: 157 issue: 1 year: 2022 ident: 628_CR41 publication-title: Science China Technological Sciences – volume: 2217 start-page: 012009 issue: 1 year: 2022 ident: 628_CR38 publication-title: Journal of Physics: Conference Series – ident: 628_CR44 doi: 10.1155/2014/464363 – volume: 39 start-page: 549 issue: 4 year: 2022 ident: 628_CR13 publication-title: International Journal of Turbo and Jet Engines doi: 10.1515/tjj-2020-0008 – volume: 37 start-page: 1 issue: 36 year: 2023 ident: 628_CR9 publication-title: Modern Physics Letters B doi: 10.1142/S0217984923501178 – volume: 22 start-page: 29 issue: 1 year: 2019 ident: 628_CR25 publication-title: Journal of Artificial Organs doi: 10.1007/s10047-018-1072-z – volume: 49 start-page: 185 year: 2016 ident: 628_CR16 publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2015.12.003 – volume: 29 start-page: 1023 issue: 6 year: 2017 ident: 628_CR17 publication-title: Journal of Hydrodynamics doi: 10.1016/S1001-6058(16)60816-8 – volume: 183 start-page: 447 year: 2022 ident: 628_CR42 publication-title: Renewable Energy doi: 10.1016/j.renene.2021.10.094 – volume: 15 start-page: 032024 issue: PART3 year: 2012 ident: 628_CR43 publication-title: IOP Conference Series: Earth and Environmental Science – volume: 58 start-page: 2122 issue: 12 year: 2015 ident: 628_CR26 publication-title: Sci. China Tech. Sci. doi: 10.1007/s11431-015-5865-5 – volume: 143 start-page: 1 issue: 3 year: 2021 ident: 628_CR36 publication-title: Journal of Energy Resources Technology, Transactions of the ASME doi: 10.1115/1.4049178 – volume: 268 start-page: 126677 year: 2023 ident: 628_CR6 publication-title: Energy doi: 10.1016/j.energy.2023.126677 – volume: 28 start-page: 634 issue: 3 year: 2015 ident: 628_CR34 publication-title: Chinese Journal of Mechanical Engineering (English Edition) doi: 10.3901/CJME.2015.0116.016 – volume: 285 start-page: 116455 year: 2021 ident: 628_CR37 publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.116455 – volume: 42 start-page: 633 issue: 2 year: 2018 ident: 628_CR18 publication-title: International Journal of Energy Research doi: 10.1002/er.3845 – ident: 628_CR35 doi: 10.3390/pr7050246 – ident: 628_CR1 doi: 10.3390/app14104313 – ident: 628_CR4 doi: 10.3390/en17040853 – volume: 40 start-page: 95 issue: 7 year: 2021 ident: 628_CR40 publication-title: Shuili Fadian Xuebao/Journal of Hydroelectric Engineering |
| SSID | ssj0062411 |
| Score | 2.3649533 |
| Snippet | This paper proposes an optimization approach leveraging machine learning, integrated with physics-informed dynamic sampling, to improve the hydraulic... |
| SourceID | nrf proquest crossref springer |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 4043 |
| SubjectTerms | Algorithms Control Dynamical Systems Efficiency Engineering Flow separation High speed Hydraulics Impellers Industrial and Production Engineering Machine learning Mechanical Engineering Optimization Original Article Parameter sensitivity Physics Pumps Sampling methods Suction Uniform flow Vibration Vorticity 기계공학 |
| Title | Impeller geometry optimization using a machine learning-based algorithm with physics embedded dynamic sampling method for a high-speed miniature pump |
| URI | https://link.springer.com/article/10.1007/s12206-025-0628-0 https://www.proquest.com/docview/3228507480 https://www.proquest.com/docview/3275347507 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003224667 |
| Volume | 39 |
| WOSCitedRecordID | wos001520722900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Mechanical Science and Technology, 2025, 39(7), , pp.4043-4065 |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1976-3824 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062411 issn: 1738-494X databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKy4EeSnmJbUtlCU4gS9nYiZMjQq3opUItoL1ZGT_Cqs1mlaSV-kP4v8zkoaWoHOCUgx-x7PHMfJ4XY-9yF2uXJ1IgnECAkvpCZCF4YcEiRQULHqK-2IQ-P88Wi_zLGMfdTt7uk0my59SbYLc4JvQbJ4Li_gTi9B2UdhnVa7i4_D6x3xRFUo-yNN5klavFZMp8aIp7wujRqgn39Mw_TKO9xDl9-l9r3Wd7o4LJPw4U8Yxt-dVztvtb2sEX7OdZRTYX3_DS15XvmjteI-eoxpBMTr7wJS941Ttaej5WligFiTzHi-uybpbdj4rTIy4f3kZa7ivwyMUcd0ORe94W5K2OMw1Vqjmqxzgp5UcW7RqFJqe0Jn1eUb5GonrJvp2efP30WYzlGYSVUnZiHtKctIMkSTRYZzX5y9rg0wJsJKVPgoQo15CAVARzwMYKIiCFUznrQL5i26t65V8zXqh5AO0taBmU97YAcBDreQ4ZDs-iGXs_nZNZD1k4zCbfMu21wb02tNcGO7_FkzRXdmkodzZ9y9pcNQYRwhmO0TKZ63TGjqaTNuO1bQ1ytwwVZEV_fLAZwZ1CHUvP2Ifp4DfNf13RwT_1PmRP4p5yyCf4iG13zY1_wx7b227ZNsc9sf8C3Bb8nA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagIAEH3qgLBSzBCWQpGztxckSIqivKCkFBe7MyfqSrks0qSZH4IfxfZvLQUlQOcMrBj1j2eGY-z4uxl7mLtcsTKRBOIEBJfSGyELywYJGiggUPUV9sQi-X2WqVfxzjuNvJ230ySfacehfsFseEfuNEUNyfQJx-TaHAooT5nz5_ndhviiKpR1kab7LK1WoyZV42xQVhdHXThAt65h-m0V7iHN75r7XeZbdHBZO_GSjiHrviN_fZrd_SDj5gPxcV2Vx8w0tfV75rfvAaOUc1hmRy8oUvecGr3tHS87GyRClI5DlefCvrZt2dVpwecfnwNtJyX4FHLua4G4rc87Ygb3WcaahSzVE9xkkpP7Jotyg0OaU16fOK8i0S1UP25fDdydsjMZZnEFZK2Yl5SHPSDpIk0WCd1eQva4NPC7CRlD4JEqJcQwJSEcwBGyuIgBRO5awD-YjtbeqN32e8UPMA2lvQMijvbQHgINbzHDIcnkUz9mo6J7MdsnCYXb5l2muDe21orw12foEnac7s2lDubPqWtTlrDCKEBY7RMpnrdMYOppM247VtDXK3DBVkRX-8tBnBnUIdS8_Y6-ngd81_XdHjf-r9nN04OvlwbI4Xy_dP2M24pyLyDz5ge11z7p-y6_Z7t26bZz3h_wK6Nf-A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEG50FdGDb3F01QY9Kc1m0p10chR1cFCGBR_MrUn1IzusSYYkCvtD_L9WZRLGlfUgnnLoR5ru6qr6ul6MvchdrF2eSIFwAgFK6guRheCFBYsUFSx4iIZiE3q1ytbr_Hisc9pN3u6TSXIX00BZmur-aOvC0T7wLY4JCceJoBhAgZj9iiI_eoLrn75OrDhF8TQgLo23WuVqPZk1L5rinGC6XLfhnM75h5l0kD6LW_-97tvs5qh48tc7SrnDLvn6LrvxWzrCe-znsiJbjG956ZvK9-0Zb5CjVGOoJicf-ZIXvBocMD0fK06UgkSh48W3smk3_UnF6XGX795MOu4r8MjdHHdndVFtLO8K8mLHmXbVqzmqzTgp5U0W3RaFKad0J0O-Ub5FYrvPvizefX7zXoxlG4SVUvZiHtKctIYkSTRYZzX50drg0wJsJKVPgoQo15CAVAR_wMYKIiBFVDnrQD5gB3VT-4eMF2oeQHsLWgblvS0AHMR6nkOGw7Noxl5OZ2a2u-wcZp-Hmfba4F4b2muDnZ_jqZpTuzGUU5u-ZWNOW4PIYYljtEzmOp2xw-nUzXidO4NcL0PFWdEfL2xG0KdQ99Iz9moign3zX1f06J96P2PXjt8uzMfl6sNjdj0eiIjchg_ZQd9-90_YVfuj33Tt0-EO_AL5BAhz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impeller+geometry+optimization+using+a+machine+learning-based+algorithm+with+physics+embedded+dynamic+sampling+method+for+a+high-speed+miniature+pump&rft.jtitle=Journal+of+mechanical+science+and+technology&rft.date=2025-07-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%B0%EA%B3%84%ED%95%99%ED%9A%8C&rft.issn=1738-494X&rft.eissn=1976-3824&rft.spage=4043&rft.epage=4065&rft_id=info:doi/10.1007%2Fs12206-025-0628-0&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10735176 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1738-494X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1738-494X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1738-494X&client=summon |