A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices

We propose a new fast algorithm for computing the spectrum of an N×N symmetric tridiagonal matrix in O(NlnN) operations. Such an algorithm may be combined with any of the existing methods for the determination of eigenvectors of a symmetric tridiagonal matrix with known eigenvalues. The underlying t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied and computational harmonic analysis Ročník 34; číslo 3; s. 379 - 414
Hlavní autoři: Coakley, Ed S., Rokhlin, Vladimir
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.05.2013
Témata:
ISSN:1063-5203, 1096-603X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a new fast algorithm for computing the spectrum of an N×N symmetric tridiagonal matrix in O(NlnN) operations. Such an algorithm may be combined with any of the existing methods for the determination of eigenvectors of a symmetric tridiagonal matrix with known eigenvalues. The underlying technique is a divide-and-conquer approach which determines eigenvalues of a larger tridiagonal matrix from those of constituent matrices by the use of relations of their characteristic polynomials. The evaluation of characteristic polynomials is accelerated by the use of a technique known as the fast multipole method. An implementation of the algorithm has been developed in Fortran, providing for a comparison with existing techniques in terms of running time and accuracy. We present numerical results which demonstrate the effectiveness of the method.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1063-5203
1096-603X
DOI:10.1016/j.acha.2012.06.003