A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices
We propose a new fast algorithm for computing the spectrum of an N×N symmetric tridiagonal matrix in O(NlnN) operations. Such an algorithm may be combined with any of the existing methods for the determination of eigenvectors of a symmetric tridiagonal matrix with known eigenvalues. The underlying t...
Uložené v:
| Vydané v: | Applied and computational harmonic analysis Ročník 34; číslo 3; s. 379 - 414 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.05.2013
|
| Predmet: | |
| ISSN: | 1063-5203, 1096-603X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We propose a new fast algorithm for computing the spectrum of an N×N symmetric tridiagonal matrix in O(NlnN) operations. Such an algorithm may be combined with any of the existing methods for the determination of eigenvectors of a symmetric tridiagonal matrix with known eigenvalues. The underlying technique is a divide-and-conquer approach which determines eigenvalues of a larger tridiagonal matrix from those of constituent matrices by the use of relations of their characteristic polynomials. The evaluation of characteristic polynomials is accelerated by the use of a technique known as the fast multipole method. An implementation of the algorithm has been developed in Fortran, providing for a comparison with existing techniques in terms of running time and accuracy. We present numerical results which demonstrate the effectiveness of the method. |
|---|---|
| Bibliografia: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 1063-5203 1096-603X |
| DOI: | 10.1016/j.acha.2012.06.003 |