Two-Layer Federated Learning With Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles

The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine le...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on vehicular technology Ročník 70; číslo 6; s. 5308 - 5317
Hlavní autori: Zhou, Xiaokang, Liang, Wei, She, Jinhua, Yan, Zheng, Wang, Kevin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9545, 1939-9359
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine learning techniques that can take advantages of massive interconnected networks with explosive amount of heterogeneous data generated at the network edge. In this study, a two-layer federated learning model is proposed to take advantages of the distributed end-edge-cloud architecture typical in 6G environment, and to achieve a more efficient and more accurate learning while ensuring data privacy protection and reducing communication overheads. A novel multi-layer heterogeneous model selection and aggregation scheme is designed as a part of the federated learning process to better utilize the local and global contexts of individual vehicles and road side units (RSUs) in 6G supported vehicular networks. This context-aware distributed learning mechanism is then developed and applied to address intelligent object detection, which is one of the most critical challenges in modern intelligent transportation systems with autonomous vehicles. Evaluation results showed that the proposed method, which demonstrates a higher learning accuracy with better precision, recall and F1 score, outperforms other state-of-the-art methods under 6G network configuration by achieving faster convergence, and scales better with larger numbers of RSUs involved in the learning process.
AbstractList The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine learning techniques that can take advantages of massive interconnected networks with explosive amount of heterogeneous data generated at the network edge. In this study, a two-layer federated learning model is proposed to take advantages of the distributed end-edge-cloud architecture typical in 6G environment, and to achieve a more efficient and more accurate learning while ensuring data privacy protection and reducing communication overheads. A novel multi-layer heterogeneous model selection and aggregation scheme is designed as a part of the federated learning process to better utilize the local and global contexts of individual vehicles and road side units (RSUs) in 6G supported vehicular networks. This context-aware distributed learning mechanism is then developed and applied to address intelligent object detection, which is one of the most critical challenges in modern intelligent transportation systems with autonomous vehicles. Evaluation results showed that the proposed method, which demonstrates a higher learning accuracy with better precision, recall and F1 score, outperforms other state-of-the-art methods under 6G network configuration by achieving faster convergence, and scales better with larger numbers of RSUs involved in the learning process.
Author Zhou, Xiaokang
She, Jinhua
Wang, Kevin
Yan, Zheng
Liang, Wei
Author_xml – sequence: 1
  givenname: Xiaokang
  orcidid: 0000-0003-3488-4679
  surname: Zhou
  fullname: Zhou, Xiaokang
  email: zhou@biwako.shiga-u.ac.jp
  organization: Faculty of Data Science, Shiga University, Hikone 522-8522, Japan, and also with the RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-0689-256X
  surname: Liang
  fullname: Liang, Wei
  email: weiliang@csu.edu.cn
  organization: Base of International Science and Technology Innovation and Cooperation on Big Data Technology and Management, Hunan University of Technology and Business, Changsha, China
– sequence: 3
  givenname: Jinhua
  orcidid: 0000-0003-3165-5045
  surname: She
  fullname: She, Jinhua
  email: she@stf.teu.ac.jp
  organization: School of Engineering, Tokyo University of Technology, Tokyo, Japan
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0002-9697-2108
  surname: Yan
  fullname: Yan, Zheng
  email: zyan@xidian.edu.cn
  organization: State Key Laboratory on Integrated Services Networks and the School of Cyber Engineering, Xidian University, Xi'an, China
– sequence: 5
  givenname: Kevin
  orcidid: 0000-0001-8450-2558
  surname: Wang
  fullname: Wang, Kevin
  email: kevin.wang@auckland.ac.nz
  organization: Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland, New Zealand
BookMark eNp9kM9LwzAUx4NMcE7vgpeA586kSZvmOIb7ARUP1nksafvaZdSkphmy_97ODQ8ePD0efD_fx_tco5GxBhC6o2RKKZGP2SabhiSkU0aESCS7QGMqmQwki-QIjQmhSSAjHl2h677fDSvnko5Rk33ZIFUHcHgBFTjlocIpKGe0afC79lu8Ag_ONmDA7nv8bCto8axpHDTKa2twbR2Ol_h133XWHfG1GQADHtsab2Cryxb6G3RZq7aH2_OcoLfFUzZfBenLcj2fpUHJGPMBDcuIV4THSSRiEIkAVYYspkUIFIqiELIKi1JRQRRToiRK1JGSwBitCK0kZRP0cOrtnP3cQ-_znd07M5zMw4hLEYkk5kMqPqVKZ_veQZ2X2v98453SbU5JfpSaD1Lzo9T8LHUAyR-wc_pDucN_yP0J0QDwG5c85DLh7Bs684SK
CODEN ITVTAB
CitedBy_id crossref_primary_10_1016_j_phycom_2023_102005
crossref_primary_10_1111_exsy_13372
crossref_primary_10_1109_JIOT_2023_3288886
crossref_primary_10_1109_TNSE_2022_3144699
crossref_primary_10_1109_TWC_2022_3222717
crossref_primary_10_1186_s42400_024_00350_5
crossref_primary_10_1016_j_comnet_2024_110768
crossref_primary_10_1109_JIOT_2025_3545296
crossref_primary_10_1016_j_rser_2025_115942
crossref_primary_10_1007_s11276_021_02777_x
crossref_primary_10_1109_MWC_004_2100542
crossref_primary_10_1109_JIOT_2021_3118834
crossref_primary_10_1109_TITS_2023_3308370
crossref_primary_10_1109_TITS_2023_3324962
crossref_primary_10_1109_TITS_2024_3362058
crossref_primary_10_1109_COMST_2024_3372083
crossref_primary_10_3390_electronics13122372
crossref_primary_10_3390_math12142229
crossref_primary_10_1109_TVT_2023_3304176
crossref_primary_10_1016_j_vehcom_2021_100396
crossref_primary_10_1109_JIOT_2025_3539849
crossref_primary_10_1109_OJITS_2025_3589612
crossref_primary_10_1109_TITS_2023_3243003
crossref_primary_10_1109_TVT_2023_3275579
crossref_primary_10_3390_electronics12112478
crossref_primary_10_1016_j_knosys_2024_112937
crossref_primary_10_1109_JIOT_2023_3270377
crossref_primary_10_1109_ACCESS_2024_3458991
crossref_primary_10_1109_JIOT_2023_3306778
crossref_primary_10_1109_TITS_2024_3357138
crossref_primary_10_1016_j_adhoc_2023_103153
crossref_primary_10_1145_3659205
crossref_primary_10_1109_TMLCN_2025_3567370
crossref_primary_10_1109_TCE_2023_3328020
crossref_primary_10_1016_j_comnet_2023_110100
crossref_primary_10_1109_JIOT_2022_3144450
crossref_primary_10_1109_TGCN_2023_3234404
crossref_primary_10_1002_dac_5367
crossref_primary_10_1109_TCCN_2023_3286665
crossref_primary_10_1109_TIV_2023_3319689
crossref_primary_10_3390_asi5030056
crossref_primary_10_1109_JSYST_2024_3459926
crossref_primary_10_1016_j_buildenv_2022_108937
crossref_primary_10_1109_JIOT_2023_3295763
crossref_primary_10_1109_TGCN_2022_3167643
crossref_primary_10_1109_TCBB_2023_3281828
crossref_primary_10_1109_TGCN_2024_3433457
crossref_primary_10_1016_j_adhoc_2024_103685
crossref_primary_10_1016_j_phycom_2024_102479
crossref_primary_10_1108_IJPCC_09_2023_0250
crossref_primary_10_1109_JIOT_2024_3509264
crossref_primary_10_1016_j_ins_2025_122558
crossref_primary_10_1109_JIOT_2023_3298196
crossref_primary_10_1109_TITS_2022_3208952
crossref_primary_10_1109_JSAC_2023_3273700
crossref_primary_10_1145_3591335_3591348
crossref_primary_10_1109_TMC_2023_3241074
crossref_primary_10_1109_TCE_2025_3527043
crossref_primary_10_1109_TCBB_2022_3185395
crossref_primary_10_1109_JIOT_2024_3385913
crossref_primary_10_1109_TIV_2024_3446319
crossref_primary_10_3390_s24206711
crossref_primary_10_1109_TSC_2025_3586152
crossref_primary_10_3390_electronics14132512
crossref_primary_10_32604_cmc_2023_039487
crossref_primary_10_1109_TPDS_2025_3539738
crossref_primary_10_1109_TVT_2024_3511255
crossref_primary_10_3390_s24206685
crossref_primary_10_1109_JSTSP_2023_3239189
crossref_primary_10_1016_j_eswa_2023_122440
crossref_primary_10_1109_TDSC_2024_3472869
crossref_primary_10_1109_IOTM_001_2300286
crossref_primary_10_1109_TVT_2023_3253131
crossref_primary_10_1109_TVT_2021_3136308
crossref_primary_10_3390_vehicles4040065
crossref_primary_10_1016_j_future_2023_09_008
crossref_primary_10_1007_s12083_024_01641_x
crossref_primary_10_1016_j_comnet_2023_109712
crossref_primary_10_1109_ACCESS_2024_3404222
crossref_primary_10_1109_JIOT_2024_3492074
crossref_primary_10_1109_TVT_2024_3479780
crossref_primary_10_1109_JIOT_2024_3450433
crossref_primary_10_3390_electronics14153043
crossref_primary_10_1109_OJVT_2025_3599570
crossref_primary_10_1109_JIOT_2023_3286398
crossref_primary_10_1002_ett_4427
crossref_primary_10_1002_spy2_276
crossref_primary_10_26599_HTRD_2025_9480055
crossref_primary_10_3390_a15060210
crossref_primary_10_1016_j_aeue_2022_154339
crossref_primary_10_3390_fi17070315
crossref_primary_10_1109_TIA_2022_3184668
crossref_primary_10_1109_JIOT_2023_3245721
crossref_primary_10_3390_electronics13153013
crossref_primary_10_1016_j_sysarc_2023_102929
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_ACCESS_2023_3267471
crossref_primary_10_1109_JIOT_2024_3373872
crossref_primary_10_1016_j_iot_2023_100903
crossref_primary_10_1109_COMST_2023_3282264
crossref_primary_10_3390_app142311336
crossref_primary_10_1038_s41598_023_33044_y
crossref_primary_10_32604_cmc_2024_057006
crossref_primary_10_1109_TITS_2022_3210559
crossref_primary_10_1007_s11276_021_02740_w
crossref_primary_10_1016_j_rser_2022_112722
crossref_primary_10_1109_MNET_2024_3380647
crossref_primary_10_1109_JSAC_2023_3240716
crossref_primary_10_1109_TITS_2025_3561941
crossref_primary_10_28979_jarnas_1555351
crossref_primary_10_1109_TSMC_2023_3298513
crossref_primary_10_1109_TITS_2022_3170028
crossref_primary_10_1109_TITS_2023_3336823
crossref_primary_10_3390_electronics13234744
crossref_primary_10_1109_TVT_2024_3507358
crossref_primary_10_1109_TCE_2025_3533750
crossref_primary_10_1007_s12599_023_00825_8
crossref_primary_10_1109_TITS_2023_3237708
crossref_primary_10_1109_TNET_2024_3423316
crossref_primary_10_1109_JIOT_2023_3317639
crossref_primary_10_1109_TCBB_2023_3243932
crossref_primary_10_1007_s11276_021_02750_8
crossref_primary_10_1016_j_jnca_2023_103812
crossref_primary_10_1109_TII_2022_3155162
crossref_primary_10_1016_j_ins_2023_119717
crossref_primary_10_1109_TGCN_2021_3127923
crossref_primary_10_1007_s00521_025_11099_4
crossref_primary_10_1016_j_engappai_2025_111662
crossref_primary_10_1109_TITS_2024_3454711
crossref_primary_10_1007_s11280_021_00939_7
crossref_primary_10_1109_TCBB_2023_3239848
crossref_primary_10_3390_electronics12081757
crossref_primary_10_1109_TIV_2023_3332675
crossref_primary_10_1109_TVT_2025_3543906
crossref_primary_10_1109_TVT_2022_3211005
crossref_primary_10_1109_MNET_007_2100717
crossref_primary_10_1109_TGCN_2023_3309657
crossref_primary_10_1109_TNSM_2024_3387987
Cites_doi 10.1016/j.comcom.2004.01.024
10.1145/1082473.1082545
10.1145/3362031
10.1109/MCOM.001.1900411
10.1109/TITS.2020.3017474
10.1007/s00138-011-0391-3
10.1109/MNET.011.1900317
10.1109/OJVT.2020.2989534
10.1109/ACCESS.2020.3031959
10.1109/OJCS.2020.2992630
10.1109/ACCESS.2019.2909490
10.1109/UCET51115.2020.9205482
10.1109/TCOMM.2019.2956472
10.1365/s40112-016-1164-1
10.1145/3298981
10.1109/MVT.2019.2921208
10.1109/JPROC.2019.2954595
10.1109/ACCESS.2019.2935169
10.1109/MNET.011.2000541
10.1109/MCOM.2006.1580935
10.1109/TVT.2020.3015268
10.1155/2015/745303
10.1109/TIP.2017.2756825
10.1109/TITS.2015.2439292
10.1109/TVT.2020.2973651
10.1109/TCC.2019.2906300
10.1109/IWCMC48107.2020.9148417
10.1109/ACCESS.2020.2981430
10.1109/ACCESS.2020.3019590
10.1109/ACCESS.2020.2968399
10.1109/MCOM.2019.1900271
10.1109/TNET.2020.2979807
10.1109/OJCOMS.2020.3010270
10.1109/TMC.2020.2984261
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2021.3077893
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 5317
ExternalDocumentID 10_1109_TVT_2021_3077893
9424984
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 72088101; 72091515; 62072171
  funderid: 10.13039/501100001809
– fundername: National Key R&D Program of China
  grantid: 2017YFE0117500; 2019YFE0190500; 2019GK1010
  funderid: 10.13039/501100013290
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2019JJ40150
  funderid: 10.13039/501100004735
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c333t-12c54d0468576e787eac2361b2e1ebbb79d2bca170a3a7c0a7f5a9e331d01d913
IEDL.DBID RIE
ISICitedReferencesCount 205
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671544000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9545
IngestDate Mon Jun 30 08:13:16 EDT 2025
Sat Nov 29 02:58:56 EST 2025
Tue Nov 18 22:10:12 EST 2025
Wed Aug 27 02:26:38 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c333t-12c54d0468576e787eac2361b2e1ebbb79d2bca170a3a7c0a7f5a9e331d01d913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3165-5045
0000-0003-3488-4679
0000-0002-9697-2108
0000-0001-8450-2558
0000-0002-0689-256X
OpenAccessLink https://aaltodoc.aalto.fi/handle/123456789/109170
PQID 2549757864
PQPubID 85454
PageCount 10
ParticipantIDs proquest_journals_2549757864
ieee_primary_9424984
crossref_citationtrail_10_1109_TVT_2021_3077893
crossref_primary_10_1109_TVT_2021_3077893
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
nadeem (ref13) 2006
ref2
ref1
ref39
ref17
ref38
ref19
hartenstein (ref18) 2010
moustafa (ref6) 2009
ref24
ref23
ref26
ref25
ref20
ref22
ref21
hamid (ref16) 2016; 6
ref28
ref27
sivasakthi (ref7) 2013; 2
ref29
ref8
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref12
  doi: 10.1016/j.comcom.2004.01.024
– start-page: 1
  year: 2006
  ident: ref13
  article-title: A comparative study of data dissemination models for VANETs
  publication-title: Proc 3rd Annu Int Conf Mobile Ubiquitous Syst Netw Services
– ident: ref17
  doi: 10.1145/1082473.1082545
– ident: ref3
  doi: 10.1145/3362031
– ident: ref37
  doi: 10.1109/MCOM.001.1900411
– ident: ref33
  doi: 10.1109/TITS.2020.3017474
– ident: ref39
  doi: 10.1007/s00138-011-0391-3
– ident: ref30
  doi: 10.1109/MNET.011.1900317
– year: 2009
  ident: ref6
  publication-title: Vehicular Networks Techniques Standards and Applications
– ident: ref24
  doi: 10.1109/OJVT.2020.2989534
– ident: ref21
  doi: 10.1109/ACCESS.2020.3031959
– ident: ref28
  doi: 10.1109/OJCS.2020.2992630
– ident: ref22
  doi: 10.1109/ACCESS.2019.2909490
– ident: ref27
  doi: 10.1109/UCET51115.2020.9205482
– ident: ref1
  doi: 10.1109/TCOMM.2019.2956472
– ident: ref11
  doi: 10.1365/s40112-016-1164-1
– ident: ref38
  doi: 10.1145/3298981
– ident: ref2
  doi: 10.1109/MVT.2019.2921208
– ident: ref26
  doi: 10.1109/JPROC.2019.2954595
– volume: 6
  start-page: 78
  year: 2016
  ident: ref16
  article-title: Current collision mitigation technologies for advanced driver assistance systems-A survey
  publication-title: PERINTIS eJournal
– ident: ref36
  doi: 10.1109/ACCESS.2019.2935169
– ident: ref35
  doi: 10.1109/MNET.011.2000541
– ident: ref14
  doi: 10.1109/MCOM.2006.1580935
– ident: ref15
  doi: 10.1365/s40112-016-1164-1
– ident: ref32
  doi: 10.1109/TVT.2020.3015268
– ident: ref8
  doi: 10.1155/2015/745303
– ident: ref40
  doi: 10.1109/TIP.2017.2756825
– ident: ref19
  doi: 10.1109/TITS.2015.2439292
– volume: 2
  start-page: 23
  year: 2013
  ident: ref7
  article-title: Research on vehicular ad hoc networks (VANETs): An overview
  publication-title: J Appl Eng Sci Res
– ident: ref20
  doi: 10.1109/TVT.2020.2973651
– ident: ref10
  doi: 10.1109/TCC.2019.2906300
– ident: ref25
  doi: 10.1109/IWCMC48107.2020.9148417
– ident: ref31
  doi: 10.1109/ACCESS.2020.2981430
– year: 2010
  ident: ref18
  article-title: VANET: Vehicular applications and inter-networking technologies
  publication-title: Wiley Online Library
– ident: ref23
  doi: 10.1109/ACCESS.2020.3019590
– ident: ref29
  doi: 10.1109/ACCESS.2020.2968399
– ident: ref4
  doi: 10.1109/MCOM.2019.1900271
– ident: ref9
  doi: 10.1109/TNET.2020.2979807
– ident: ref34
  doi: 10.1109/OJCOMS.2020.3010270
– ident: ref5
  doi: 10.1109/TMC.2020.2984261
SSID ssj0014491
Score 2.6943953
Snippet The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5308
SubjectTerms 6G mobile communication
6G technology
Agglomeration
Cloud computing
Collaborative work
Computational modeling
Computer architecture
Data models
Distributed databases
End-edge-cloud computing
Federated learning
Heterogeneous data
Intelligent transportation systems
Internet of Vehicles
Learning
Machine learning
Multilayers
Network latency
Object detection
Object recognition
Roadsides
Systems analysis
Training
Transportation networks
Vehicles
Title Two-Layer Federated Learning With Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles
URI https://ieeexplore.ieee.org/document/9424984
https://www.proquest.com/docview/2549757864
Volume 70
WOSCitedRecordID wos000671544000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEP_kIjiqYHLyYOtrVb16MxIgdCPCByW7q2AxLDDAz9933dBtFoTLz10DbLvrbvfX2v3wO4jgy1dl06vq-kw0ItnUS6DFsq1CzlgV8iPeDDYTSZiKca3G7fwhhjiuQz07HNIpavM7W2V2VdwZAsRKwOdc7D8q3WNmLAWFUdz8MNjG7BJiTpiu5oPEIi6HsdXM88EvSbCSpqqvw4iAvr0jv433cdwn7lRZK7EvYjqJnFMex90RZswnT0kTkDiR416VnBCPQpNanUVKfkZZ7PSN-mwmS4ggzSf2KrouGUUyTg0wIugv4sCR-JLfxpU3I1Ka8PTU6ylIzNrMioO4Hn3sPovu9UVRUcRSnNHc9XAdNIiyOkGgb3Kx69VoEl8Y1nkiThQvuJkh53JZVcuZKngRSGUk-7nhYePYXGIluYMyCuSrVEF4ImgWY4e8Tt8ZAKlaYqUEnQgu7mR8eqkhy3lS9e44J6uCJGaGILTVxB04Kb7Yi3Um7jj75NC8W2X4VCC9obLONqP65iS4Otcn_Izn8fdQG7du4yCawNjXy5Npewo97z-Wp5VSy1T5nZ0YQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4qZRJwGLANUSjgA5dJS5vEThMf0bRSRKg4hK63yLGdrhJqUJvCv897iRsNbZrEzQfHifL5x_vs5-8D-JhYTuu68sJQK09MjPIK5Qss6YkRZRyFLdJpPJ8ny6X83oOL7i6MtbZJPrMjKjZn-abSe9oqG0uBZCERj-AxOWe521rdmYEQzh8vwCGMgcHhUNKX42yRIRUMgxH26DiR_J9FqHFVuTMVN-vL9Pn_fdkLOHZxJPvUAv8SenZzAs9uqQuewir7U3mpwpiaTUkyAqNKw5ye6opdr-sbNqNkmAr7kK32O0a-aNjkCin4qgGMYUTLJp8ZWX9SUq5h7QairVlVsoW9aXLqzuDH9Cq7nHnOV8HTnPPaC0IdCYPEOEGyYXHE4uRLGixFaANbFEUsTVhoFcS-4irWvorLSEnLeWD8wMiAv4L-ptrY18B8XRqFQQQvIiOw9SSmCaKUuix1pItoAOPDj861Ex0n74ufeUM-fJkjNDlBkztoBnDePfGrFdx4oO4pQdHVcygMYHjAMncjcpcTESbt_ol4c_9TH-DJLPuW5umX-de38JTe06aEDaFfb_f2HRzp3_V6t33fdLu_rG7UzQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Layer+Federated+Learning+With+Heterogeneous+Model+Aggregation+for+6G+Supported+Internet+of+Vehicles&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhou%2C+Xiaokang&rft.au=Liang%2C+Wei&rft.au=She%2C+Jinhua&rft.au=Yan%2C+Zheng&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=70&rft.issue=6&rft.spage=5308&rft.epage=5317&rft_id=info:doi/10.1109%2FTVT.2021.3077893&rft.externalDocID=9424984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon