Two-Layer Federated Learning With Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles
The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine le...
Uložené v:
| Vydané v: | IEEE transactions on vehicular technology Ročník 70; číslo 6; s. 5308 - 5317 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9545, 1939-9359 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine learning techniques that can take advantages of massive interconnected networks with explosive amount of heterogeneous data generated at the network edge. In this study, a two-layer federated learning model is proposed to take advantages of the distributed end-edge-cloud architecture typical in 6G environment, and to achieve a more efficient and more accurate learning while ensuring data privacy protection and reducing communication overheads. A novel multi-layer heterogeneous model selection and aggregation scheme is designed as a part of the federated learning process to better utilize the local and global contexts of individual vehicles and road side units (RSUs) in 6G supported vehicular networks. This context-aware distributed learning mechanism is then developed and applied to address intelligent object detection, which is one of the most critical challenges in modern intelligent transportation systems with autonomous vehicles. Evaluation results showed that the proposed method, which demonstrates a higher learning accuracy with better precision, recall and F1 score, outperforms other state-of-the-art methods under 6G network configuration by achieving faster convergence, and scales better with larger numbers of RSUs involved in the learning process. |
|---|---|
| AbstractList | The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles (IoV) and Vehicle-to-Everything (V2X) communication for intelligent transportation systems. There is an urgent need for distributed machine learning techniques that can take advantages of massive interconnected networks with explosive amount of heterogeneous data generated at the network edge. In this study, a two-layer federated learning model is proposed to take advantages of the distributed end-edge-cloud architecture typical in 6G environment, and to achieve a more efficient and more accurate learning while ensuring data privacy protection and reducing communication overheads. A novel multi-layer heterogeneous model selection and aggregation scheme is designed as a part of the federated learning process to better utilize the local and global contexts of individual vehicles and road side units (RSUs) in 6G supported vehicular networks. This context-aware distributed learning mechanism is then developed and applied to address intelligent object detection, which is one of the most critical challenges in modern intelligent transportation systems with autonomous vehicles. Evaluation results showed that the proposed method, which demonstrates a higher learning accuracy with better precision, recall and F1 score, outperforms other state-of-the-art methods under 6G network configuration by achieving faster convergence, and scales better with larger numbers of RSUs involved in the learning process. |
| Author | Zhou, Xiaokang She, Jinhua Wang, Kevin Yan, Zheng Liang, Wei |
| Author_xml | – sequence: 1 givenname: Xiaokang orcidid: 0000-0003-3488-4679 surname: Zhou fullname: Zhou, Xiaokang email: zhou@biwako.shiga-u.ac.jp organization: Faculty of Data Science, Shiga University, Hikone 522-8522, Japan, and also with the RIKEN Center for Advanced Intelligence Project, Tokyo, Japan – sequence: 2 givenname: Wei orcidid: 0000-0002-0689-256X surname: Liang fullname: Liang, Wei email: weiliang@csu.edu.cn organization: Base of International Science and Technology Innovation and Cooperation on Big Data Technology and Management, Hunan University of Technology and Business, Changsha, China – sequence: 3 givenname: Jinhua orcidid: 0000-0003-3165-5045 surname: She fullname: She, Jinhua email: she@stf.teu.ac.jp organization: School of Engineering, Tokyo University of Technology, Tokyo, Japan – sequence: 4 givenname: Zheng orcidid: 0000-0002-9697-2108 surname: Yan fullname: Yan, Zheng email: zyan@xidian.edu.cn organization: State Key Laboratory on Integrated Services Networks and the School of Cyber Engineering, Xidian University, Xi'an, China – sequence: 5 givenname: Kevin orcidid: 0000-0001-8450-2558 surname: Wang fullname: Wang, Kevin email: kevin.wang@auckland.ac.nz organization: Department of Electrical, Computer and Software Engineering, The University of Auckland, Auckland, New Zealand |
| BookMark | eNp9kM9LwzAUx4NMcE7vgpeA586kSZvmOIb7ARUP1nksafvaZdSkphmy_97ODQ8ePD0efD_fx_tco5GxBhC6o2RKKZGP2SabhiSkU0aESCS7QGMqmQwki-QIjQmhSSAjHl2h677fDSvnko5Rk33ZIFUHcHgBFTjlocIpKGe0afC79lu8Ag_ONmDA7nv8bCto8axpHDTKa2twbR2Ol_h133XWHfG1GQADHtsab2Cryxb6G3RZq7aH2_OcoLfFUzZfBenLcj2fpUHJGPMBDcuIV4THSSRiEIkAVYYspkUIFIqiELIKi1JRQRRToiRK1JGSwBitCK0kZRP0cOrtnP3cQ-_znd07M5zMw4hLEYkk5kMqPqVKZ_veQZ2X2v98453SbU5JfpSaD1Lzo9T8LHUAyR-wc_pDucN_yP0J0QDwG5c85DLh7Bs684SK |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1016_j_phycom_2023_102005 crossref_primary_10_1111_exsy_13372 crossref_primary_10_1109_JIOT_2023_3288886 crossref_primary_10_1109_TNSE_2022_3144699 crossref_primary_10_1109_TWC_2022_3222717 crossref_primary_10_1186_s42400_024_00350_5 crossref_primary_10_1016_j_comnet_2024_110768 crossref_primary_10_1109_JIOT_2025_3545296 crossref_primary_10_1016_j_rser_2025_115942 crossref_primary_10_1007_s11276_021_02777_x crossref_primary_10_1109_MWC_004_2100542 crossref_primary_10_1109_JIOT_2021_3118834 crossref_primary_10_1109_TITS_2023_3308370 crossref_primary_10_1109_TITS_2023_3324962 crossref_primary_10_1109_TITS_2024_3362058 crossref_primary_10_1109_COMST_2024_3372083 crossref_primary_10_3390_electronics13122372 crossref_primary_10_3390_math12142229 crossref_primary_10_1109_TVT_2023_3304176 crossref_primary_10_1016_j_vehcom_2021_100396 crossref_primary_10_1109_JIOT_2025_3539849 crossref_primary_10_1109_OJITS_2025_3589612 crossref_primary_10_1109_TITS_2023_3243003 crossref_primary_10_1109_TVT_2023_3275579 crossref_primary_10_3390_electronics12112478 crossref_primary_10_1016_j_knosys_2024_112937 crossref_primary_10_1109_JIOT_2023_3270377 crossref_primary_10_1109_ACCESS_2024_3458991 crossref_primary_10_1109_JIOT_2023_3306778 crossref_primary_10_1109_TITS_2024_3357138 crossref_primary_10_1016_j_adhoc_2023_103153 crossref_primary_10_1145_3659205 crossref_primary_10_1109_TMLCN_2025_3567370 crossref_primary_10_1109_TCE_2023_3328020 crossref_primary_10_1016_j_comnet_2023_110100 crossref_primary_10_1109_JIOT_2022_3144450 crossref_primary_10_1109_TGCN_2023_3234404 crossref_primary_10_1002_dac_5367 crossref_primary_10_1109_TCCN_2023_3286665 crossref_primary_10_1109_TIV_2023_3319689 crossref_primary_10_3390_asi5030056 crossref_primary_10_1109_JSYST_2024_3459926 crossref_primary_10_1016_j_buildenv_2022_108937 crossref_primary_10_1109_JIOT_2023_3295763 crossref_primary_10_1109_TGCN_2022_3167643 crossref_primary_10_1109_TCBB_2023_3281828 crossref_primary_10_1109_TGCN_2024_3433457 crossref_primary_10_1016_j_adhoc_2024_103685 crossref_primary_10_1016_j_phycom_2024_102479 crossref_primary_10_1108_IJPCC_09_2023_0250 crossref_primary_10_1109_JIOT_2024_3509264 crossref_primary_10_1016_j_ins_2025_122558 crossref_primary_10_1109_JIOT_2023_3298196 crossref_primary_10_1109_TITS_2022_3208952 crossref_primary_10_1109_JSAC_2023_3273700 crossref_primary_10_1145_3591335_3591348 crossref_primary_10_1109_TMC_2023_3241074 crossref_primary_10_1109_TCE_2025_3527043 crossref_primary_10_1109_TCBB_2022_3185395 crossref_primary_10_1109_JIOT_2024_3385913 crossref_primary_10_1109_TIV_2024_3446319 crossref_primary_10_3390_s24206711 crossref_primary_10_1109_TSC_2025_3586152 crossref_primary_10_3390_electronics14132512 crossref_primary_10_32604_cmc_2023_039487 crossref_primary_10_1109_TPDS_2025_3539738 crossref_primary_10_1109_TVT_2024_3511255 crossref_primary_10_3390_s24206685 crossref_primary_10_1109_JSTSP_2023_3239189 crossref_primary_10_1016_j_eswa_2023_122440 crossref_primary_10_1109_TDSC_2024_3472869 crossref_primary_10_1109_IOTM_001_2300286 crossref_primary_10_1109_TVT_2023_3253131 crossref_primary_10_1109_TVT_2021_3136308 crossref_primary_10_3390_vehicles4040065 crossref_primary_10_1016_j_future_2023_09_008 crossref_primary_10_1007_s12083_024_01641_x crossref_primary_10_1016_j_comnet_2023_109712 crossref_primary_10_1109_ACCESS_2024_3404222 crossref_primary_10_1109_JIOT_2024_3492074 crossref_primary_10_1109_TVT_2024_3479780 crossref_primary_10_1109_JIOT_2024_3450433 crossref_primary_10_3390_electronics14153043 crossref_primary_10_1109_OJVT_2025_3599570 crossref_primary_10_1109_JIOT_2023_3286398 crossref_primary_10_1002_ett_4427 crossref_primary_10_1002_spy2_276 crossref_primary_10_26599_HTRD_2025_9480055 crossref_primary_10_3390_a15060210 crossref_primary_10_1016_j_aeue_2022_154339 crossref_primary_10_3390_fi17070315 crossref_primary_10_1109_TIA_2022_3184668 crossref_primary_10_1109_JIOT_2023_3245721 crossref_primary_10_3390_electronics13153013 crossref_primary_10_1016_j_sysarc_2023_102929 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1109_ACCESS_2023_3267471 crossref_primary_10_1109_JIOT_2024_3373872 crossref_primary_10_1016_j_iot_2023_100903 crossref_primary_10_1109_COMST_2023_3282264 crossref_primary_10_3390_app142311336 crossref_primary_10_1038_s41598_023_33044_y crossref_primary_10_32604_cmc_2024_057006 crossref_primary_10_1109_TITS_2022_3210559 crossref_primary_10_1007_s11276_021_02740_w crossref_primary_10_1016_j_rser_2022_112722 crossref_primary_10_1109_MNET_2024_3380647 crossref_primary_10_1109_JSAC_2023_3240716 crossref_primary_10_1109_TITS_2025_3561941 crossref_primary_10_28979_jarnas_1555351 crossref_primary_10_1109_TSMC_2023_3298513 crossref_primary_10_1109_TITS_2022_3170028 crossref_primary_10_1109_TITS_2023_3336823 crossref_primary_10_3390_electronics13234744 crossref_primary_10_1109_TVT_2024_3507358 crossref_primary_10_1109_TCE_2025_3533750 crossref_primary_10_1007_s12599_023_00825_8 crossref_primary_10_1109_TITS_2023_3237708 crossref_primary_10_1109_TNET_2024_3423316 crossref_primary_10_1109_JIOT_2023_3317639 crossref_primary_10_1109_TCBB_2023_3243932 crossref_primary_10_1007_s11276_021_02750_8 crossref_primary_10_1016_j_jnca_2023_103812 crossref_primary_10_1109_TII_2022_3155162 crossref_primary_10_1016_j_ins_2023_119717 crossref_primary_10_1109_TGCN_2021_3127923 crossref_primary_10_1007_s00521_025_11099_4 crossref_primary_10_1016_j_engappai_2025_111662 crossref_primary_10_1109_TITS_2024_3454711 crossref_primary_10_1007_s11280_021_00939_7 crossref_primary_10_1109_TCBB_2023_3239848 crossref_primary_10_3390_electronics12081757 crossref_primary_10_1109_TIV_2023_3332675 crossref_primary_10_1109_TVT_2025_3543906 crossref_primary_10_1109_TVT_2022_3211005 crossref_primary_10_1109_MNET_007_2100717 crossref_primary_10_1109_TGCN_2023_3309657 crossref_primary_10_1109_TNSM_2024_3387987 |
| Cites_doi | 10.1016/j.comcom.2004.01.024 10.1145/1082473.1082545 10.1145/3362031 10.1109/MCOM.001.1900411 10.1109/TITS.2020.3017474 10.1007/s00138-011-0391-3 10.1109/MNET.011.1900317 10.1109/OJVT.2020.2989534 10.1109/ACCESS.2020.3031959 10.1109/OJCS.2020.2992630 10.1109/ACCESS.2019.2909490 10.1109/UCET51115.2020.9205482 10.1109/TCOMM.2019.2956472 10.1365/s40112-016-1164-1 10.1145/3298981 10.1109/MVT.2019.2921208 10.1109/JPROC.2019.2954595 10.1109/ACCESS.2019.2935169 10.1109/MNET.011.2000541 10.1109/MCOM.2006.1580935 10.1109/TVT.2020.3015268 10.1155/2015/745303 10.1109/TIP.2017.2756825 10.1109/TITS.2015.2439292 10.1109/TVT.2020.2973651 10.1109/TCC.2019.2906300 10.1109/IWCMC48107.2020.9148417 10.1109/ACCESS.2020.2981430 10.1109/ACCESS.2020.3019590 10.1109/ACCESS.2020.2968399 10.1109/MCOM.2019.1900271 10.1109/TNET.2020.2979807 10.1109/OJCOMS.2020.3010270 10.1109/TMC.2020.2984261 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2021.3077893 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 5317 |
| ExternalDocumentID | 10_1109_TVT_2021_3077893 9424984 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72088101; 72091515; 62072171 funderid: 10.13039/501100001809 – fundername: National Key R&D Program of China grantid: 2017YFE0117500; 2019YFE0190500; 2019GK1010 funderid: 10.13039/501100013290 – fundername: Natural Science Foundation of Hunan Province grantid: 2019JJ40150 funderid: 10.13039/501100004735 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c333t-12c54d0468576e787eac2361b2e1ebbb79d2bca170a3a7c0a7f5a9e331d01d913 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 205 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000671544000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 08:13:16 EDT 2025 Sat Nov 29 02:58:56 EST 2025 Tue Nov 18 22:10:12 EST 2025 Wed Aug 27 02:26:38 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c333t-12c54d0468576e787eac2361b2e1ebbb79d2bca170a3a7c0a7f5a9e331d01d913 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3165-5045 0000-0003-3488-4679 0000-0002-9697-2108 0000-0001-8450-2558 0000-0002-0689-256X |
| OpenAccessLink | https://aaltodoc.aalto.fi/handle/123456789/109170 |
| PQID | 2549757864 |
| PQPubID | 85454 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2549757864 ieee_primary_9424984 crossref_citationtrail_10_1109_TVT_2021_3077893 crossref_primary_10_1109_TVT_2021_3077893 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 nadeem (ref13) 2006 ref2 ref1 ref39 ref17 ref38 ref19 hartenstein (ref18) 2010 moustafa (ref6) 2009 ref24 ref23 ref26 ref25 ref20 ref22 ref21 hamid (ref16) 2016; 6 ref28 ref27 sivasakthi (ref7) 2013; 2 ref29 ref8 ref9 ref4 ref3 ref5 ref40 |
| References_xml | – ident: ref12 doi: 10.1016/j.comcom.2004.01.024 – start-page: 1 year: 2006 ident: ref13 article-title: A comparative study of data dissemination models for VANETs publication-title: Proc 3rd Annu Int Conf Mobile Ubiquitous Syst Netw Services – ident: ref17 doi: 10.1145/1082473.1082545 – ident: ref3 doi: 10.1145/3362031 – ident: ref37 doi: 10.1109/MCOM.001.1900411 – ident: ref33 doi: 10.1109/TITS.2020.3017474 – ident: ref39 doi: 10.1007/s00138-011-0391-3 – ident: ref30 doi: 10.1109/MNET.011.1900317 – year: 2009 ident: ref6 publication-title: Vehicular Networks Techniques Standards and Applications – ident: ref24 doi: 10.1109/OJVT.2020.2989534 – ident: ref21 doi: 10.1109/ACCESS.2020.3031959 – ident: ref28 doi: 10.1109/OJCS.2020.2992630 – ident: ref22 doi: 10.1109/ACCESS.2019.2909490 – ident: ref27 doi: 10.1109/UCET51115.2020.9205482 – ident: ref1 doi: 10.1109/TCOMM.2019.2956472 – ident: ref11 doi: 10.1365/s40112-016-1164-1 – ident: ref38 doi: 10.1145/3298981 – ident: ref2 doi: 10.1109/MVT.2019.2921208 – ident: ref26 doi: 10.1109/JPROC.2019.2954595 – volume: 6 start-page: 78 year: 2016 ident: ref16 article-title: Current collision mitigation technologies for advanced driver assistance systems-A survey publication-title: PERINTIS eJournal – ident: ref36 doi: 10.1109/ACCESS.2019.2935169 – ident: ref35 doi: 10.1109/MNET.011.2000541 – ident: ref14 doi: 10.1109/MCOM.2006.1580935 – ident: ref15 doi: 10.1365/s40112-016-1164-1 – ident: ref32 doi: 10.1109/TVT.2020.3015268 – ident: ref8 doi: 10.1155/2015/745303 – ident: ref40 doi: 10.1109/TIP.2017.2756825 – ident: ref19 doi: 10.1109/TITS.2015.2439292 – volume: 2 start-page: 23 year: 2013 ident: ref7 article-title: Research on vehicular ad hoc networks (VANETs): An overview publication-title: J Appl Eng Sci Res – ident: ref20 doi: 10.1109/TVT.2020.2973651 – ident: ref10 doi: 10.1109/TCC.2019.2906300 – ident: ref25 doi: 10.1109/IWCMC48107.2020.9148417 – ident: ref31 doi: 10.1109/ACCESS.2020.2981430 – year: 2010 ident: ref18 article-title: VANET: Vehicular applications and inter-networking technologies publication-title: Wiley Online Library – ident: ref23 doi: 10.1109/ACCESS.2020.3019590 – ident: ref29 doi: 10.1109/ACCESS.2020.2968399 – ident: ref4 doi: 10.1109/MCOM.2019.1900271 – ident: ref9 doi: 10.1109/TNET.2020.2979807 – ident: ref34 doi: 10.1109/OJCOMS.2020.3010270 – ident: ref5 doi: 10.1109/TMC.2020.2984261 |
| SSID | ssj0014491 |
| Score | 2.6943953 |
| Snippet | The vision of the upcoming 6G technologies that have fast data rate, low latency, and ultra-dense network, draws great attentions to the Internet of Vehicles... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5308 |
| SubjectTerms | 6G mobile communication 6G technology Agglomeration Cloud computing Collaborative work Computational modeling Computer architecture Data models Distributed databases End-edge-cloud computing Federated learning Heterogeneous data Intelligent transportation systems Internet of Vehicles Learning Machine learning Multilayers Network latency Object detection Object recognition Roadsides Systems analysis Training Transportation networks Vehicles |
| Title | Two-Layer Federated Learning With Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles |
| URI | https://ieeexplore.ieee.org/document/9424984 https://www.proquest.com/docview/2549757864 |
| Volume | 70 |
| WOSCitedRecordID | wos000671544000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH4B4kEP_kIjiqYHLyYOtrVb16MxIgdCPCByW7q2AxLDDAz9933dBtFoTLz10DbLvrbvfX2v3wO4jgy1dl06vq-kw0ItnUS6DFsq1CzlgV8iPeDDYTSZiKca3G7fwhhjiuQz07HNIpavM7W2V2VdwZAsRKwOdc7D8q3WNmLAWFUdz8MNjG7BJiTpiu5oPEIi6HsdXM88EvSbCSpqqvw4iAvr0jv433cdwn7lRZK7EvYjqJnFMex90RZswnT0kTkDiR416VnBCPQpNanUVKfkZZ7PSN-mwmS4ggzSf2KrouGUUyTg0wIugv4sCR-JLfxpU3I1Ka8PTU6ylIzNrMioO4Hn3sPovu9UVRUcRSnNHc9XAdNIiyOkGgb3Kx69VoEl8Y1nkiThQvuJkh53JZVcuZKngRSGUk-7nhYePYXGIluYMyCuSrVEF4ImgWY4e8Tt8ZAKlaYqUEnQgu7mR8eqkhy3lS9e44J6uCJGaGILTVxB04Kb7Yi3Um7jj75NC8W2X4VCC9obLONqP65iS4Otcn_Izn8fdQG7du4yCawNjXy5Npewo97z-Wp5VSy1T5nZ0YQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4qZRJwGLANUSjgA5dJS5vEThMf0bRSRKg4hK63yLGdrhJqUJvCv897iRsNbZrEzQfHifL5x_vs5-8D-JhYTuu68sJQK09MjPIK5Qss6YkRZRyFLdJpPJ8ny6X83oOL7i6MtbZJPrMjKjZn-abSe9oqG0uBZCERj-AxOWe521rdmYEQzh8vwCGMgcHhUNKX42yRIRUMgxH26DiR_J9FqHFVuTMVN-vL9Pn_fdkLOHZxJPvUAv8SenZzAs9uqQuewir7U3mpwpiaTUkyAqNKw5ye6opdr-sbNqNkmAr7kK32O0a-aNjkCin4qgGMYUTLJp8ZWX9SUq5h7QairVlVsoW9aXLqzuDH9Cq7nHnOV8HTnPPaC0IdCYPEOEGyYXHE4uRLGixFaANbFEUsTVhoFcS-4irWvorLSEnLeWD8wMiAv4L-ptrY18B8XRqFQQQvIiOw9SSmCaKUuix1pItoAOPDj861Ex0n74ufeUM-fJkjNDlBkztoBnDePfGrFdx4oO4pQdHVcygMYHjAMncjcpcTESbt_ol4c_9TH-DJLPuW5umX-de38JTe06aEDaFfb_f2HRzp3_V6t33fdLu_rG7UzQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-Layer+Federated+Learning+With+Heterogeneous+Model+Aggregation+for+6G+Supported+Internet+of+Vehicles&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Zhou%2C+Xiaokang&rft.au=Liang%2C+Wei&rft.au=She%2C+Jinhua&rft.au=Yan%2C+Zheng&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=70&rft.issue=6&rft.spage=5308&rft.epage=5317&rft_id=info:doi/10.1109%2FTVT.2021.3077893&rft.externalDocID=9424984 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |