Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection
Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware becaus...
Saved in:
| Published in: | Measurement. Sensors Vol. 28; p. 100785 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2023
Elsevier |
| Subjects: | |
| ISSN: | 2665-9174, 2665-9174 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware because to the increasing quantity and variety of Android malware that has considerably undermined the efficiency of the traditional defence systems. Several data-driven malware detection techniques were being out. Furthermore, these techniques face two major obstacles: How to acquire useful feature representations from raw data; How to lessen feature learning's reliance on past knowledge or individual workers. This research work proposed a system for detecting malware that begins by teaching rich characteristics an improved chimp optimization algorithm (ICOA) based feature selection and Deep Neural Network Framework (DNNF) for accurate detecting of Android malware. Deep learning methods' widespread use in the industry of feature representation learning served as an inspiration for this framework. Raw feature preprocessing, feature representation learning, and malware detection are the three key components of the proposed DNNF. The second phase is to learn high-level discriminative features to fuel malware identification using the ICOA. Finally, a DNNF based on Long Short-Term Memory (LSTM) is created for efficient malware detection in Android applications. Based on the findings of the simulations, it seems that the DNNF model that was suggested offers high recognition accuracy in comparison to other approaches that are considered to be state of the art. |
|---|---|
| AbstractList | Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware because to the increasing quantity and variety of Android malware that has considerably undermined the efficiency of the traditional defence systems. Several data-driven malware detection techniques were being out. Furthermore, these techniques face two major obstacles: How to acquire useful feature representations from raw data; How to lessen feature learning's reliance on past knowledge or individual workers. This research work proposed a system for detecting malware that begins by teaching rich characteristics an improved chimp optimization algorithm (ICOA) based feature selection and Deep Neural Network Framework (DNNF) for accurate detecting of Android malware. Deep learning methods' widespread use in the industry of feature representation learning served as an inspiration for this framework. Raw feature preprocessing, feature representation learning, and malware detection are the three key components of the proposed DNNF. The second phase is to learn high-level discriminative features to fuel malware identification using the ICOA. Finally, a DNNF based on Long Short-Term Memory (LSTM) is created for efficient malware detection in Android applications. Based on the findings of the simulations, it seems that the DNNF model that was suggested offers high recognition accuracy in comparison to other approaches that are considered to be state of the art. |
| ArticleNumber | 100785 |
| Author | Kumar, ATA. Kishore Kumar, Ch Niranjan Devi, V. Sowmya G, Tirumala Vasu Fiza, Samreen Kubra, Afreen |
| Author_xml | – sequence: 1 givenname: Tirumala Vasu surname: G fullname: G, Tirumala Vasu email: tirumalavasu20@gmail.com organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India – sequence: 2 givenname: Samreen surname: Fiza fullname: Fiza, Samreen organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India – sequence: 3 givenname: ATA. Kishore surname: Kumar fullname: Kumar, ATA. Kishore organization: Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College, Mohan Babu University, Tirupati, Andhra Pradesh, India – sequence: 4 givenname: V. Sowmya surname: Devi fullname: Devi, V. Sowmya organization: Department of Computer Science and Engineering, Sreenidhi Institute of Science & Technology, Hyderabad, Telangana, India – sequence: 5 givenname: Ch Niranjan surname: Kumar fullname: Kumar, Ch Niranjan organization: Department of Computer Science and Engineering, Sreenidhi Institute of Science & Technology, Hyderabad, Telangana, India – sequence: 6 givenname: Afreen surname: Kubra fullname: Kubra, Afreen organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India |
| BookMark | eNqFkc9uEzEQxi3USi2lb9CDj_SQYHv_ORyQqgjaSJVyac-W7RknDrv2yuu2gnfhXXG6CCEOcJpPY38_zcz3lpyEGJCQK86WnPH2w2E5oJ4wLAUTVWmxTjZvyLlo22ax4l198oc-I5fTdGCMCVm8oj4nPzbDmOIzArV7P4w0jtkP_rvOPgaq-11MPu8H-n6z3t5cU4c6PyWkE_Zo5y8BKCCONOBT0n0p-SWmr9QlPeCsYqI-ZEzliUZH896H3VSI24drasrkcISk6IEOun_RBQ-YZ_w7cup0P-Hlr3pBHr98fljfLe63t5v1zf3CVlXVLLCSKI2peKfLko0QunNFNca4rq15AzWCbVfI7Mo2YBhIyRzIxnDQQou2uiCbmQtRH9SY_KDTNxW1V6-NmHZKp-xtj8oIhAralWS2ro3ksoau7UBysI1jRhZWPbNsitOU0P3mcaaOiamDmhNTx8TUnFixffzLZn1-jSEn7fv_mT_NZixHevaY1GQ9BovgU7lk2cL_G_ATZxO43Q |
| CitedBy_id | crossref_primary_10_3390_technologies13040145 crossref_primary_10_3390_a18010016 crossref_primary_10_1038_s41598_024_57518_9 |
| Cites_doi | 10.1109/ACCESS.2020.3002842 10.1109/TIFS.2018.2866319 10.1109/TII.2017.2789219 10.1145/2666356.2594299 10.1007/s12652-018-0803-6 10.1109/ACCESS.2019.2958927 10.1109/TIFS.2020.3025436 10.1109/ACCESS.2020.3006143 10.1145/3417978 10.1016/j.adhoc.2020.102098 10.1016/j.eswa.2020.113338 10.1109/ACCESS.2021.3130933 10.1109/TKDE.2021.3067658 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.measen.2023.100785 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2665-9174 |
| ExternalDocumentID | oai_doaj_org_article_b2ed3d6980c44b8184d767d81dc5f0b8 10_1016_j_measen_2023_100785 S2665917423001216 |
| GroupedDBID | 0SF 53G 6I. AAEDW AAFTH AALRI AAXUO AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
| ID | FETCH-LOGICAL-c3335-e38e8bb317a174522a7fa175bbf76415d4edc69e0c9c5db0d880fd85b1da2a263 |
| IEDL.DBID | DOA |
| ISSN | 2665-9174 |
| IngestDate | Fri Oct 03 12:39:13 EDT 2025 Tue Nov 18 22:42:21 EST 2025 Thu Nov 20 00:29:32 EST 2025 Fri Feb 23 02:35:47 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Android malware Feature selection Improved chimp optimization algorithm (ICOA) Deep neural network framework (DNNF) Long short-term memory (LSTM) and android malware detection |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3335-e38e8bb317a174522a7fa175bbf76415d4edc69e0c9c5db0d880fd85b1da2a263 |
| OpenAccessLink | https://doaj.org/article/b2ed3d6980c44b8184d767d81dc5f0b8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b2ed3d6980c44b8184d767d81dc5f0b8 crossref_primary_10_1016_j_measen_2023_100785 crossref_citationtrail_10_1016_j_measen_2023_100785 elsevier_sciencedirect_doi_10_1016_j_measen_2023_100785 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 2023-08-01 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement. Sensors |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Liu, Xu, Xu, Zhang, Sun, Liu (bib1) 2020; 8 Avdiienko, Kuznetsov, Gorla, Zeller, Arzt, Rasthofer, Bodden (bib27) 2015; vol. 1 Wang, Zhao, Wang (bib19) 2019; 10 Pan, Ge, Fang, Fan (bib3) 2020; 8 Feng, Chen, Xie, Meng, Lin, Liu (bib20) 2020; 16 Sahs, Khan (bib5) 2012 Arzt, Rasthofer, Fritz, Bodden, Bartel, Klein, Le Traon, Octeau, McDaniel (bib23) 2014; 49 Fereidooni, Conti, Yao, Sperduti (bib9) 2016 Yerima, Sezer, McWilliams, Muttik (bib7) 2013 Hasegawa, Iyatomi (bib21) 2018 Kim, Kang, Rho, Sezer, Im (bib16) 2018; 14 Khishe, Mosavi (bib24) 2020; 149 Ren, Wu, Ning, Hussain, Chen (bib18) 2020; 101 bib29 Hasegawa, Iyatomi (bib31) 2018, March Zhao, Zheng, Gong, Zhang, Wang (bib14) 2018, August Xu, Li, Deng (bib17) 2021 Li, Ge, Dai (bib10) 2015 (bib28) 2020 Chan, Song (bib4) 2014; vol. 1 Zhou, Jiang (bib8) 2012 Graves, Fernández, Schmidhuber (bib26) 2005 Khishe, Nezhadshahbodaghi, Mosavi, Martín (bib25) 2021; 9 Wang, Zhao, Wang (bib15) 2019; 10 Yuan, Lu, Wang, Xue (bib11) 2014 Li, Sun, Yan, Li, Srisa-An, Ye (bib12) 2018; 14 Qiu, Zhang, Luo, Pan, Nepal, Xiang (bib2) 2020; 53 Li, Mills, Niu, Zhu, Zhang, Kinawi (bib13) 2019; 7 Zhu, Wang, Zhong, Li, Sheng (bib30) 2021; 34 Zhu, Wang, Zhong, Li, Sheng (bib22) 2021; 34 Ham, Choi (bib6) 2013 Graves (10.1016/j.measen.2023.100785_bib26) 2005 Xu (10.1016/j.measen.2023.100785_bib17) 2021 Yuan (10.1016/j.measen.2023.100785_bib11) 2014 Chan (10.1016/j.measen.2023.100785_bib4) 2014; vol. 1 Li (10.1016/j.measen.2023.100785_bib13) 2019; 7 Khishe (10.1016/j.measen.2023.100785_bib24) 2020; 149 Kim (10.1016/j.measen.2023.100785_bib16) 2018; 14 Feng (10.1016/j.measen.2023.100785_bib20) 2020; 16 Wang (10.1016/j.measen.2023.100785_bib15) 2019; 10 Fereidooni (10.1016/j.measen.2023.100785_bib9) 2016 Pan (10.1016/j.measen.2023.100785_bib3) 2020; 8 Arzt (10.1016/j.measen.2023.100785_bib23) 2014; 49 Zhu (10.1016/j.measen.2023.100785_bib30) 2021; 34 Ren (10.1016/j.measen.2023.100785_bib18) 2020; 101 Hasegawa (10.1016/j.measen.2023.100785_bib21) 2018 Zhu (10.1016/j.measen.2023.100785_bib22) 2021; 34 Zhou (10.1016/j.measen.2023.100785_bib8) 2012 Hasegawa (10.1016/j.measen.2023.100785_bib31) 2018 Wang (10.1016/j.measen.2023.100785_bib19) 2019; 10 Li (10.1016/j.measen.2023.100785_bib12) 2018; 14 Sahs (10.1016/j.measen.2023.100785_bib5) 2012 Zhao (10.1016/j.measen.2023.100785_bib14) 2018 Li (10.1016/j.measen.2023.100785_bib10) 2015 Yerima (10.1016/j.measen.2023.100785_bib7) 2013 Avdiienko (10.1016/j.measen.2023.100785_bib27) 2015; vol. 1 Ham (10.1016/j.measen.2023.100785_bib6) 2013 Liu (10.1016/j.measen.2023.100785_bib1) 2020; 8 Qiu (10.1016/j.measen.2023.100785_bib2) 2020; 53 Khishe (10.1016/j.measen.2023.100785_bib25) 2021; 9 |
| References_xml | – start-page: 490 year: 2013 end-page: 495 ident: bib6 article-title: Analysis of android malware detection performance using machine learning classifiers publication-title: 2013 International Conference on ICT Convergence (ICTC) – volume: 8 start-page: 124579 year: 2020 end-page: 124607 ident: bib1 article-title: A review of android malware detection approaches based on machine learning publication-title: IEEE Access – volume: 7 start-page: 184008 year: 2019 end-page: 184019 ident: bib13 article-title: Android malware detection based on factorization machine publication-title: IEEE Access – volume: 9 start-page: 158508 year: 2021 end-page: 158539 ident: bib25 article-title: A weighted chimp optimization algorithm publication-title: IEEE Access – volume: 34 start-page: 5558 year: 2021 end-page: 5570 ident: bib30 article-title: A hybrid deep network framework for android malware detection publication-title: IEEE Trans. Knowl. Data Eng. – volume: 14 start-page: 3216 year: 2018 end-page: 3225 ident: bib12 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Trans. Ind. Inf. – volume: 10 start-page: 3035 year: 2019 end-page: 3043 ident: bib15 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: J. Ambient Intell. Hum. Comput. – volume: 34 start-page: 5558 year: 2021 end-page: 5570 ident: bib22 article-title: A hybrid deep network framework for Android malware detection publication-title: IEEE Trans. Knowl. Data Eng. – volume: vol. 1 start-page: 82 year: 2014 end-page: 87 ident: bib4 article-title: Static detection of Android malware by using permissions and API calls publication-title: 2014 International Conference on Machine Learning and Cybernetics – start-page: 464 year: 2015 end-page: 469 ident: bib10 article-title: Detecting malware for android platform: an svm-based approach publication-title: 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing – start-page: 99 year: 2018 end-page: 102 ident: bib21 article-title: One-dimensional convolutional neural networks for Android malware detection publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA) – volume: vol. 1 start-page: 426 year: 2015 end-page: 436 ident: bib27 article-title: Mining apps for abnormal usage of sensitive data publication-title: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering – start-page: 143 year: 2018, August end-page: 148 ident: bib14 article-title: Quick and accurate android malware detection based on sensitive APIs publication-title: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT) – start-page: 141 year: 2012 end-page: 147 ident: bib5 article-title: A machine learning approach to android malware detection publication-title: 2012 European Intelligence and Security Informatics Conference – volume: 10 start-page: 3035 year: 2019 end-page: 3043 ident: bib19 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: J. Ambient Intell. Hum. Comput. – volume: 14 start-page: 773 year: 2018 end-page: 788 ident: bib16 article-title: A multimodal deep learning method for android malware detection using various features publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 371 year: 2014 end-page: 372 ident: bib11 article-title: Droid-sec: deep learning in android malware detection publication-title: Proceedings of the 2014 ACM Conference on SIGCOMM – volume: 101 year: 2020 ident: bib18 article-title: End-to-end malware detection for android IoT devices using deep learning publication-title: Ad Hoc Netw. – year: 2020 ident: bib28 – volume: 49 start-page: 259 year: 2014 end-page: 269 ident: bib23 article-title: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps publication-title: ACM Sigplan Not. – start-page: 799 year: 2005 end-page: 804 ident: bib26 article-title: Bidirectional LSTM networks for improved phoneme classification and recognition publication-title: International Conference on Artificial Neural Networks – volume: 16 start-page: 1563 year: 2020 end-page: 1578 ident: bib20 article-title: A performance-sensitive malware detection system using deep learning on mobile devices publication-title: IEEE Trans. Inf. Forensics Secur. – start-page: 95 year: 2012 end-page: 109 ident: bib8 article-title: Dissecting android malware: characterization and evolution publication-title: 2012 IEEE Symposium on Security and Privacy – ident: bib29 – start-page: 99 year: 2018, March end-page: 102 ident: bib31 article-title: One-dimensional convolutional neural networks for Android malware detection publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA) – start-page: 121 year: 2013 end-page: 128 ident: bib7 article-title: A new android malware detection approach using bayesian classification publication-title: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA) – start-page: 1 year: 2016 end-page: 5 ident: bib9 article-title: ANASTASIA: ANdroid mAlware detection using STatic analySIs of Applications publication-title: 2016 8th IFIP International Conference on New Technologies, Mobility and Security – volume: 8 start-page: 116363 year: 2020 end-page: 116379 ident: bib3 article-title: A systematic literature review of android malware detection using static analysis publication-title: IEEE Access – year: 2021 ident: bib17 article-title: Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection – volume: 53 start-page: 1 year: 2020 end-page: 36 ident: bib2 article-title: A survey of android malware detection with deep neural models publication-title: ACM Comput. Surv. – volume: 149 start-page: 1 year: 2020 end-page: 26 ident: bib24 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. – start-page: 141 year: 2012 ident: 10.1016/j.measen.2023.100785_bib5 article-title: A machine learning approach to android malware detection – volume: 8 start-page: 116363 year: 2020 ident: 10.1016/j.measen.2023.100785_bib3 article-title: A systematic literature review of android malware detection using static analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002842 – volume: 14 start-page: 773 issue: 3 year: 2018 ident: 10.1016/j.measen.2023.100785_bib16 article-title: A multimodal deep learning method for android malware detection using various features publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2018.2866319 – volume: vol. 1 start-page: 426 year: 2015 ident: 10.1016/j.measen.2023.100785_bib27 article-title: Mining apps for abnormal usage of sensitive data – volume: 14 start-page: 3216 issue: 7 year: 2018 ident: 10.1016/j.measen.2023.100785_bib12 article-title: Significant permission identification for machine-learning-based android malware detection publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2789219 – start-page: 121 year: 2013 ident: 10.1016/j.measen.2023.100785_bib7 article-title: A new android malware detection approach using bayesian classification – start-page: 99 year: 2018 ident: 10.1016/j.measen.2023.100785_bib21 article-title: One-dimensional convolutional neural networks for Android malware detection – volume: 49 start-page: 259 issue: 6 year: 2014 ident: 10.1016/j.measen.2023.100785_bib23 article-title: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps publication-title: ACM Sigplan Not. doi: 10.1145/2666356.2594299 – volume: 10 start-page: 3035 issue: 8 year: 2019 ident: 10.1016/j.measen.2023.100785_bib15 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-018-0803-6 – volume: 7 start-page: 184008 year: 2019 ident: 10.1016/j.measen.2023.100785_bib13 article-title: Android malware detection based on factorization machine publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958927 – volume: 16 start-page: 1563 year: 2020 ident: 10.1016/j.measen.2023.100785_bib20 article-title: A performance-sensitive malware detection system using deep learning on mobile devices publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2020.3025436 – year: 2021 ident: 10.1016/j.measen.2023.100785_bib17 – volume: 8 start-page: 124579 year: 2020 ident: 10.1016/j.measen.2023.100785_bib1 article-title: A review of android malware detection approaches based on machine learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006143 – volume: 53 start-page: 1 issue: 6 year: 2020 ident: 10.1016/j.measen.2023.100785_bib2 article-title: A survey of android malware detection with deep neural models publication-title: ACM Comput. Surv. doi: 10.1145/3417978 – start-page: 464 year: 2015 ident: 10.1016/j.measen.2023.100785_bib10 article-title: Detecting malware for android platform: an svm-based approach – start-page: 799 year: 2005 ident: 10.1016/j.measen.2023.100785_bib26 article-title: Bidirectional LSTM networks for improved phoneme classification and recognition – volume: 101 year: 2020 ident: 10.1016/j.measen.2023.100785_bib18 article-title: End-to-end malware detection for android IoT devices using deep learning publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2020.102098 – start-page: 1 year: 2016 ident: 10.1016/j.measen.2023.100785_bib9 article-title: ANASTASIA: ANdroid mAlware detection using STatic analySIs of Applications – start-page: 371 year: 2014 ident: 10.1016/j.measen.2023.100785_bib11 article-title: Droid-sec: deep learning in android malware detection – start-page: 490 year: 2013 ident: 10.1016/j.measen.2023.100785_bib6 article-title: Analysis of android malware detection performance using machine learning classifiers – volume: 149 start-page: 1 year: 2020 ident: 10.1016/j.measen.2023.100785_bib24 article-title: Chimp optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113338 – start-page: 95 year: 2012 ident: 10.1016/j.measen.2023.100785_bib8 article-title: Dissecting android malware: characterization and evolution – volume: 10 start-page: 3035 issue: 8 year: 2019 ident: 10.1016/j.measen.2023.100785_bib19 article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network publication-title: J. Ambient Intell. Hum. Comput. doi: 10.1007/s12652-018-0803-6 – volume: 9 start-page: 158508 year: 2021 ident: 10.1016/j.measen.2023.100785_bib25 article-title: A weighted chimp optimization algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3130933 – volume: 34 start-page: 5558 issue: 12 year: 2021 ident: 10.1016/j.measen.2023.100785_bib30 article-title: A hybrid deep network framework for android malware detection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3067658 – volume: vol. 1 start-page: 82 year: 2014 ident: 10.1016/j.measen.2023.100785_bib4 article-title: Static detection of Android malware by using permissions and API calls – start-page: 99 year: 2018 ident: 10.1016/j.measen.2023.100785_bib31 article-title: One-dimensional convolutional neural networks for Android malware detection – volume: 34 start-page: 5558 issue: 12 year: 2021 ident: 10.1016/j.measen.2023.100785_bib22 article-title: A hybrid deep network framework for Android malware detection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3067658 – start-page: 143 year: 2018 ident: 10.1016/j.measen.2023.100785_bib14 article-title: Quick and accurate android malware detection based on sensitive APIs |
| SSID | ssj0002810124 |
| Score | 2.298303 |
| Snippet | Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 100785 |
| SubjectTerms | Android malware Deep neural network framework (DNNF) Feature selection Improved chimp optimization algorithm (ICOA) Long short-term memory (LSTM) and android malware detection |
| Title | Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection |
| URI | https://dx.doi.org/10.1016/j.measen.2023.100785 https://doaj.org/article/b2ed3d6980c44b8184d767d81dc5f0b8 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2665-9174 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810124 issn: 2665-9174 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2665-9174 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810124 issn: 2665-9174 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29b9UwELdQxQAD4lO88iEPDHSIyItjOx5L1QokaBkK6hbZvgtN9ZI8vQbY-E_4XznbSZWJLixRFDnnyHfxnc8__46xNyZwfGFAtoo1ZKUpbVb5AjOgiRCkEtZE3oJvn_TpaXVxYb4sSn0FTFiiB04D984VCAKUqXJflo7cSwlaaaAwy8smd_GYb67NYjF1FVNGgbcqbCmTAwrFCHU5n5uL4K4u7H0E-tNCRJxAKKW88EuRvn_hnhYu5-QhezDFivwwfeMjdgf7x-z-gkHwCfuTkgII3F-23ZYPNAN009FKbjffB1r7X3b87cejs8MD3mCk8eTXsfhNbNIDB8QtD7yW1FefUOG8mTFbnIJa3sa0IY58aPgYC32SxLPzAx58IAQhu6EF3tnNL0viAcck_in7enJ8fvQhmyouZF4IITMUFVbOUUxhacQoNLO6oTvpXKMVuXooEbwymHvjJbgcSNENVNKtwRa2UOIZ2-uHHp8zLktlcy_RooJS0Y_eFOC0xEasbaUNrpiYx7v2Ex15qIqxqWfc2VWdtFQHLdVJSyuW3by1TXQct7R_H1R50zaQaccHZGL1ZGL1bSa2Yno2hHqKS1K8QaLaf3a__z-6f8HuBZEJdfiS7Y27H_iK3fU_x_Z69zraPV0__z7-C7r1CWM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+chimp+optimization+algorithm+%28ICOA%29+feature+selection+and+deep+neural+network+framework+for+internet+of+things+%28IOT%29+based+android+malware+detection&rft.jtitle=Measurement.+Sensors&rft.au=G%2C+Tirumala+Vasu&rft.au=Fiza%2C+Samreen&rft.au=Kumar%2C+ATA.+Kishore&rft.au=Devi%2C+V.+Sowmya&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=28&rft_id=info:doi/10.1016%2Fj.measen.2023.100785&rft.externalDocID=S2665917423001216 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon |