Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection

Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware becaus...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement. Sensors Ročník 28; s. 100785
Hlavní autoři: G, Tirumala Vasu, Fiza, Samreen, Kumar, ATA. Kishore, Devi, V. Sowmya, Kumar, Ch Niranjan, Kubra, Afreen
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Elsevier
Témata:
ISSN:2665-9174, 2665-9174
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware because to the increasing quantity and variety of Android malware that has considerably undermined the efficiency of the traditional defence systems. Several data-driven malware detection techniques were being out. Furthermore, these techniques face two major obstacles: How to acquire useful feature representations from raw data; How to lessen feature learning's reliance on past knowledge or individual workers. This research work proposed a system for detecting malware that begins by teaching rich characteristics an improved chimp optimization algorithm (ICOA) based feature selection and Deep Neural Network Framework (DNNF) for accurate detecting of Android malware. Deep learning methods' widespread use in the industry of feature representation learning served as an inspiration for this framework. Raw feature preprocessing, feature representation learning, and malware detection are the three key components of the proposed DNNF. The second phase is to learn high-level discriminative features to fuel malware identification using the ICOA. Finally, a DNNF based on Long Short-Term Memory (LSTM) is created for efficient malware detection in Android applications. Based on the findings of the simulations, it seems that the DNNF model that was suggested offers high recognition accuracy in comparison to other approaches that are considered to be state of the art.
AbstractList Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been multiplying fast as a result of the growing usage of smartphones. The Android platform is often left vulnerable to new and undiscovered malware because to the increasing quantity and variety of Android malware that has considerably undermined the efficiency of the traditional defence systems. Several data-driven malware detection techniques were being out. Furthermore, these techniques face two major obstacles: How to acquire useful feature representations from raw data; How to lessen feature learning's reliance on past knowledge or individual workers. This research work proposed a system for detecting malware that begins by teaching rich characteristics an improved chimp optimization algorithm (ICOA) based feature selection and Deep Neural Network Framework (DNNF) for accurate detecting of Android malware. Deep learning methods' widespread use in the industry of feature representation learning served as an inspiration for this framework. Raw feature preprocessing, feature representation learning, and malware detection are the three key components of the proposed DNNF. The second phase is to learn high-level discriminative features to fuel malware identification using the ICOA. Finally, a DNNF based on Long Short-Term Memory (LSTM) is created for efficient malware detection in Android applications. Based on the findings of the simulations, it seems that the DNNF model that was suggested offers high recognition accuracy in comparison to other approaches that are considered to be state of the art.
ArticleNumber 100785
Author Kumar, ATA. Kishore
Kumar, Ch Niranjan
Devi, V. Sowmya
G, Tirumala Vasu
Fiza, Samreen
Kubra, Afreen
Author_xml – sequence: 1
  givenname: Tirumala Vasu
  surname: G
  fullname: G, Tirumala Vasu
  email: tirumalavasu20@gmail.com
  organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India
– sequence: 2
  givenname: Samreen
  surname: Fiza
  fullname: Fiza, Samreen
  organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India
– sequence: 3
  givenname: ATA. Kishore
  surname: Kumar
  fullname: Kumar, ATA. Kishore
  organization: Department of Electronics and Communication Engineering, Sree Vidyanikethan Engineering College, Mohan Babu University, Tirupati, Andhra Pradesh, India
– sequence: 4
  givenname: V. Sowmya
  surname: Devi
  fullname: Devi, V. Sowmya
  organization: Department of Computer Science and Engineering, Sreenidhi Institute of Science & Technology, Hyderabad, Telangana, India
– sequence: 5
  givenname: Ch Niranjan
  surname: Kumar
  fullname: Kumar, Ch Niranjan
  organization: Department of Computer Science and Engineering, Sreenidhi Institute of Science & Technology, Hyderabad, Telangana, India
– sequence: 6
  givenname: Afreen
  surname: Kubra
  fullname: Kubra, Afreen
  organization: Department of Electronics and Communication Engineering, Presidency University, Karnataka, India
BookMark eNqFkc9uEzEQxi3USi2lb9CDj_SQYHv_ORyQqgjaSJVyac-W7RknDrv2yuu2gnfhXXG6CCEOcJpPY38_zcz3lpyEGJCQK86WnPH2w2E5oJ4wLAUTVWmxTjZvyLlo22ax4l198oc-I5fTdGCMCVm8oj4nPzbDmOIzArV7P4w0jtkP_rvOPgaq-11MPu8H-n6z3t5cU4c6PyWkE_Zo5y8BKCCONOBT0n0p-SWmr9QlPeCsYqI-ZEzliUZH896H3VSI24drasrkcISk6IEOun_RBQ-YZ_w7cup0P-Hlr3pBHr98fljfLe63t5v1zf3CVlXVLLCSKI2peKfLko0QunNFNca4rq15AzWCbVfI7Mo2YBhIyRzIxnDQQou2uiCbmQtRH9SY_KDTNxW1V6-NmHZKp-xtj8oIhAralWS2ro3ksoau7UBysI1jRhZWPbNsitOU0P3mcaaOiamDmhNTx8TUnFixffzLZn1-jSEn7fv_mT_NZixHevaY1GQ9BovgU7lk2cL_G_ATZxO43Q
CitedBy_id crossref_primary_10_3390_technologies13040145
crossref_primary_10_3390_a18010016
crossref_primary_10_1038_s41598_024_57518_9
Cites_doi 10.1109/ACCESS.2020.3002842
10.1109/TIFS.2018.2866319
10.1109/TII.2017.2789219
10.1145/2666356.2594299
10.1007/s12652-018-0803-6
10.1109/ACCESS.2019.2958927
10.1109/TIFS.2020.3025436
10.1109/ACCESS.2020.3006143
10.1145/3417978
10.1016/j.adhoc.2020.102098
10.1016/j.eswa.2020.113338
10.1109/ACCESS.2021.3130933
10.1109/TKDE.2021.3067658
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.measen.2023.100785
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2665-9174
ExternalDocumentID oai_doaj_org_article_b2ed3d6980c44b8184d767d81dc5f0b8
10_1016_j_measen_2023_100785
S2665917423001216
GroupedDBID 0SF
53G
6I.
AAEDW
AAFTH
AALRI
AAXUO
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3335-e38e8bb317a174522a7fa175bbf76415d4edc69e0c9c5db0d880fd85b1da2a263
IEDL.DBID DOA
ISSN 2665-9174
IngestDate Fri Oct 03 12:39:13 EDT 2025
Tue Nov 18 22:42:21 EST 2025
Thu Nov 20 00:29:32 EST 2025
Fri Feb 23 02:35:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Android malware
Feature selection
Improved chimp optimization algorithm (ICOA)
Deep neural network framework (DNNF)
Long short-term memory (LSTM) and android malware detection
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3335-e38e8bb317a174522a7fa175bbf76415d4edc69e0c9c5db0d880fd85b1da2a263
OpenAccessLink https://doaj.org/article/b2ed3d6980c44b8184d767d81dc5f0b8
ParticipantIDs doaj_primary_oai_doaj_org_article_b2ed3d6980c44b8184d767d81dc5f0b8
crossref_primary_10_1016_j_measen_2023_100785
crossref_citationtrail_10_1016_j_measen_2023_100785
elsevier_sciencedirect_doi_10_1016_j_measen_2023_100785
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Measurement. Sensors
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Xu, Xu, Zhang, Sun, Liu (bib1) 2020; 8
Avdiienko, Kuznetsov, Gorla, Zeller, Arzt, Rasthofer, Bodden (bib27) 2015; vol. 1
Wang, Zhao, Wang (bib19) 2019; 10
Pan, Ge, Fang, Fan (bib3) 2020; 8
Feng, Chen, Xie, Meng, Lin, Liu (bib20) 2020; 16
Sahs, Khan (bib5) 2012
Arzt, Rasthofer, Fritz, Bodden, Bartel, Klein, Le Traon, Octeau, McDaniel (bib23) 2014; 49
Fereidooni, Conti, Yao, Sperduti (bib9) 2016
Yerima, Sezer, McWilliams, Muttik (bib7) 2013
Hasegawa, Iyatomi (bib21) 2018
Kim, Kang, Rho, Sezer, Im (bib16) 2018; 14
Khishe, Mosavi (bib24) 2020; 149
Ren, Wu, Ning, Hussain, Chen (bib18) 2020; 101
bib29
Hasegawa, Iyatomi (bib31) 2018, March
Zhao, Zheng, Gong, Zhang, Wang (bib14) 2018, August
Xu, Li, Deng (bib17) 2021
Li, Ge, Dai (bib10) 2015
(bib28) 2020
Chan, Song (bib4) 2014; vol. 1
Zhou, Jiang (bib8) 2012
Graves, Fernández, Schmidhuber (bib26) 2005
Khishe, Nezhadshahbodaghi, Mosavi, Martín (bib25) 2021; 9
Wang, Zhao, Wang (bib15) 2019; 10
Yuan, Lu, Wang, Xue (bib11) 2014
Li, Sun, Yan, Li, Srisa-An, Ye (bib12) 2018; 14
Qiu, Zhang, Luo, Pan, Nepal, Xiang (bib2) 2020; 53
Li, Mills, Niu, Zhu, Zhang, Kinawi (bib13) 2019; 7
Zhu, Wang, Zhong, Li, Sheng (bib30) 2021; 34
Zhu, Wang, Zhong, Li, Sheng (bib22) 2021; 34
Ham, Choi (bib6) 2013
Graves (10.1016/j.measen.2023.100785_bib26) 2005
Xu (10.1016/j.measen.2023.100785_bib17) 2021
Yuan (10.1016/j.measen.2023.100785_bib11) 2014
Chan (10.1016/j.measen.2023.100785_bib4) 2014; vol. 1
Li (10.1016/j.measen.2023.100785_bib13) 2019; 7
Khishe (10.1016/j.measen.2023.100785_bib24) 2020; 149
Kim (10.1016/j.measen.2023.100785_bib16) 2018; 14
Feng (10.1016/j.measen.2023.100785_bib20) 2020; 16
Wang (10.1016/j.measen.2023.100785_bib15) 2019; 10
Fereidooni (10.1016/j.measen.2023.100785_bib9) 2016
Pan (10.1016/j.measen.2023.100785_bib3) 2020; 8
Arzt (10.1016/j.measen.2023.100785_bib23) 2014; 49
Zhu (10.1016/j.measen.2023.100785_bib30) 2021; 34
Ren (10.1016/j.measen.2023.100785_bib18) 2020; 101
Hasegawa (10.1016/j.measen.2023.100785_bib21) 2018
Zhu (10.1016/j.measen.2023.100785_bib22) 2021; 34
Zhou (10.1016/j.measen.2023.100785_bib8) 2012
Hasegawa (10.1016/j.measen.2023.100785_bib31) 2018
Wang (10.1016/j.measen.2023.100785_bib19) 2019; 10
Li (10.1016/j.measen.2023.100785_bib12) 2018; 14
Sahs (10.1016/j.measen.2023.100785_bib5) 2012
Zhao (10.1016/j.measen.2023.100785_bib14) 2018
Li (10.1016/j.measen.2023.100785_bib10) 2015
Yerima (10.1016/j.measen.2023.100785_bib7) 2013
Avdiienko (10.1016/j.measen.2023.100785_bib27) 2015; vol. 1
Ham (10.1016/j.measen.2023.100785_bib6) 2013
Liu (10.1016/j.measen.2023.100785_bib1) 2020; 8
Qiu (10.1016/j.measen.2023.100785_bib2) 2020; 53
Khishe (10.1016/j.measen.2023.100785_bib25) 2021; 9
References_xml – start-page: 490
  year: 2013
  end-page: 495
  ident: bib6
  article-title: Analysis of android malware detection performance using machine learning classifiers
  publication-title: 2013 International Conference on ICT Convergence (ICTC)
– volume: 8
  start-page: 124579
  year: 2020
  end-page: 124607
  ident: bib1
  article-title: A review of android malware detection approaches based on machine learning
  publication-title: IEEE Access
– volume: 7
  start-page: 184008
  year: 2019
  end-page: 184019
  ident: bib13
  article-title: Android malware detection based on factorization machine
  publication-title: IEEE Access
– volume: 9
  start-page: 158508
  year: 2021
  end-page: 158539
  ident: bib25
  article-title: A weighted chimp optimization algorithm
  publication-title: IEEE Access
– volume: 34
  start-page: 5558
  year: 2021
  end-page: 5570
  ident: bib30
  article-title: A hybrid deep network framework for android malware detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 14
  start-page: 3216
  year: 2018
  end-page: 3225
  ident: bib12
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Trans. Ind. Inf.
– volume: 10
  start-page: 3035
  year: 2019
  end-page: 3043
  ident: bib15
  article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 34
  start-page: 5558
  year: 2021
  end-page: 5570
  ident: bib22
  article-title: A hybrid deep network framework for Android malware detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: vol. 1
  start-page: 82
  year: 2014
  end-page: 87
  ident: bib4
  article-title: Static detection of Android malware by using permissions and API calls
  publication-title: 2014 International Conference on Machine Learning and Cybernetics
– start-page: 464
  year: 2015
  end-page: 469
  ident: bib10
  article-title: Detecting malware for android platform: an svm-based approach
  publication-title: 2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing
– start-page: 99
  year: 2018
  end-page: 102
  ident: bib21
  article-title: One-dimensional convolutional neural networks for Android malware detection
  publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA)
– volume: vol. 1
  start-page: 426
  year: 2015
  end-page: 436
  ident: bib27
  article-title: Mining apps for abnormal usage of sensitive data
  publication-title: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering
– start-page: 143
  year: 2018, August
  end-page: 148
  ident: bib14
  article-title: Quick and accurate android malware detection based on sensitive APIs
  publication-title: 2018 IEEE International Conference on Smart Internet of Things (SmartIoT)
– start-page: 141
  year: 2012
  end-page: 147
  ident: bib5
  article-title: A machine learning approach to android malware detection
  publication-title: 2012 European Intelligence and Security Informatics Conference
– volume: 10
  start-page: 3035
  year: 2019
  end-page: 3043
  ident: bib19
  article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
  publication-title: J. Ambient Intell. Hum. Comput.
– volume: 14
  start-page: 773
  year: 2018
  end-page: 788
  ident: bib16
  article-title: A multimodal deep learning method for android malware detection using various features
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 371
  year: 2014
  end-page: 372
  ident: bib11
  article-title: Droid-sec: deep learning in android malware detection
  publication-title: Proceedings of the 2014 ACM Conference on SIGCOMM
– volume: 101
  year: 2020
  ident: bib18
  article-title: End-to-end malware detection for android IoT devices using deep learning
  publication-title: Ad Hoc Netw.
– year: 2020
  ident: bib28
– volume: 49
  start-page: 259
  year: 2014
  end-page: 269
  ident: bib23
  article-title: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps
  publication-title: ACM Sigplan Not.
– start-page: 799
  year: 2005
  end-page: 804
  ident: bib26
  article-title: Bidirectional LSTM networks for improved phoneme classification and recognition
  publication-title: International Conference on Artificial Neural Networks
– volume: 16
  start-page: 1563
  year: 2020
  end-page: 1578
  ident: bib20
  article-title: A performance-sensitive malware detection system using deep learning on mobile devices
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 95
  year: 2012
  end-page: 109
  ident: bib8
  article-title: Dissecting android malware: characterization and evolution
  publication-title: 2012 IEEE Symposium on Security and Privacy
– ident: bib29
– start-page: 99
  year: 2018, March
  end-page: 102
  ident: bib31
  article-title: One-dimensional convolutional neural networks for Android malware detection
  publication-title: 2018 IEEE 14th International Colloquium on Signal Processing & its Applications (CSPA)
– start-page: 121
  year: 2013
  end-page: 128
  ident: bib7
  article-title: A new android malware detection approach using bayesian classification
  publication-title: 2013 IEEE 27th International Conference on Advanced Information Networking and Applications (AINA)
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib9
  article-title: ANASTASIA: ANdroid mAlware detection using STatic analySIs of Applications
  publication-title: 2016 8th IFIP International Conference on New Technologies, Mobility and Security
– volume: 8
  start-page: 116363
  year: 2020
  end-page: 116379
  ident: bib3
  article-title: A systematic literature review of android malware detection using static analysis
  publication-title: IEEE Access
– year: 2021
  ident: bib17
  article-title: Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection
– volume: 53
  start-page: 1
  year: 2020
  end-page: 36
  ident: bib2
  article-title: A survey of android malware detection with deep neural models
  publication-title: ACM Comput. Surv.
– volume: 149
  start-page: 1
  year: 2020
  end-page: 26
  ident: bib24
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
– start-page: 141
  year: 2012
  ident: 10.1016/j.measen.2023.100785_bib5
  article-title: A machine learning approach to android malware detection
– volume: 8
  start-page: 116363
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib3
  article-title: A systematic literature review of android malware detection using static analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002842
– volume: 14
  start-page: 773
  issue: 3
  year: 2018
  ident: 10.1016/j.measen.2023.100785_bib16
  article-title: A multimodal deep learning method for android malware detection using various features
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2018.2866319
– volume: vol. 1
  start-page: 426
  year: 2015
  ident: 10.1016/j.measen.2023.100785_bib27
  article-title: Mining apps for abnormal usage of sensitive data
– volume: 14
  start-page: 3216
  issue: 7
  year: 2018
  ident: 10.1016/j.measen.2023.100785_bib12
  article-title: Significant permission identification for machine-learning-based android malware detection
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2789219
– start-page: 121
  year: 2013
  ident: 10.1016/j.measen.2023.100785_bib7
  article-title: A new android malware detection approach using bayesian classification
– start-page: 99
  year: 2018
  ident: 10.1016/j.measen.2023.100785_bib21
  article-title: One-dimensional convolutional neural networks for Android malware detection
– volume: 49
  start-page: 259
  issue: 6
  year: 2014
  ident: 10.1016/j.measen.2023.100785_bib23
  article-title: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps
  publication-title: ACM Sigplan Not.
  doi: 10.1145/2666356.2594299
– volume: 10
  start-page: 3035
  issue: 8
  year: 2019
  ident: 10.1016/j.measen.2023.100785_bib15
  article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-018-0803-6
– volume: 7
  start-page: 184008
  year: 2019
  ident: 10.1016/j.measen.2023.100785_bib13
  article-title: Android malware detection based on factorization machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958927
– volume: 16
  start-page: 1563
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib20
  article-title: A performance-sensitive malware detection system using deep learning on mobile devices
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2020.3025436
– year: 2021
  ident: 10.1016/j.measen.2023.100785_bib17
– volume: 8
  start-page: 124579
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib1
  article-title: A review of android malware detection approaches based on machine learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006143
– volume: 53
  start-page: 1
  issue: 6
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib2
  article-title: A survey of android malware detection with deep neural models
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3417978
– start-page: 464
  year: 2015
  ident: 10.1016/j.measen.2023.100785_bib10
  article-title: Detecting malware for android platform: an svm-based approach
– start-page: 799
  year: 2005
  ident: 10.1016/j.measen.2023.100785_bib26
  article-title: Bidirectional LSTM networks for improved phoneme classification and recognition
– volume: 101
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib18
  article-title: End-to-end malware detection for android IoT devices using deep learning
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2020.102098
– start-page: 1
  year: 2016
  ident: 10.1016/j.measen.2023.100785_bib9
  article-title: ANASTASIA: ANdroid mAlware detection using STatic analySIs of Applications
– start-page: 371
  year: 2014
  ident: 10.1016/j.measen.2023.100785_bib11
  article-title: Droid-sec: deep learning in android malware detection
– start-page: 490
  year: 2013
  ident: 10.1016/j.measen.2023.100785_bib6
  article-title: Analysis of android malware detection performance using machine learning classifiers
– volume: 149
  start-page: 1
  year: 2020
  ident: 10.1016/j.measen.2023.100785_bib24
  article-title: Chimp optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113338
– start-page: 95
  year: 2012
  ident: 10.1016/j.measen.2023.100785_bib8
  article-title: Dissecting android malware: characterization and evolution
– volume: 10
  start-page: 3035
  issue: 8
  year: 2019
  ident: 10.1016/j.measen.2023.100785_bib19
  article-title: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network
  publication-title: J. Ambient Intell. Hum. Comput.
  doi: 10.1007/s12652-018-0803-6
– volume: 9
  start-page: 158508
  year: 2021
  ident: 10.1016/j.measen.2023.100785_bib25
  article-title: A weighted chimp optimization algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3130933
– volume: 34
  start-page: 5558
  issue: 12
  year: 2021
  ident: 10.1016/j.measen.2023.100785_bib30
  article-title: A hybrid deep network framework for android malware detection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3067658
– volume: vol. 1
  start-page: 82
  year: 2014
  ident: 10.1016/j.measen.2023.100785_bib4
  article-title: Static detection of Android malware by using permissions and API calls
– start-page: 99
  year: 2018
  ident: 10.1016/j.measen.2023.100785_bib31
  article-title: One-dimensional convolutional neural networks for Android malware detection
– volume: 34
  start-page: 5558
  issue: 12
  year: 2021
  ident: 10.1016/j.measen.2023.100785_bib22
  article-title: A hybrid deep network framework for Android malware detection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3067658
– start-page: 143
  year: 2018
  ident: 10.1016/j.measen.2023.100785_bib14
  article-title: Quick and accurate android malware detection based on sensitive APIs
SSID ssj0002810124
Score 2.2983987
Snippet Internet of Things (IoT) is extensively implemented using Android applications thus detecting malicious Android apps is necessary. Malicious has been...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100785
SubjectTerms Android malware
Deep neural network framework (DNNF)
Feature selection
Improved chimp optimization algorithm (ICOA)
Long short-term memory (LSTM) and android malware detection
Title Improved chimp optimization algorithm (ICOA) feature selection and deep neural network framework for internet of things (IOT) based android malware detection
URI https://dx.doi.org/10.1016/j.measen.2023.100785
https://doaj.org/article/b2ed3d6980c44b8184d767d81dc5f0b8
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (ODIN)
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29T90wELcq1KEMVb9QX7_koUMZoubFThyPFIGK1AIDSGyR7btA0Evy9Ehh63_S_7VnO0GZYGGxosg5R75L7mz_7neMfcXcqAylTpQwWSI1NVpLl5SFViY3OcplSBT-pY6Py4sLfTor9eUxYZEeOE7cd5shCCh0mTopLbkXCapQQGGWy-vUhjTfVOnZYuo6bBl53ip_pEwOyBcjVHLKmwvgrtaffXj600wEnIAvpTzzS4G-f-aeZi7n8BV7OcaKfC--42v2DLs3bHvGIPiW_YubAgjcXTXtmvf0B2jH1EpuVpc9rf2vWv7taP9kb5fXGGg8-U0ofhO6dMABcc09ryWN1UVUOK8nzBanoJY3YdsQB97XfAiFPkniydku9z4QvJBN3wBvzerOkHjAIYp_x84PD872fyZjxYXECSHyBEWJpbUUUxiaMQrNjKrpKre2VgW5epAIrtCYOu1ysCnQ119DmdslmMxkhdhhW13f4XvGU7d0WGgBmUZJ6yZdu8wJNKnDpbGFWjAxzXflRjpyXxVjVU24s-sqaqnyWqqilhYsuX9qHek4Hun_w6vyvq8n0w43yMSq0cSqx0xswdRkCNUYl8R4g0Q1Dw7_4SmG_8heeJERdfiJbQ2bP_iZPXe3Q3Oz-RLsntrffw_-A27cCfc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+chimp+optimization+algorithm+%28ICOA%29+feature+selection+and+deep+neural+network+framework+for+internet+of+things+%28IOT%29+based+android+malware+detection&rft.jtitle=Measurement.+Sensors&rft.au=G%2C+Tirumala+Vasu&rft.au=Fiza%2C+Samreen&rft.au=Kumar%2C+ATA.+Kishore&rft.au=Devi%2C+V.+Sowmya&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=28&rft_id=info:doi/10.1016%2Fj.measen.2023.100785&rft.externalDocID=S2665917423001216
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon