Multi‐model fusion and error parameter estimation
A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sa...
Saved in:
| Published in: | Quarterly Journal of the Royal Meteorological Society Vol. 131; no. 613; pp. 3397 - 3408 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article Conference Proceeding |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
01.10.2005
Wiley |
| Subjects: | |
| ISSN: | 0035-9009, 1477-870X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum‐likelihood error parameter estimation to multi‐model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low‐rank approximation (e.g. flow‐dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum‐likelihood error parameter estimation methodology to multi‐model forecasting systems using the expectation‐maximization technique, with the true state‐space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum‐likelihood error parameter estimation. The proposed multi‐model fusion methodology neglects cross‐model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two‐model forecasting example (HOPS, ROMS) within the framework of the real‐time forecasting experiment held in Monterey Bay during 2003. Copyright © 2005 Royal Meteorological Society |
|---|---|
| AbstractList | A robust and practical methodology for multi-model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum-likelihood error parameter estimation to multi-model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low-rank approximation (e.g. flow-dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum-likelihood error parameter estimation methodology to multi-model forecasting systems using the expectation-maximization technique, with the true state-space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum-likelihood error parameter estimation. The proposed multi-model fusion methodology neglects cross-model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two-model forecasting example (HOPS, ROMS) within the framework of the real-time forecasting experiment held in Monterey Bay during 2003. A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in response to modelled processes. This makes it imperative that a forecast combination methodology be adaptive and capable to operate with a small sample of past validating events. To this end, we consider an extension of maximum‐likelihood error parameter estimation to multi‐model predictive systems, and utilize the resulting methodology for adaptive Bayesian model fusion. The methodology consists of the following three general steps: (a) parametrization of forecast uncertainties through either a suitable parametric family (e.g. covariance models) or through a low‐rank approximation (e.g. flow‐dependent error subspaces); (b) update of uncertainty parameters via maximum likelihood; and (c) combining model forecasts based on their uncertainty parameters via maximum likelihood. In order to implement step (b), we have extended the maximum‐likelihood error parameter estimation methodology to multi‐model forecasting systems using the expectation‐maximization technique, with the true state‐space vector at observation locations treated as missing data. With only one forecasting model, the procedure reduces to the standard maximum‐likelihood error parameter estimation. The proposed multi‐model fusion methodology neglects cross‐model error correlations in order to gain the capability to work with a small sample of past events. We illustrate the methodology with a two‐model forecasting example (HOPS, ROMS) within the framework of the real‐time forecasting experiment held in Monterey Bay during 2003. Copyright © 2005 Royal Meteorological Society |
| Author | Robinson, A. R. Logutov, O. G. |
| Author_xml | – sequence: 1 givenname: O. G. surname: Logutov fullname: Logutov, O. G. email: oleg@pacific.harvard.edu – sequence: 2 givenname: A. R. surname: Robinson fullname: Robinson, A. R. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18054522$$DView record in Pascal Francis |
| BookMark | eNp1kM1KAzEUhYNUsK2CjzAbxc2MyeR_KcVfFBEU3IVMJoGUdKZNZpDufASf0SdxaguC6OJyF_c75957JmDUtI0F4BjBApWUna_mBaSFlHtgjAjnueDwdQTGEGKaSwjlAZikNIcQUl7yMcAPfej85_vHoq1tyFyffNtkuqkzG2Mbs6WOemE7GzObOr_Q3TA-BPtOh2SPdn0KXq4un2c3-f3j9e3s4j43GGOSy1pUsrbIMicYgxWD3BhJHDG8khI6xLQWFbYS2dppqqUhlpZO1JjXmguMp-B067uM7aof9quFT8aGoBvb9kkhSUTJRDmAJztQJ6ODi7oxPqllHA6Oa4UEpISWG-5sy5nYphSt-0Gg2qSnVnMFqZJyQItfqPHd9_dd1D78JSBbwZsPdv2vsXq6K4fsEUZsKIK_AEhshF8 |
| CODEN | QJRMAM |
| CitedBy_id | crossref_primary_10_3402_tellusa_v66_21640 crossref_primary_10_5194_os_6_595_2010 crossref_primary_10_1016_j_jmarsys_2007_02_001 crossref_primary_10_1016_j_jmarsys_2009_01_029 crossref_primary_10_1016_j_ocemod_2008_06_004 crossref_primary_10_1007_s10236_011_0504_6 crossref_primary_10_1080_1755876X_2018_1438341 crossref_primary_10_1029_2010GL044591 crossref_primary_10_1007_s10236_015_0897_8 crossref_primary_10_1016_j_jmarsys_2009_01_014 crossref_primary_10_1016_j_jmarsys_2009_01_036 crossref_primary_10_1016_j_jmarsys_2009_01_013 crossref_primary_10_1016_j_ocemod_2021_101912 crossref_primary_10_1016_j_ocemod_2014_11_001 crossref_primary_10_1016_j_physd_2021_133003 crossref_primary_10_1029_2022MS003123 |
| Cites_doi | 10.1109/OCEANS.2002.1192070 10.1142/5588 10.1214/ss/1009212519 10.1137/1026034 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2 10.1002/qj.49712656705 10.1002/qj.49712555417 10.1126/science.285.5433.1548 10.1029/CE056p0077 10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2 10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2 10.1016/j.ocemod.2004.08.002 10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2 10.1111/j.2517-6161.1977.tb01600.x 10.1007/s00703-001-0583-x 10.1016/S0377-0265(99)00008-1 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Copyright © 2005 Royal Meteorological Society 2006 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2005 Royal Meteorological Society – notice: 2006 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TG F1W H96 KL. L.G |
| DOI | 10.1256/qj.05.99 |
| DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1477-870X |
| EndPage | 3408 |
| ExternalDocumentID | 18054522 10_1256_qj_05_99 QJ200513161314 |
| Genre | article |
| GeographicLocations | United States California Monterey Bay INE, USA, California, Monterey Bay |
| GeographicLocations_xml | – name: INE, USA, California, Monterey Bay |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABJNI ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ NNB O66 O9- OHT OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ UB1 VOH W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XOL XV2 ZY4 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ABUFD ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X ABHUG ACXME ADAWD ADDAD AFVGU AGJLS IQODW 7TG F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-c3334-9d8b9de1e6f8660b607cc94f4c7b990f16aa8b3e91edfa5a9c4e52f8d37da7833 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000239896000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0035-9009 |
| IngestDate | Fri Jul 11 13:08:59 EDT 2025 Sun Oct 22 16:09:44 EDT 2023 Sat Nov 29 02:22:38 EST 2025 Tue Nov 18 22:04:24 EST 2025 Wed Jan 22 17:04:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 613 |
| Keywords | ocean currents Multimodel Parameter estimation Uncertainty Error estimation Adaptive system Regional scope Forecast model Parameterization North America Real time system Ocean model Ocean and atmospheric forecasting Adaptive methods maximum likelihood Data assimilation |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MeetingName | 4th WMO International Symposium on Assimilation of Observations in Meteorology and Oceanography, Prague, 18-22 April 2005 |
| MergedId | FETCHMERGED-LOGICAL-c3334-9d8b9de1e6f8660b607cc94f4c7b990f16aa8b3e91edfa5a9c4e52f8d37da7833 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 19482682 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_19482682 pascalfrancis_primary_18054522 crossref_primary_10_1256_qj_05_99 crossref_citationtrail_10_1256_qj_05_99 wiley_primary_10_1256_qj_05_99_QJ200513161314 |
| PublicationCentury | 2000 |
| PublicationDate | October 2005 Part C |
| PublicationDateYYYYMMDD | 2005-10-01 |
| PublicationDate_xml | – month: 10 year: 2005 text: October 2005 Part C |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | Quarterly Journal of the Royal Meteorological Society |
| PublicationYear | 2005 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | 2002; 15 1999b; 29 2001 1984; 26 1977; 39 2000; 126 2005; 9 1999; 14 1999; 285 1999a; 29 1999; 125 2004 1995; 123 2002 2003; 82 1999; 127 1999 Julier S. J. (e_1_2_1_8_1) 2001 Tolstoy A. (e_1_2_1_18_1) 2004 (e_1_2_1_12_1) 1999; 29 Robinson A. R. (e_1_2_1_17_1) 2002 e_1_2_1_7_1 e_1_2_1_20_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 Dempster A. P. (e_1_2_1_4_1) 1977; 39 e_1_2_1_13_1 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_19_1 |
| References_xml | – volume: 15 start-page: 793 year: 2002 end-page: 799 article-title: Climate predictions with multimodel ensembles publication-title: J. Climate – volume: 29 start-page: 255 year: 1999a end-page: 303 article-title: Estimation and study of mesoscale variability in the Strait of Sicily publication-title: Dynam. Atmos. Oceans – volume: 126 start-page: 2069 year: 2000 end-page: 2088 article-title: Model and multi‐model spread and probabilistic seasonal forecasts in PROVOST publication-title: Q. J. R. Meteorol. Soc. – volume: 82 start-page: 209 year: 2003 end-page: 226 article-title: A Bayesian technique for estimating continuously varying statistical parameters of a variational assimilation publication-title: Meteorol. Atmos. Phys. – volume: 14 start-page: 382 issue: 4 year: 1999 end-page: 417 article-title: Bayesian model averaging: a tutorial publication-title: Statist. Sci. – start-page: 475 year: 2002 end-page: 536 – year: 2001 – volume: 39 start-page: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Statist. Soc. B – start-page: 77 year: 1999 end-page: 100 – volume: 123 start-page: 1128 year: 1995 end-page: 1145 article-title: Online estimation of error covariance parameters for atmospheric data assimilation publication-title: Mon. Weather Rev. – volume: 26 start-page: 195 issue: 2 year: 1984 end-page: 239 article-title: Mixture densities, maximum likelihood and the EM algorithm publication-title: SIAM Review – volume: 285 start-page: 1548 year: 1999 end-page: 1550 article-title: Improved weather and seasonal climate forecasts from multi‐model superensemble publication-title: Science – volume: 127 start-page: 1822 year: 1999 end-page: 1834 article-title: Maximum‐likelihood estimation of forecast and observation error covariance parameters. I: Methodology publication-title: Mon. Weather Rev. – volume: 9 start-page: 347 year: 2005 end-page: 404 article-title: The Regional Oceanic Modeling System: A split‐explicit, free‐surface, topography‐following‐coordinate ocean model publication-title: Ocean Modelling – volume: 125 start-page: 723 year: 1999 end-page: 757 article-title: Construction of correlation functions in two and three dimensions publication-title: Q. J. R. Meteorol. Soc. – volume: 29 start-page: 385 year: 1999b end-page: 422 article-title: Evolving the subspace of the three‐dimensional multiscale ocean variability: Massachusetts Bay publication-title: J. Marine Sys. – volume: 127 start-page: 1385 year: 1999 end-page: 1407 article-title: Data assimilation via error subspace statistical estimation. Part I: Theory and schemes publication-title: Mon. Weather Rev. – start-page: 325 year: 2004 end-page: 342 – start-page: 787 year: 2002 end-page: 794 – ident: e_1_2_1_19_1 doi: 10.1109/OCEANS.2002.1192070 – start-page: 325 volume-title: Theoretical and computational acoustics 2003 year: 2004 ident: e_1_2_1_18_1 doi: 10.1142/5588 – ident: e_1_2_1_7_1 doi: 10.1214/ss/1009212519 – ident: e_1_2_1_15_1 doi: 10.1137/1026034 – ident: e_1_2_1_2_1 doi: 10.1175/1520-0493(1995)123<1128:OLEOEC>2.0.CO;2 – ident: e_1_2_1_5_1 doi: 10.1002/qj.49712656705 – ident: e_1_2_1_6_1 doi: 10.1002/qj.49712555417 – ident: e_1_2_1_10_1 doi: 10.1126/science.285.5433.1548 – ident: e_1_2_1_16_1 doi: 10.1029/CE056p0077 – ident: e_1_2_1_3_1 doi: 10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2 – ident: e_1_2_1_9_1 doi: 10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2 – ident: e_1_2_1_20_1 doi: 10.1016/j.ocemod.2004.08.002 – ident: e_1_2_1_13_1 doi: 10.1175/1520-0493(1999)127<1385:DAVESS>2.0.CO;2 – volume: 39 start-page: 1 year: 1977 ident: e_1_2_1_4_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Statist. Soc. B doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_1_14_1 doi: 10.1007/s00703-001-0583-x – volume-title: Handbook of multisensor data fusion year: 2001 ident: e_1_2_1_8_1 – ident: e_1_2_1_11_1 doi: 10.1016/S0377-0265(99)00008-1 – volume: 29 start-page: 385 year: 1999 ident: e_1_2_1_12_1 article-title: Evolving the subspace of the three‐dimensional multiscale ocean variability: Massachusetts Bay publication-title: J. Marine Sys. – start-page: 475 volume-title: The Sea: Biological‐physical interactions in the sea year: 2002 ident: e_1_2_1_17_1 |
| SSID | ssj0005727 |
| Score | 1.8712049 |
| Snippet | A robust and practical methodology for multi‐model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in... A robust and practical methodology for multi-model ocean forecast fusion has been sought. Present regional ocean forecasting systems adapt and evolve in... |
| SourceID | proquest pascalfrancis crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3397 |
| SubjectTerms | Adaptive methods Data assimilation Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Ocean and atmospheric forecasting Other topics Physics of the oceans |
| Title | Multi‐model fusion and error parameter estimation |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1256%2Fqj.05.99 https://www.proquest.com/docview/19482682 |
| Volume | 131 |
| WOSCitedRecordID | wos000239896000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1477-870X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005727 issn: 0035-9009 databaseCode: DRFUL dateStart: 20020101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R3R4qoUJLEdtScKWqPUXYsZN4jgi6QoiitupW3CLHHxKrJQtZtuf-BH4jv6S2k4WuBAfUY6SxHM3YmeeJ5z2AjwYNculsoqhziUAqkkqHjmUlGa10lmaRSunXSXF6Ks_O8Ft3qzL0wrT8EHcFt7Az4vc6bHBVtSokadSKvxoHyk3EZ9BP_bLNetA__DEcndxf8Cg6wVaeJeihREc960fvLcYuJaPVSzXzfnGtoMUS4vwXt8bEM1z7n1deh5cd3CT77fp4BSu2fg2Drx4pT5tYUCefyMHk3MPW-LQBPHbk3v65iRI5xM1DNY2o2hDbNNOGBKrwi3CFhgR6jrbv8Q2Mhl9-HhwlnbBCojnnIkEjKzSW2dzJPKdVTgutUTihi8pnJ8dypWTFLTJrnMoUamGz1EnDC6MKyfkm9OppbbeAoHL-0OF8lku1YClVispCowkwgmdoBvB54eFSd6zjQfxiUobTh3dLeTUuaVYiDuDDneVly7TxgM3OUpDuDSUNYunpAHYXUSv9Pgk_P1Rtp_NZyVD4k5T0FkkM0aNzlN-PQ6WNcY-FORNvn2j_Dl4s2F0p24bedTO37-G5_n19Pmt2ujX6FyS-6dI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2VFgkkVL7FUmiNhOAU1Y6dxKOeqsKqwHYFqEW9WY4_pFYl22a7nPkJ_EZ-CbaTtKwEB8Qx0liO7JnM88TzHsBLixa59C7T1PtMIBVZbWLHspaM1qbIi0Sl9GVSTafy-Bg_rsDO0AvT8UNcFdxiZKTvdQzwWJDuCBGSWPzFaeTcRLwBayJ4UXDvtTefx0eT6xseVa_YyosMA5bouWfD6O1h7FI2unOu52FhfKdosQQ5fweuKfOM7_7XO9-D9R5wkt3OQ-7DimsewOggYOVZm0rq5BXZOzsJwDU9PQSeenJ_fv-RRHKIX8R6GtGNJa5tZy2JZOFf4yUaEgk6us7HR3A0fnu4t5_10gqZ4ZyLDK2s0TrmSi_LktYlrYxB4YWp6pCfPCu1ljV3yJz1utBohCtyLy2vrK4k549htZk17gkQ1D4cO3zIc7kRLKdaU1kZtBFI8ALtCF4PS6xMzzse5S_OVDx_hGVRF6eKFgpxBC-uLM87ro0_2Gwu7dK1oaRRLj0fwdawbSpESvz9oRs3W8wVQxHOUjJYZGmP_jqH-vQ-1toYD2iYM_H0H-234Nb-4cFETd5NP2zA7YHrlbJnsHrZLtxzuGm-XZ7M283eYX8BJb3twg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB2VLUJIiDvqcmmNhOApwo6dxCOeUMuKy7IqiKK-WY4vUqs2u812eeYT-Ea-BNtJWlaCB8RjpLEc2Z7MmYnnHIBnFi1y6V2mqfeZQCqy2sSOZS0ZrU2RF4lK6eu0ms3k4SHub8CroRem44e4KLhFz0jf6-jgbmF9R4iQxOLPjiPnJuIV2BRRQ2YEm3ufJwfTyxseVa_YyosMA5bouWfD6JfD2LVodGOhl2FhfKdosQY5fweuKfJMbv3XO9-Gmz3gJK-7E3IHNlxzF8YfA1aet6mkTp6T3ZOjAFzT0z3gqSf35_cfSSSH-FWspxHdWOLadt6SSBZ-Gi_RkEjQ0XU-3oeDyZsvu2-zXlohM5xzkaGVNVrHXOllWdK6pJUxKLwwVR3ik2el1rLmDpmzXhcajXBF7qXlldWV5PwBjJp547aAoPYh7fAhzuVGsJxqTWVl0EYgwQu0Y3gxLLEyPe94lL84UTH_CMuizo4VLRTiGJ5eWC46ro0_2Gyv7dKloaRRLj0fw86wbSp4Svz9oRs3Xy0VQxFyKRkssrRHf51DfXofa22MBzTMmXj4j_Y7cG1_b6Km72YfHsH1geqVsscwOm9X7glcNd_Oj5btdn9efwHMme09 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Quarterly+Journal+of+the+Royal+Meteorological+Society&rft.atitle=Multi-model+fusion+and+error+parameter+estimation&rft.au=LOGUTOV%2C+O.+G&rft.au=ROBINSON%2C+A.+R&rft.date=2005-10-01&rft.pub=Wiley&rft.issn=0035-9009&rft.eissn=1477-870X&rft.volume=131&rft.issue=613&rft.spage=3397&rft.epage=3408&rft_id=info:doi/10.1256%2Fqj.05.99&rft.externalDBID=n%2Fa&rft.externalDocID=18054522 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-9009&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-9009&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-9009&client=summon |