High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys
The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a cri...
Uložené v:
| Vydané v: | Materials Genome Engineering Advances Ročník 3; číslo 3 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Beijing
John Wiley & Sons, Inc
01.09.2025
Wiley-VCH |
| Predmet: | |
| ISSN: | 2940-9489, 2940-9497 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!