High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys

The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a cri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Materials Genome Engineering Advances Ročník 3; číslo 3
Hlavní autoři: Jin, Chengchen, Xiong, Kai, Luo, Congtao, Fang, Hui, Pu, Chaoguang, Dai, Hua, Zhang, Aimin, Zhang, Shunmeng, Wang, Yingwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Beijing John Wiley & Sons, Inc 01.09.2025
Wiley-VCH
Témata:
ISSN:2940-9489, 2940-9497
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High‐throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data‐driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti‐V‐Nb‐Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost‐effective, efficient, and precise alloy design strategy, advancing RMPEAs development. This study effectively integrated high‐throughput calculations and machine learning to accurately predict the elastic properties of Ti‐V‐Nb‐Ta refractory multi‐principal element alloys (RMPEAs), facilitating a more efficient approach to alloy design.
AbstractList The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High‐throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data‐driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti‐V‐Nb‐Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost‐effective, efficient, and precise alloy design strategy, advancing RMPEAs development.
Abstract The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High‐throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data‐driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti‐V‐Nb‐Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost‐effective, efficient, and precise alloy design strategy, advancing RMPEAs development.
The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space and high experimental costs. To surmount this challenge, the data‐driven material design based on machine learning (ML) has emerged as a critical tool for accelerating materials design. However, the absence of robust datasets impedes the exploitation of machine learning in designing novel RMPEAs. High‐throughput (HTP) calculations have enabled the creation of such datasets. This study addresses these challenges by developing a data‐driven framework for predicting the elastic properties of RMPEAs, integrating HTP calculations with ML. A big dataset of RMPEAs including 4536 compositions was constructed using the new proposed HTP method. A novel stacking ensemble regression algorithm combining multilayer perceptron (MLP) and gradient boosting decision tree (GBDT) was developed, which achieved 92.9% accuracy in predicting the elastic properties of Ti‐V‐Nb‐Ta alloys. Verification experiments confirmed the ML model's accuracy and robustness. This integration of HTP calculations and ML provides a cost‐effective, efficient, and precise alloy design strategy, advancing RMPEAs development. This study effectively integrated high‐throughput calculations and machine learning to accurately predict the elastic properties of Ti‐V‐Nb‐Ta refractory multi‐principal element alloys (RMPEAs), facilitating a more efficient approach to alloy design.
Author Fang, Hui
Dai, Hua
Zhang, Shunmeng
Jin, Chengchen
Xiong, Kai
Zhang, Aimin
Pu, Chaoguang
Wang, Yingwu
Luo, Congtao
Author_xml – sequence: 1
  givenname: Chengchen
  surname: Jin
  fullname: Jin, Chengchen
  organization: Yunnan University
– sequence: 2
  givenname: Kai
  orcidid: 0000-0001-9623-1863
  surname: Xiong
  fullname: Xiong, Kai
  email: xiongkai@ynu.edu.cn
  organization: Yunnan University
– sequence: 3
  givenname: Congtao
  surname: Luo
  fullname: Luo, Congtao
  organization: Yunnan University
– sequence: 4
  givenname: Hui
  surname: Fang
  fullname: Fang, Hui
  organization: North Night Vision Science and Technology Research Institute Group Co. Ltd
– sequence: 5
  givenname: Chaoguang
  surname: Pu
  fullname: Pu, Chaoguang
  organization: North Night Vision Science and Technology Research Institute Group Co. Ltd
– sequence: 6
  givenname: Hua
  surname: Dai
  fullname: Dai, Hua
  organization: Yunnan Precious Metals Laboratory Co. Ltd
– sequence: 7
  givenname: Aimin
  surname: Zhang
  fullname: Zhang, Aimin
  email: aimin.zhang@ipm.com.cn
  organization: Yunnan Precious Metals Laboratory Co. Ltd
– sequence: 8
  givenname: Shunmeng
  surname: Zhang
  fullname: Zhang, Shunmeng
  organization: Yunnan University
– sequence: 9
  givenname: Yingwu
  surname: Wang
  fullname: Wang, Yingwu
  email: 370076779@ynu.edu.cn
  organization: Yunnan University
BookMark eNp9kcFu1DAQhiNUJErphSewxA1pix07yeZYVaWtVMQFztbEGSdeHDvYjqq99RF4BV6tT1LvBjggxMnWzPeP_pn_dXHivMOieMvoBaO0_DANCBcNpVS8KE7LVtBNK9rm5M9_274qzmPcZYJzJhinp8XPWzOMT48_0hj8MozzkogCqxYLyXhHjEs4BEjYkweTRhITqG_GDQRdxKmzSCZQo3FILEJwh472gcwBe6PSEbQQk1G55GcMyWAkXpOAOoBKPuzJtNhksoM5GKfMDDZLcEKXCFjr9_FN8VKDjXj-6z0rvn68_nJ1u7n_fHN3dXm_UZxzsan7Xjc1qzRuNYM2bwiNFliCYh1jFJjutshrpmssRbtVtS6ZQOAcodacK35W3K1zew87md1MEPbSg5HHgg-DhOxfWZQNBRC05NCpUlT5sKpS0NUNV1WHirM86906K2_9fcGY5M4vwWX7kpdNJZqqqutM0ZVSwceYTyKVSce7pwDGSkblIVd5yFUec82S939Jfhv9J8xW-MFY3P-HlJ9uri9XzTPwe7wp
CitedBy_id crossref_primary_10_1016_j_eml_2025_102392
Cites_doi 10.1038/s41578-019-0121-4
10.1016/j.jallcom.2023.170543
10.3390/cryst11060612
10.1016/j.msea.2023.145137
10.1016/j.jmrt.2024.04.091
10.1002/zamm.19290090104
10.1038/s43246-024-00487-3
10.1016/j.mser.2021.100645
10.1016/j.msea.2023.145841
10.1016/j.mtcomm.2023.107298
10.1063/5.0021106
10.1038/s41524-021-00645-y
10.1016/j.matdes.2022.110820
10.1007/978-3-030-40245-7_17
10.3390/met14020235
10.3390/sym12061029
10.1016/j.calphad.2005.01.002
10.1126/sciadv.aaz4748
10.1016/j.calphad.2023.102599
10.1002/andp.18892741206
10.1016/j.mtcomm.2019.100858
10.1016/j.pmatsci.2022.101018
10.3389/fmats.2020.00290
10.1039/D0ME00005A
10.1515/ijmr-1942-340303
10.1007/s11837-015-1617-z
10.20517/jmi.2024.15
10.1002/adma.202102401
10.1557/jmr.2018.153
10.1016/j.msea.2024.146401
10.1016/j.actamat.2019.09.026
10.1038/s41578-021-00340-w
10.1039/D4TA00721B
10.1016/j.intermet.2010.05.014
10.1007/s11669-017-0570-7
10.1088/1674-1056/abc0e3
10.1038/s41467-021-24523-9
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley‐VCH GmbH on behalf of University of Science and Technology Beijing.
2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley‐VCH GmbH on behalf of University of Science and Technology Beijing.
– notice: 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1002/mgea.70004
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2940-9497
EndPage n/a
ExternalDocumentID oai_doaj_org_article_70aa4023abc245948c5cab673c5bec31
10_1002_mgea_70004
MGEA70004
Genre researchArticle
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
BENPR
CCPQU
GROUPED_DOAJ
PHGZM
PHGZT
PIMPY
PUEGO
WIN
AAYXX
AFFHD
CITATION
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3334-6ddf7615fe8f1a9033a7f4e2ac1b110a1fb8e361f6e2498c6f214ea33ea6f33c3
IEDL.DBID BENPR
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001585581600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2940-9489
IngestDate Fri Oct 03 12:52:07 EDT 2025
Wed Nov 26 12:51:08 EST 2025
Tue Nov 18 20:55:29 EST 2025
Sat Nov 29 07:26:11 EST 2025
Sat Sep 27 09:30:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3334-6ddf7615fe8f1a9033a7f4e2ac1b110a1fb8e361f6e2498c6f214ea33ea6f33c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9623-1863
OpenAccessLink https://www.proquest.com/docview/3275475566?pq-origsite=%requestingapplication%
PQID 3275475566
PQPubID 6860393
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_70aa4023abc245948c5cab673c5bec31
proquest_journals_3275475566
crossref_citationtrail_10_1002_mgea_70004
crossref_primary_10_1002_mgea_70004
wiley_primary_10_1002_mgea_70004_MGEA70004
PublicationCentury 2000
PublicationDate September 2025
2025-09-00
20250901
2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: September 2025
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Materials Genome Engineering Advances
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 7
2021; 6
2019; 4
1889; 274
2010; 18
2023; 37
2024; 889
2023; 960
2024; 30
2007
2023; 1
2020; 12
2024; 12
2024; 14
2022; 219
2005; 29
2023; 82
2015; 67
2020; 7
2020; 6
2020; 5
2019; 181
2021; 12
2021; 11
2021; 33
2023; 131
2024; 5
2024; 898
2020
2017; 38
2023; 876
1984
2020; 23
1929; 9
2024; 4
1942; 34
2018; 33
1903
2022; 147
2020; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
Geng X (e_1_2_9_15_1) 2023; 1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
Vitos L (e_1_2_9_32_1) 2007
Xu D (e_1_2_9_14_1) 2023; 1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
Physics Io (e_1_2_9_42_1) 1903
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Skriver HL (e_1_2_9_33_1) 1984
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 12
  issue: 1
  year: 2021
  article-title: High‐throughput design of high‐performance lightweight high‐entropy alloys
  publication-title: Nat Commun
– volume: 219
  year: 2022
  article-title: Elastic behavior of binary and ternary refractory multi‐principal‐element alloys
  publication-title: Mater Des
– volume: 33
  start-page: 3092
  issue: 19
  year: 2018
  end-page: 3128
  article-title: Development and exploration of refractory high entropy alloys—a review
  publication-title: J Mater Res
– volume: 14
  issue: 2
  year: 2024
  article-title: Machine learning design for high‐entropy alloys: models and algorithms
  publication-title: Metals
– volume: 67
  start-page: 2653
  issue: 11
  year: 2015
  end-page: 2669
  article-title: Design of refractory high‐entropy alloys
  publication-title: JOM
– volume: 7
  issue: 4
  year: 2020
  article-title: Data‐driven materials research enabled by natural language processing and information extraction
  publication-title: Appl Phys Rev
– volume: 5
  start-page: 76
  issue: 1
  year: 2024
  article-title: High‐throughput and data‐driven machine learning techniques for discovering high‐entropy alloys
  publication-title: Commun Mater
– volume: 5
  start-page: 725
  issue: 4
  year: 2020
  end-page: 742
  article-title: Machine‐learning‐assisted high‐throughput computational screening of high performance metal–organic frameworks
  publication-title: Mol Syst Des Eng
– volume: 12
  start-page: 10124
  issue: 17
  year: 2024
  end-page: 10136
  article-title: Machine‐learning assisted high‐throughput discovery of solid‐state electrolytes for Li‐ion batteries
  publication-title: J Mater Chem A
– year: 2007
– volume: 898
  year: 2024
  article-title: Effects of V on the microstructure and mechanical properties of HfNbTaTiVx refractory multi‐principle element alloys: a combined experimental and computational study
  publication-title: Mater Sci. Eng, A
– volume: 1
  issue: 1
  year: 2023
  article-title: Advances in data‐assisted high‐throughput computations for material design
  publication-title: MGE Adv
– volume: 131
  year: 2023
  article-title: Machine learning for high‐entropy alloys: progress, challenges and opportunities
  publication-title: Prog Mater Sci
– volume: 876
  year: 2023
  article-title: An experimental and computational design low‐modulus (HfNbTa) 1‐xTix multiprinciple elemental alloys with super formability for biomedical applications
  publication-title: Mater Sci Eng, A
– volume: 7
  year: 2020
  article-title: High‐throughput calculations for high‐entropy alloys: a brief review
  publication-title: Front Mater
– year: 1984
– volume: 38
  start-page: 353
  issue: 4
  year: 2017
  end-page: 368
  article-title: TCHEA1: a thermodynamic database not limited for “high entropy” alloys
  publication-title: J Phase Equilibria Diffus
– volume: 37
  year: 2023
  article-title: Review on applications of artificial neural networks to develop high entropy alloys: a state‐of‐the‐art technique
  publication-title: Mater Today Commun
– volume: 82
  year: 2023
  article-title: Machine learning aided High‐throughput first‐principles calculations to predict the formation enthalpy of σ phase
  publication-title: Calphad
– volume: 29
  start-page: 163
  issue: 3
  year: 2005
  end-page: 211
  article-title: Accuracy of ab initio methods in predicting the crystal structures of metals: a review of 80 binary alloys
  publication-title: Calphad
– volume: 12
  issue: 6
  year: 2020
  article-title: Artificial intelligence: an energy efficiency tool for enhanced high performance computing
  publication-title: Symmetry
– volume: 18
  start-page: 1758
  issue: 9
  year: 2010
  end-page: 1765
  article-title: Refractory high‐entropy alloys
  publication-title: Intermetallics
– volume: 7
  start-page: 176
  issue: 1
  year: 2021
  article-title: Prediction of thermoelectric performance for layered IV‐V‐VI semiconductors by high‐throughput ab initio calculations and machine learning
  publication-title: NPJ Comput Mater
– volume: 4
  start-page: 515
  issue: 8
  year: 2019
  end-page: 534
  article-title: vol. 4, issue 8, High‐entropy alloys
  publication-title: Nat Rev Mater
– volume: 1
  issue: 1
  year: 2023
  article-title: Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology
  publication-title: MGE Adv
– volume: 181
  start-page: 124
  year: 2019
  end-page: 138
  article-title: First‐principles and machine learning predictions of elasticity in severely lattice‐distorted high‐entropy alloys with experimental validation
  publication-title: Acta Mater
– volume: 30
  start-page: 3886
  year: 2024
  end-page: 3899
  article-title: Effects of Ti content on the tensile ductility, lattice distortion and mechanical properties of VNbTaTix refractory high‐entropy alloys
  publication-title: J Mater Res Technol
– volume: 960
  year: 2023
  article-title: Accelerated design of high entropy alloys by integrating high throughput calculation and machine learning
  publication-title: J Alloys Compd
– volume: 34
  start-page: 70
  issue: 3
  year: 1942
  end-page: 72
  article-title: Bemerkungen zur schichtkristallbildung
  publication-title: Int J Mater Res
– volume: 11
  issue: 6
  year: 2021
  article-title: A review of the latest developments in the field of refractory high‐entropy alloys
  publication-title: Crystals
– volume: 147
  year: 2022
  article-title: Machine‐learning and high‐throughput studies for high‐entropy materials
  publication-title: Mater Sci Eng, R
– volume: 4
  issue: 3
  year: 2024
  article-title: Applications of machine learning method in high‐performance materials design: a review
  publication-title: J Mater Inf
– volume: 6
  issue: 37
  year: 2020
  article-title: Temperature dependence of elastic and plastic deformation behavior of a refractory high‐entropy alloy
  publication-title: Sci Adv
– volume: 9
  start-page: 49
  issue: 1
  year: 1929
  end-page: 58
  article-title: Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle
  publication-title: ZAMM‐J Appl Math Mechanics/Zeitschrift für Angewandte Math und Mech
– volume: 889
  year: 2024
  article-title: An ambient ductile VNbTa refractory medium‐entropy alloy with super rolling formability
  publication-title: Mater Sci. Eng, A
– start-page: 377
  year: 2020
  end-page: 395
  article-title: Database‐driven high‐throughput calculations and machine learning models for materials design
  publication-title: Mach Learning Meets Quantum Phys
– volume: 274
  start-page: 573
  issue: 12
  year: 1889
  end-page: 587
  article-title: Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper
  publication-title: Ann Phys
– volume: 6
  start-page: 730
  issue: 8
  year: 2021
  end-page: 755
  article-title: Machine learning for alloys
  publication-title: Nat Rev Mater
– year: 1903
– volume: 29
  issue: 11
  year: 2020
  article-title: Machine learning in materials design: algorithm and application
  publication-title: Chin Phys B
– volume: 33
  issue: 48
  year: 2021
  article-title: Superior high‐temperature strength in a supersaturated refractory high‐entropy alloy
  publication-title: Adv Mater
– volume: 23
  year: 2020
  article-title: Investigating the deformation mechanisms of a highly metastable high entropy alloy using in‐situ neutron diffraction
  publication-title: Mater Today Commun
– ident: e_1_2_9_5_1
  doi: 10.1038/s41578-019-0121-4
– ident: e_1_2_9_24_1
  doi: 10.1016/j.jallcom.2023.170543
– volume-title: Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
  year: 2007
  ident: e_1_2_9_32_1
– ident: e_1_2_9_6_1
  doi: 10.3390/cryst11060612
– ident: e_1_2_9_10_1
  doi: 10.1016/j.msea.2023.145137
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jmrt.2024.04.091
– ident: e_1_2_9_41_1
  doi: 10.1002/zamm.19290090104
– ident: e_1_2_9_26_1
  doi: 10.1038/s43246-024-00487-3
– ident: e_1_2_9_13_1
  doi: 10.1016/j.mser.2021.100645
– ident: e_1_2_9_9_1
  doi: 10.1016/j.msea.2023.145841
– ident: e_1_2_9_23_1
  doi: 10.1016/j.mtcomm.2023.107298
– volume: 1
  issue: 1
  year: 2023
  ident: e_1_2_9_15_1
  article-title: Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology
  publication-title: MGE Adv
– ident: e_1_2_9_16_1
  doi: 10.1063/5.0021106
– ident: e_1_2_9_28_1
  doi: 10.1038/s41524-021-00645-y
– ident: e_1_2_9_38_1
  doi: 10.1016/j.matdes.2022.110820
– ident: e_1_2_9_12_1
  doi: 10.1007/978-3-030-40245-7_17
– ident: e_1_2_9_31_1
  doi: 10.3390/met14020235
– ident: e_1_2_9_20_1
  doi: 10.3390/sym12061029
– ident: e_1_2_9_17_1
  doi: 10.1016/j.calphad.2005.01.002
– ident: e_1_2_9_35_1
  doi: 10.1126/sciadv.aaz4748
– ident: e_1_2_9_27_1
  doi: 10.1016/j.calphad.2023.102599
– ident: e_1_2_9_40_1
  doi: 10.1002/andp.18892741206
– volume-title: The LMTO Method, Vol. 41 of Springer Series in Solid State Sciences
  year: 1984
  ident: e_1_2_9_33_1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.mtcomm.2019.100858
– ident: e_1_2_9_21_1
  doi: 10.1016/j.pmatsci.2022.101018
– ident: e_1_2_9_19_1
  doi: 10.3389/fmats.2020.00290
– ident: e_1_2_9_11_1
  doi: 10.1039/D0ME00005A
– ident: e_1_2_9_43_1
  doi: 10.1515/ijmr-1942-340303
– ident: e_1_2_9_4_1
  doi: 10.1007/s11837-015-1617-z
– ident: e_1_2_9_29_1
  doi: 10.20517/jmi.2024.15
– ident: e_1_2_9_34_1
  doi: 10.1002/adma.202102401
– ident: e_1_2_9_2_1
  doi: 10.1557/jmr.2018.153
– ident: e_1_2_9_7_1
  doi: 10.1016/j.msea.2024.146401
– volume-title: Proceedings of the Physical Society
  year: 1903
  ident: e_1_2_9_42_1
– ident: e_1_2_9_37_1
  doi: 10.1016/j.actamat.2019.09.026
– ident: e_1_2_9_22_1
  doi: 10.1038/s41578-021-00340-w
– ident: e_1_2_9_25_1
  doi: 10.1039/D4TA00721B
– ident: e_1_2_9_3_1
  doi: 10.1016/j.intermet.2010.05.014
– ident: e_1_2_9_39_1
  doi: 10.1007/s11669-017-0570-7
– ident: e_1_2_9_30_1
  doi: 10.1088/1674-1056/abc0e3
– volume: 1
  issue: 1
  year: 2023
  ident: e_1_2_9_14_1
  article-title: Advances in data‐assisted high‐throughput computations for material design
  publication-title: MGE Adv
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-021-24523-9
SSID ssj0003314130
Score 2.3021617
Snippet The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional design space...
Abstract The traditional trial‐and‐error method for designing refractory multi‐principal element alloys (RMPEAs) is inefficient due to a vast compositional...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alloys
Approximation
Cluster analysis
Datasets
Decomposition
Efficiency
elastic properties
high‐throughput calculations
Integrated approach
Machine learning
materials design
refractory multi‐principal element alloys
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NihQxEA6yePAiioqjqwT0otBudyqdn-Mqu3rQxYPK3kK6urIIOzPNzKywNx_BV_DVfBIr6d5hFkQv3ppQTYpUdfpLUvk-IZ57YBjhe1fptsVKR2iqqEyqVM8JgM7Etlwf-_Lenpy401P_cUfqK9eEjfTA48Ad2DpGXuNA7FDpzC2CLcbOWMCWuy83qFVt_c5iKs_BAE2enbOynNd1xa_5LTepOpifUXxlM5y59jcqpP3XkOYuXi0_nOM74vaEFOXh6OFdcYMW98TPXJfx6_uPSV5nuNhIHmScNLjklvyhl3mDVTL0w7wXLnmxSvPunOS8FE-SnNQiziSDVjms8nHNphgymuYOuWk55JJrWstlkuz4qgjzXMpSgcgeDOMuPXtIYwW6zEf4l-v74vPx0ac376pJZaFCANCV6ftkGdckcqmJnocu2qRJRWw6xgaxSZ0jME0yxEs1hyapRlMEoGgSAMIDsbdYLuihkOCj7TCBxp60o85FB6bTvm4VqppwJl5cjXbAiYI8K2Gch5E8WYUcmVAiMxPPtrbDSLzxR6vXOWhbi0yWXRo4hcKUQuFfKTQT-1chD9MXvA6gbKtty2h3Jl6WNPiLG-HD26PD8vTofzj0WNxSWWa4lLLti73N6oKeiJv4bfN1vXpaMv03_bMHyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELaqwoELPwLEQkGW4AJS6NrjxLbEpaAWDlD1AKi3yJ7YK6TubpRskXrjEXgFXo0nYexkUyohJMQtsiaKY884nyfj72PsmQWCEbYxhSpLLJQDUThZxUI25ABoKlfm42Of3-vjY3N6ak922KvtWZiBH2JKuKXIyOt1CnDn-_1L0tDlIriXep7JQK8JATr5tFQnU4YFQKQVOqnLWTUvrDJ24ieV-5e3X_kiZeL-K2jzd8yaPzpHt_6vu7fZzRFs8oPBO-6wnbC6y36k0o6f376PCj3t-YbTPOEo48Un_oiGpxwtJ_SIKZ3Oab8blv4s8GWuvwx8FJxYcMK9vO3SH59NNiRATg-kpnWbqrZDz9eR03t3WdvnguciRupBOyT6qYdhKGLnqQrgor_HPh0dfnzzrhiFGgoEAFVUTRM1QaMYTBTO0sg7HVWQDoUneOFE9CZAJWIVaLdnsIpSqOAAgqsiAMJ9trtar8IDxsE67TGCwiYoE7xxBiqv7LyUKOcBZ-z5drJqHFnMk5jGWT3wL8s6DXSdB3rGnk627cDd8Uer12nOJ4vEt50b1t2iHsOXLJ2jnTY4j1Ilhhss0flKA5YUBCBmbG_rMfW4CPQ1SF0qXRJgnrEX2Tf-0o36w9vDg3z18F-MH7EbMikS56q3Pba76c7DY3Ydv26-9N2THBC_AMS-E-4
  priority: 102
  providerName: Wiley-Blackwell
Title High‐throughput calculation integrated with stacking ensemble machine learning for predicting elastic properties of refractory multi‐principal element alloys
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmgea.70004
https://www.proquest.com/docview/3275475566
https://doaj.org/article/70aa4023abc245948c5cab673c5bec31
Volume 3
WOSCitedRecordID wos001585581600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2940-9497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314130
  issn: 2940-9489
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2940-9497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314130
  issn: 2940-9489
  databaseCode: BENPR
  dateStart: 20230901
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2940-9497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314130
  issn: 2940-9489
  databaseCode: PIMPY
  dateStart: 20230901
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2940-9497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314130
  issn: 2940-9489
  databaseCode: WIN
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2940-9497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003314130
  issn: 2940-9489
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZoy4ELPwLEQllZggtIoRuPkzgn1KItVKKrCPFTTpHj2Cuk7iZkt0i98Qi8Aq_WJ-mM4w1UQr1wS6xR4mTG9ufJ5PsYe54Dwoi8VpFMEhNJDXGkReoiUWMAGJXqxP8-9vl9Npupk5O8CAm3VSir3MyJfqKuG0M58j0QWSKzBNHH6_Z7RKpR9HU1SGhssR1iKsM43zmYzooPQ5YFIKZZmhTmcjmJcqnygaNU7C3mVr_KCNZcWZU8ef8VxPk3bvULz-Gd_-3yXXY7QE6-38fIPXbDLu-z31TgcfHzV9Dpac_WHL1lgpgXH1gkak6ZWo4Y0lBSneOu1y6qU8sXvgrT8iA7MeeIfnnb0XeftTdEWI43xKampdptu-KN4_jknVf4Oee-lBF70Pbpfuyh7UvZOdUCnK8esE-H049v3kVBriEyACCjtK5dhgDJWeVineO715mTVmgTVwgydOwqZSGNXWpxz6dM6kQsrQawOnUABh6y7WWztI8Yh1xnlXEgTW2lspXSCtJK5pNEGDGxZsRebNxVmsBlTpIap2XPwixKcm3pXTtizwbbtmfw-KfVAXl9sCDWbd_QdPMyDGK01Br326ArIyTx3JjE6CrNwCQ4FCAesd1NIJRhKliVf6JgxF76OLqmG-Xx2-m-P3p8_bWesFuClIh9tdsu2153Z_Ypu2l-rL-tujHbErIYh8Ew9nkGPCuOjouvePblaHYJjiobgw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwELbKFgku_AgQCwUsAQeQQjce5--AUIGWrrq72kNB5ZQ6jr1C6m7CZgvaG4_AK_ACPBRPwozzA5VQbz1wi6KRYzmf7W884_kYe5IA0ogkjz0ZBNqTCnxPidB6IkcA6DhUgbs-9mEUTSbx0VEy3WA_27swlFbZroluoc4LTWfk2yCiQEYBso9X5WePVKMoutpKaNSwODDrr-iyVS-Hb_H_PhVib_fwzb7XqAp4GgCkF-a5Rd89sCa2vkoGACqy0gil_Qz3QuXbLDYQ-jY06JrEOrTCl0YBGBVaAA3Y7iW2KQnsPbY5HY6nH7tTHQCfdgVStEvkwEtknHQ1UcX2fGbUi4ho1Jld0IkFnGG4f_Nkt9HtXf_fhugGu9ZQar5Tz4GbbMMsbrEflMDy69v3RoeoPF1xRKNuxMp4VyUj53QSzZEjawoacPTqzTw7MXzuskwNb2Q1ZhzZPS-XFNdaOUN0O_CD-KooKTfdVLywHEd66RSM1tylamIPyjqcgT00dao-p1yHdXWbvb-QUbnDeotiYe4yDomKMm1B6tzI2GSxiiHMZDIIhBYDo_vsWQuPVDe12kky5CStq0yLlKCUOij12ePOtqwrlPzT6jWhrLOgquLuRbGcpc0ihZZKSSRxKtNCUh0fHWiVhRHoAKc6-H221QIvbZa6Kv2Duj577nB7TjfS8bvdHfd07_y2HrEr-4fjUToaTg7us6uCVJddZt8W662Wp-YBu6y_rD5Vy4fNFOTs-KIh_RurG3SI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELVQixCXFgSIpQUswQWk0I3HcexjgS4gymoPgHqLHGe8QuruRtktUm98Ar_Ar_EljB03pRJCQtwia6JM7JnJ82T8hrGnBghGmEZnsihcJi3kmRXKZ6IhA3Ba2SIeH_t8XE6n-uTEzFJtTjgL0_NDDAm34BkxXgcHx7bxB5esoYs52hflOLKBbsuCgmwgdpazIcUCkIcQHdrLGTnOjNRmICgVB5e3X_kkReb-K3Dzd9AavzqT3f_U9xbbSXCTH_b2cZtdw-Ud9iMUd_z89j316GnPNpxWyqVGXnxgkGh4yNJywo8uJNQ57XhxUZ8iX8QKTOSp5cScE_LlbRf--WyiIEFyeiANrdpQt41rvvKcXryL3X3OeSxjJA3aPtVPGmJfxs5DHcD5-i77NDn6-Optllo1ZA4AZKaaxpcEjjxqn1tDU29LL1FYl9cEMGzua42gcq-Q9nvaKS9yiRYArfIADu6xreVqifcZB2PL2nmQrkGpsdZWg6qlGRfCiTG6EXt2sVqVSzzmoZ3GadUzMIsqTHQVJ3rEngyybc_e8Uepl2HRB4nAuB0HVt28Sg5MktbSXhts7YQMHDeucLZWJbiC3ADyEdu_MJkqhYF1BaIsZFkQZB6x59E4_qJG9eHN0WG8evAvwo_ZjdnrSXX8bvp-j90UoT1xLIHbZ1ub7gwfsuvu6-bLunsUneMXikoXVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90throughput+calculation+integrated+with+stacking+ensemble+machine+learning+for+predicting+elastic+properties+of+refractory+multi%E2%80%90principal+element+alloys&rft.jtitle=Materials+Genome+Engineering+Advances&rft.au=Jin%2C+Chengchen&rft.au=Xiong%2C+Kai&rft.au=Luo%2C+Congtao&rft.au=Fang%2C+Hui&rft.date=2025-09-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2940-9489&rft.eissn=2940-9497&rft.volume=3&rft.issue=3&rft_id=info:doi/10.1002%2Fmgea.70004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2940-9489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2940-9489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2940-9489&client=summon