A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis
•Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed...
Saved in:
| Published in: | Energy and built environment Vol. 1; no. 2; pp. 149 - 164 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.04.2020
KeAi Communications Co., Ltd |
| Subjects: | |
| ISSN: | 2666-1233, 2666-1233 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed.
With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems. |
|---|---|
| AbstractList | With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems. •Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed. With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems. |
| Author | Wang, Zihao Zhang, Chaobo Li, Junyang Zhang, Yiwen Zhao, Yang |
| Author_xml | – sequence: 1 givenname: Yang surname: Zhao fullname: Zhao, Yang – sequence: 2 givenname: Chaobo surname: Zhang fullname: Zhang, Chaobo email: chaobo.zhang@zju.edu.cn – sequence: 3 givenname: Yiwen surname: Zhang fullname: Zhang, Yiwen – sequence: 4 givenname: Zihao surname: Wang fullname: Wang, Zihao – sequence: 5 givenname: Junyang surname: Li fullname: Li, Junyang |
| BookMark | eNqFkd1q3DAQhU1Joek2b9ALPUDX1Y8t27kohNCfwEJv2msxlsbuLF5pkZSUfYK-drVxKaEX6dxoOOJ8MOe8ri588FhVbwWvBRf6_b5GP6J_qCUXQy1Ezbl6UV1KrfVWSKUunuyvqquU9pxz2QqhG3FZ_bphER8If7IwMQcZ2IE8-ZlltD98WMJMmBh5Nt7T4s4f6DHOJ5ZOKeMhXbNdAMeOER3ZTMG_Y0fIGaNn5NBnmsjCqk9wv2TmsJDPAgPvmCOYfUiU3lQvJ1gSXv15N9X3Tx-_3X7Z7r5-vru92W2tKrPteSeVU5MdsBdTB43iI7jWDZPWTddJjRpGPSIftXadsq0EDiDU0Eit1NSrTXW3cl2AvTlGOkA8mQBkHoUQZwMxk13QaDe2thfQKYcNNnzgrhXSul710rYFt6malWVjSCni9JcnuDl3Y_Zm7cacuzFCmNJNsV3_Y7OUHzPKEWj5n_nDasYSUuktmmQJvS3xx5JruYKeB_wGsnKwyw |
| CitedBy_id | crossref_primary_10_1016_j_scs_2020_102152 crossref_primary_10_1007_s00704_024_05155_7 crossref_primary_10_3390_en14010086 crossref_primary_10_1016_j_rser_2025_115817 crossref_primary_10_1016_j_buildenv_2021_107850 crossref_primary_10_1016_j_enbuild_2023_113877 crossref_primary_10_1016_j_measen_2024_101167 crossref_primary_10_1016_j_enbuild_2021_110929 crossref_primary_10_1016_j_autcon_2022_104578 crossref_primary_10_1007_s10668_022_02491_4 crossref_primary_10_1007_s12273_021_0871_y crossref_primary_10_1016_j_energy_2024_132636 crossref_primary_10_3390_en14010081 crossref_primary_10_1016_j_applthermaleng_2023_122051 crossref_primary_10_1007_s40747_024_01380_9 crossref_primary_10_1016_j_jobe_2022_105732 crossref_primary_10_1016_j_jobe_2022_105458 crossref_primary_10_3390_en14010237 crossref_primary_10_1007_s12273_020_0723_1 crossref_primary_10_1016_j_jobe_2021_102502 crossref_primary_10_1109_ACCESS_2024_3514750 crossref_primary_10_3390_en16145402 crossref_primary_10_1016_j_scs_2022_104323 crossref_primary_10_1080_23744731_2021_2005375 crossref_primary_10_3390_s23010001 crossref_primary_10_1016_j_scs_2020_102420 crossref_primary_10_1038_s41598_023_34146_3 crossref_primary_10_1016_j_jobe_2021_103153 crossref_primary_10_1080_23744731_2024_2351311 crossref_primary_10_1016_j_buildenv_2021_107982 crossref_primary_10_1088_1742_6596_2774_1_012007 crossref_primary_10_1016_j_energy_2024_131898 crossref_primary_10_3390_en13184975 crossref_primary_10_1016_j_ijrefrig_2024_02_019 crossref_primary_10_1016_j_jobe_2025_113016 crossref_primary_10_1016_j_enbuild_2025_115808 crossref_primary_10_1007_s12273_024_1200_z crossref_primary_10_1016_j_energy_2025_134824 crossref_primary_10_1016_j_autcon_2021_103624 crossref_primary_10_1016_j_buildenv_2022_109099 crossref_primary_10_1016_j_buildenv_2024_111855 crossref_primary_10_1016_j_jobe_2022_105509 crossref_primary_10_1016_j_apenergy_2024_122654 crossref_primary_10_1016_j_enbuild_2024_114170 crossref_primary_10_1016_j_jobe_2022_104498 crossref_primary_10_1080_17508975_2024_2369055 crossref_primary_10_1016_j_buildenv_2021_108548 crossref_primary_10_1016_j_ress_2021_108281 crossref_primary_10_1016_j_energy_2022_123767 crossref_primary_10_1016_j_cie_2024_110329 crossref_primary_10_1016_j_enbuild_2020_110492 crossref_primary_10_1016_j_energy_2023_127826 crossref_primary_10_1016_j_energy_2025_134512 crossref_primary_10_1016_j_esd_2024_101596 crossref_primary_10_1016_j_enbuild_2022_112601 crossref_primary_10_1007_s12273_021_0807_6 crossref_primary_10_1038_s41598_024_65727_5 crossref_primary_10_3390_math9212706 crossref_primary_10_1016_j_enbuild_2024_114540 crossref_primary_10_1016_j_ijrefrig_2022_08_017 crossref_primary_10_3390_app11125708 crossref_primary_10_1016_j_apenergy_2025_125358 crossref_primary_10_1016_j_jclepro_2022_131626 crossref_primary_10_1016_j_buildenv_2023_110134 crossref_primary_10_1007_s12273_024_1149_y crossref_primary_10_1016_j_scs_2025_106811 crossref_primary_10_1016_j_rineng_2024_102890 crossref_primary_10_1016_j_enbuild_2023_113171 crossref_primary_10_1016_j_enbuild_2021_111195 crossref_primary_10_1080_23311916_2023_2199518 crossref_primary_10_1016_j_enbuild_2021_111073 crossref_primary_10_3390_civileng2040053 crossref_primary_10_1016_j_jobe_2024_109137 crossref_primary_10_1002_cpe_7354 crossref_primary_10_1007_s12273_025_1242_x crossref_primary_10_1007_s13198_023_02172_z crossref_primary_10_1016_j_enbenv_2023_07_005 crossref_primary_10_1016_j_egyr_2023_12_016 crossref_primary_10_1109_ACCESS_2020_3040980 crossref_primary_10_1007_s12559_025_10402_8 crossref_primary_10_1007_s11082_023_05771_z crossref_primary_10_1016_j_apenergy_2020_115834 crossref_primary_10_1108_F_09_2020_0107 crossref_primary_10_1155_2021_8610050 crossref_primary_10_3390_en14227465 crossref_primary_10_1039_D4NR00105B crossref_primary_10_1002_er_7166 crossref_primary_10_1007_s12273_022_0887_y crossref_primary_10_1016_j_apenergy_2024_124378 crossref_primary_10_3390_electronics12061448 crossref_primary_10_3390_su16229921 crossref_primary_10_1007_s11356_023_28329_8 crossref_primary_10_1016_j_apenergy_2023_121244 crossref_primary_10_1016_j_buildenv_2022_109357 crossref_primary_10_1016_j_enbuild_2024_115007 crossref_primary_10_3390_en15041394 crossref_primary_10_1016_j_enbuild_2023_112872 crossref_primary_10_1016_j_energy_2022_124915 crossref_primary_10_1007_s12273_021_0849_9 crossref_primary_10_1007_s11036_024_02396_8 crossref_primary_10_1016_j_engappai_2023_106480 crossref_primary_10_1016_j_energy_2022_125969 crossref_primary_10_3390_buildings12010015 crossref_primary_10_1007_s13198_023_02120_x crossref_primary_10_1016_j_scs_2021_103445 crossref_primary_10_1108_IJESM_02_2021_0025 crossref_primary_10_1016_j_energy_2024_131460 crossref_primary_10_3390_en17215463 crossref_primary_10_1016_j_enbuild_2020_110601 crossref_primary_10_1016_j_ijrefrig_2024_01_006 crossref_primary_10_1016_j_arcontrol_2022_04_010 crossref_primary_10_1016_j_energy_2024_133640 crossref_primary_10_1016_j_jobe_2023_107289 crossref_primary_10_3390_buildings14082491 crossref_primary_10_1016_j_rser_2024_114804 crossref_primary_10_1007_s10854_020_04017_y crossref_primary_10_1016_j_buildenv_2025_112973 crossref_primary_10_1080_17508975_2021_1922336 crossref_primary_10_1016_j_enconman_2023_117369 crossref_primary_10_1016_j_enbenv_2023_06_005 crossref_primary_10_1016_j_energy_2022_125853 crossref_primary_10_1016_j_jmsy_2022_04_004 crossref_primary_10_1016_j_jobe_2020_101972 crossref_primary_10_1016_j_energy_2022_123798 crossref_primary_10_1007_s11063_023_11256_7 crossref_primary_10_1016_j_energy_2023_128446 crossref_primary_10_1016_j_enbuild_2022_112188 crossref_primary_10_1016_j_enbuild_2022_112461 crossref_primary_10_1016_j_energy_2022_125858 crossref_primary_10_1016_j_apenergy_2021_117139 crossref_primary_10_1016_j_seta_2020_100969 crossref_primary_10_1016_j_enbuild_2024_114811 crossref_primary_10_1016_j_apenergy_2021_116969 crossref_primary_10_1016_j_buildenv_2025_112688 crossref_primary_10_1016_j_enbuild_2021_111407 crossref_primary_10_1016_j_autcon_2022_104303 crossref_primary_10_1016_j_enbuild_2021_111769 crossref_primary_10_15446_dyna_v90n225_105688 crossref_primary_10_1016_j_buildenv_2022_108760 crossref_primary_10_1016_j_energy_2022_126432 crossref_primary_10_1016_j_applthermaleng_2024_123696 crossref_primary_10_1016_j_eswa_2022_117649 crossref_primary_10_1080_0951192X_2023_2177748 crossref_primary_10_1093_ijlct_ctac008 crossref_primary_10_3390_math13172722 crossref_primary_10_1016_j_enbenv_2024_08_006 crossref_primary_10_1016_j_egyai_2025_100557 crossref_primary_10_3390_buildings14061835 crossref_primary_10_1016_j_jobe_2023_107021 crossref_primary_10_1016_j_enbuild_2020_110301 crossref_primary_10_1016_j_jobe_2023_108071 crossref_primary_10_1007_s00202_025_03242_0 crossref_primary_10_1016_j_seta_2021_101255 crossref_primary_10_1016_j_enbuild_2021_111318 crossref_primary_10_1016_j_aei_2024_102810 crossref_primary_10_1016_j_buildenv_2023_109982 crossref_primary_10_1016_j_apenergy_2023_121830 crossref_primary_10_1007_s10462_022_10286_2 crossref_primary_10_1016_j_enbuild_2022_112244 crossref_primary_10_1007_s12273_023_0996_2 crossref_primary_10_1093_ijlct_ctac115 crossref_primary_10_1155_2022_6774922 crossref_primary_10_1177_16878132241229817 crossref_primary_10_3390_en16165972 crossref_primary_10_1016_j_energy_2023_130043 crossref_primary_10_1016_j_enbuild_2020_110671 crossref_primary_10_1016_j_enbuild_2021_111426 crossref_primary_10_1088_1757_899X_1090_1_012053 crossref_primary_10_1080_07373937_2021_1872610 crossref_primary_10_1109_ACCESS_2023_3286020 crossref_primary_10_1016_j_enbuild_2021_111423 crossref_primary_10_1016_j_nxener_2025_100321 crossref_primary_10_1088_1742_6596_3001_1_012011 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_1007_s12273_021_0885_0 crossref_primary_10_1016_j_egyr_2022_10_441 crossref_primary_10_1016_j_enbuild_2023_113768 crossref_primary_10_1016_j_enbenv_2024_03_003 crossref_primary_10_1016_j_iot_2024_101175 crossref_primary_10_1016_j_apenergy_2021_118088 crossref_primary_10_1016_j_buildenv_2024_111670 crossref_primary_10_1016_j_solener_2020_10_075 crossref_primary_10_1016_j_apenergy_2022_119478 crossref_primary_10_3390_math12203295 crossref_primary_10_1007_s12046_025_02833_8 crossref_primary_10_1080_17512549_2020_1863858 crossref_primary_10_1016_j_enbuild_2022_112098 crossref_primary_10_1016_j_enbuild_2025_115583 crossref_primary_10_1016_j_scs_2021_103514 crossref_primary_10_1007_s12273_021_0791_x |
| Cites_doi | 10.1016/j.enbuild.2016.09.062 10.1016/j.enbuild.2004.09.009 10.1016/j.enconman.2018.06.017 10.1007/s12053-014-9316-0 10.1016/j.enbuild.2004.01.037 10.1016/j.enbuild.2017.09.047 10.1016/j.energy.2016.10.066 10.1016/j.scs.2019.101717 10.1016/j.apenergy.2005.08.006 10.1016/j.enbuild.2013.08.044 10.1016/j.apenergy.2014.03.020 10.1080/10789669.2013.789371 10.1016/j.apenergy.2019.113395 10.1016/j.rser.2016.10.079 10.1080/10789669.2006.10391171 10.1016/j.scs.2019.101533 10.1016/j.segan.2016.02.005 10.1080/10789669.2008.10391049 10.1016/j.enbuild.2015.12.045 10.1016/j.enconman.2004.11.011 10.1016/j.egypro.2017.03.270 10.1016/j.energy.2011.12.031 10.1016/j.buildenv.2013.11.021 10.1016/j.apenergy.2009.01.015 10.1016/j.enbuild.2016.09.039 10.1016/j.apenergy.2012.12.043 10.1016/j.apenergy.2017.02.066 10.1016/j.apenergy.2019.113492 10.1016/j.enbuild.2003.10.002 10.1109/TPWRS.2009.2023009 10.1016/j.rser.2017.09.108 10.1016/j.buildenv.2010.05.031 10.1016/j.apenergy.2018.05.075 10.1016/j.apenergy.2017.08.035 10.3390/en6020579 10.1016/j.enbuild.2009.10.017 10.1016/j.egypro.2017.03.721 10.1016/j.applthermaleng.2017.09.117 10.1016/j.applthermaleng.2010.10.021 10.1016/j.enbuild.2008.09.007 10.1016/j.enbuild.2016.09.037 10.1016/j.egypro.2013.11.057 10.1016/j.enbuild.2015.02.007 10.3182/20140824-6-ZA-1003.02382 10.1016/j.rser.2016.06.040 10.1016/j.ijrefrig.2015.11.006 10.1016/j.apenergy.2017.09.116 10.1016/j.enbuild.2014.05.049 10.1016/j.enbuild.2014.06.052 10.1016/j.enbuild.2006.04.018 10.1016/j.enbuild.2013.12.038 10.1080/10789669.2007.10390958 10.1016/j.enbuild.2011.12.018 10.1109/TASE.2017.2666184 10.1016/j.enbuild.2011.06.011 10.1016/j.applthermaleng.2012.09.030 10.1016/j.enbuild.2012.06.006 10.1080/10789669.2010.10390906 10.1016/j.rser.2016.12.015 10.1016/j.enbuild.2017.03.026 10.1016/j.enbuild.2018.02.032 10.7763/IJMLC.2011.V1.10 10.1016/j.rser.2017.02.085 10.1016/j.rser.2017.04.095 10.1016/j.energy.2018.05.155 10.1016/j.autcon.2014.12.006 10.1177/0143624417704977 10.1016/j.applthermaleng.2017.01.008 10.1016/j.rser.2012.02.049 10.1016/j.applthermaleng.2005.10.039 10.1016/j.ijrefrig.2016.07.024 10.1016/j.enconman.2003.10.009 10.1016/j.rser.2015.11.067 10.1016/j.enconman.2003.12.008 10.1016/j.rser.2014.01.069 10.1016/j.egypro.2017.07.350 10.1016/j.enbuild.2012.08.010 10.1080/10789669.2009.10390825 10.1016/j.enbuild.2017.04.038 10.1109/TSG.2012.2215059 10.1016/j.enbuild.2013.02.049 10.1016/j.enbuild.2009.03.007 10.1016/j.enbuild.2004.06.023 10.1109/TSG.2013.2278477 10.1016/S0306-2619(03)00107-7 10.1016/j.scs.2018.11.021 10.1260/1748-3018.4.2.231 10.1007/s12273-018-0472-6 10.1016/j.apenergy.2017.03.064 10.1016/j.enbuild.2014.02.005 10.1109/TPWRS.2013.2264488 10.1016/j.conengprac.2005.11.002 10.1016/j.enbuild.2013.02.050 10.1016/j.applthermaleng.2016.07.109 10.1080/09613218.2018.1459004 10.1016/j.apenergy.2014.04.016 10.1016/j.enbuild.2013.03.020 10.1016/j.enbuild.2014.07.036 10.1016/j.apenergy.2012.01.061 10.1016/j.neucom.2016.08.004 10.1016/j.egypro.2019.02.025 10.1080/10789669.2005.10391123 10.1016/j.enbuild.2015.09.060 10.1016/j.scs.2015.12.001 10.1016/j.enbuild.2015.02.017 10.1016/j.energy.2014.06.104 10.1016/j.egypro.2019.01.378 10.1016/j.enbuild.2016.05.076 10.1016/j.proeng.2017.09.894 10.1016/j.enbuild.2018.05.025 10.1016/j.autcon.2014.09.004 10.1016/j.autcon.2005.06.001 10.1016/j.apenergy.2018.12.004 10.1016/j.rser.2017.05.124 10.1016/j.ijrefrig.2006.12.012 10.1016/j.enbuild.2017.05.053 10.1016/j.apenergy.2018.04.118 10.1145/1989734.1989738 10.1016/j.enbuild.2016.11.009 10.1016/j.rser.2015.12.040 10.1016/j.solener.2012.05.015 10.1016/j.apenergy.2016.10.091 10.1016/S1359-4311(00)00036-3 10.1016/j.applthermaleng.2017.08.047 10.1016/j.enbuild.2015.05.056 10.1016/j.applthermaleng.2007.03.021 10.1016/j.enbuild.2014.08.030 10.1016/j.proeng.2017.10.171 10.1016/j.eswa.2015.01.010 10.1016/j.energy.2017.01.055 10.1016/j.enconman.2008.06.032 10.1016/j.rser.2013.11.040 10.1016/j.energy.2015.11.037 10.1016/j.proeng.2017.09.967 10.1016/j.enbuild.2006.09.015 10.1016/j.apenergy.2019.02.052 10.1016/j.enconman.2011.02.002 10.1016/j.ijrefrig.2017.11.003 10.1016/j.energy.2018.05.127 10.1016/j.energy.2016.02.134 10.1016/j.apenergy.2004.11.002 10.1787/9789264202955-en 10.1016/j.proeng.2015.09.097 10.1016/j.ijrefrig.2010.08.011 10.1080/10789669.2014.938006 10.1016/j.enbuild.2017.06.008 10.1016/j.enbuild.2017.11.008 10.1016/j.rser.2019.04.021 10.1016/j.buildenv.2006.08.011 10.1016/j.enconman.2006.09.023 10.1016/j.enbuild.2011.09.043 10.1016/j.ijrefrig.2014.10.017 10.1016/j.enbuild.2006.07.011 10.1080/00207160802033582 10.1016/j.neucom.2016.09.076 |
| ContentType | Journal Article |
| Copyright | 2019 Southwest Jiaotong University |
| Copyright_xml | – notice: 2019 Southwest Jiaotong University |
| DBID | 6I. AAFTH AAYXX CITATION DOA |
| DOI | 10.1016/j.enbenv.2019.11.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2666-1233 |
| EndPage | 164 |
| ExternalDocumentID | oai_doaj_org_article_6db5c81a73de4e4090d512cd8382c563 10_1016_j_enbenv_2019_11_003 S2666123319300121 |
| GroupedDBID | 6I. AAEDW AAFTH AALRI AAXUO ACHIH AFPKN AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ 7WY 8FL AAFWJ AAYWO AAYXX ABUWG ACVFH ADCNI ADVLN AEUPX AFFHD AFKRA AFPUW AIGII AKBMS AKYEP BENPR BEZIV CCPQU CITATION DWQXO FRNLG M0C PHGZM PHGZT PIMPY PQBIZ PQBZA |
| ID | FETCH-LOGICAL-c3333-80723d3fc9e81f7a430bad5d9f6647726e6ab6be0b66d73c52a0aa13942633f83 |
| IEDL.DBID | DOA |
| ISSN | 2666-1233 |
| IngestDate | Fri Oct 03 12:39:45 EDT 2025 Thu Nov 20 00:42:55 EST 2025 Tue Nov 18 20:59:34 EST 2025 Fri Feb 23 02:48:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Unsupervised data mining Building energy systems Big data Building energy efficiency Supervised data mining |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3333-80723d3fc9e81f7a430bad5d9f6647726e6ab6be0b66d73c52a0aa13942633f83 |
| OpenAccessLink | https://doaj.org/article/6db5c81a73de4e4090d512cd8382c563 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6db5c81a73de4e4090d512cd8382c563 crossref_primary_10_1016_j_enbenv_2019_11_003 crossref_citationtrail_10_1016_j_enbenv_2019_11_003 elsevier_sciencedirect_doi_10_1016_j_enbenv_2019_11_003 |
| PublicationCentury | 2000 |
| PublicationDate | April 2020 2020-04-00 2020-04-01 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy and built environment |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V KeAi Communications Co., Ltd |
| Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
| References | Zheng, Zhuang, Lian, Yu (bib0048) 2017; 205 Du, Fan, Jin, Chi (bib0152) 2014; 73 Fan, Sun, Zhao, Song, Wang (bib0004) 2019; 240 Dehestani, Eftekhari, Guo, Ling, Su, Nguyen (bib0077) 2011; 1 Zhao, Xiao, Wen, Lu, Wang (bib0095) 2014; 20 Fan, Ding, Liao (bib0049) 2019; 51 Fan, Xiao, Yan (bib0143) 2015; 50 Zhao, Magoulès (bib0010) 2012; 16 Kwok (bib0031) 2011; 52 Capozzoli, Lauro, Khan (bib0148) 2015; 42 Tran, Chen, Ao, Cam (bib0069) 2016; 72 Fumo (bib0013) 2014; 31 Gunay, Shen, Yang (bib0144) 2019; 47 Ahmad, Hassan, Abdullah, Rahman, Hussin, Abdullah (bib0011) 2014; 33 Du, Jin, Yang (bib0060) 2009; 86 Patnaik, Marwah, Sharma, Ramakrishnan (bib0127) 2009 Jakkula, Cook (bib0154) 2010 Li, Hu (bib0150) 2018; 173 Tran, Chen, Jiang (bib0065) 2016; 133 Chalal, Benachir, White, Shrahily (bib0012) 2016; 64 Yu, Haghighat, Fung, Zhou (bib0139) 2012; 47 Zogg, Shafai (bib0146) 2001 Lee, Park, House, Kelly (bib0085) 1996; 102 He, Caudell, Menicucci, Mammoli (bib0091) 2012; 86 Marino, Amarasinghe, Manic (bib0035) 2016; 2016 Kocyigit (bib0087) 2015; 50 Wang, Li, Duić, Mi, Hodge, Shafie-khah (bib0102) 2018; 171 Amasyali, El-Gohary (bib0014) 2018; 81 Zhang, Zhao, Zhang, Fan, Li (bib0052) 2017; 205 Wang, Xiao (bib0159) 2006; 12 Roth, Westphalen, Llana, Feng (bib0007) 2004 . Turner, Staino, Basu (bib0073) 2017; 151 Zhou, Wang, Xiao (bib0086) 2009; 15 Bourdeau, Zhai, Nefzaoui, Guo, Chatellier (bib0019) 2019; 48 Mena, Rodríguez, Castilla, Arahal (bib0029) 2014; 82 Sun, Li, Chen, Liu, Li, Hu (bib0083) 2016; 108 Jin, Du (bib0165) 2006; 26 Fan, Xiao, Madsen, Wang (bib0107) 2015; 109 Wei, Zhang, Shi, Xia, Pan, Wu (bib0018) 2018; 82 Li, Han, Xu (bib0020) 2014; 124 Harish, Kumar (bib0003) 2016; 56 Sun, Li, Chen, Huang, Shi, Hu (bib0088) 2017; 127 Magoulès, Zhao, Elizondo (bib0089) 2013; 62 Deb, Zhang, Yang, Lee, Shah (bib0017) 2017; 74 Quan, Srinivasan, Khosravi (bib0053) 2014; 73 Hao, Zhang, Chen (bib0181) 2005; 37 House, Lee, Shin (bib0145) 1999 Katipamula, Brambley (bib0005) 2005; 11 Shi, Liu, Wei (bib0038) 2016; 216 Du, Chen, Jin (bib0179) 2017; 122 Zhao, Zhong, Zhang, Su (bib0025) 2016; 102 Naji, Keivani, Shamshirband, Alengaram, Jumaat, Mansor (bib0028) 2016; 97 Beghi, Cecchinato, Corazzol, Rampazzo, Simmini, Susto (bib0099) 2014; 47 Guo, Li, Chen, Hu, Li, Xing (bib0176) 2017; 142 Biswas, Robinson, Fumo (bib0027) 2016; 117 Ben-Nakhi, Mahmoud (bib0033) 2004; 45 Mocanu, Nguyen, Gibescu, Kling (bib0036) 2016; 6 Fan, Du, Jin, Yang, Guo (bib0063) 2010; 45 Habib, Zucker (bib0133) 2015 Madhikermi, Yousefnezhad, Främling (bib0161) 2018 Zhao, Magoulès (bib0046) 2010; 4 Wang, Srinivasan (bib0015) 2017; 75 Nikolaou, Kolokotsa, Stavrakakis, Skias (bib0112) 2012; 3 Du, Jin, Yang (bib0164) 2009; 41 Zhang, Zhao, Zhang (bib0140) 2019; 158 Xiao, Wang, Fan (bib0142) 2017 Lee, Cheng (bib0006) 2016; 56 Ahmad, Mourshed, Rezgui (bib0030) 2017; 147 Fan, Sun, Shan, Xiao, Wang (bib0108) 2018; 224 Massana, Pous, Burgas, Melendez, Colomer (bib0042) 2015; 92 Shao, Marwah, Ramakrishnan (bib0130) 2013; 2013 Liu, Chen, Mori (bib0040) 2015 Liang, Du (bib0076) 2007; 30 Zhao, Li, Zhang, Zhang (bib0075) 2019; 109 Lai, Magoulès, Lherminier (bib0041) 2008; 85 Li, Ren, Meng (bib0043) 2010 Kalluri, Kamilaris, Kondepudi, Kua, Tham (bib0134) 2016; 127 Zhao, Wang, Xiao (bib0067) 2013; 51 Chou, Bui (bib0050) 2014; 82 Kwac, Flora, Rajagopal (bib0120) 2014; 5 Khan, Capozzoli, Corgnati, Cerquitelli (bib0149) 2013; 42 Narayanaswamy, Balaji, Gupta, Agarwal (bib0151) 2014 Du, Fan, Chi, Jin (bib0059) 2014; 72 Fan, Xiao, Wang (bib0051) 2014; 127 Vázquez-Canteli, Ulyanin, Kämpf, Nagy (bib0002) 2019; 45 Han, Pei, Yin (bib0138) 2000; 29 Wang, Xiao (bib0157) 2004; 36 Du, Jin, Yang (bib0061) 2008; 14 Wang, Xiao (bib0158) 2004; 45 Zhao, Wang, Xiao (bib0068) 2013; 19 Iglesias, Kastner (bib0121) 2013; 6 Han, Gu, Hong, Kang (bib0079) 2011; 43 Farrou, Kolokotroni, Santamouris (bib0119) 2012; 55 Miller, Nagy, Schlueter (bib0022) 2018; 81 Wall, Guo, Li, West (bib0153) 2011; 117 Xiao, Wang, Zhang (bib0160) 2006; 15 Fan, Xiao (bib0106) 2018; 39 Fan, Xiao, Li, Wang (bib0009) 2018; 159 Yan, Ji, Shen (bib0098) 2017; 228 Qiu, Feng, Li, Yang, Xu, Li (bib0103) 2019; 12 Yan, Shen, Mulumba, Afshari (bib0082) 2014; 81 Du, Jin, Wu (bib0168) 2007; 13 Chicco (bib0111) 2012; 42 Guo, Li, Chen, Hu, Li, Liu (bib0177) 2017; 115 Yan, Ma, Zhao, Kokogiannakis (bib0093) 2016; 133 Lavin, Klabjan (bib0117) 2015; 8 Zhang, Xue, Zhao, Zhang, Li (bib0141) 2019; 253 Hu, Li, Chen, Li, Liu (bib0172) 2016; 63 Fan, Xiao, Zhao (bib0026) 2017; 195 Petcharat, Chungpaibulpatana, Rakkwamsuk (bib0125) 2012; 52 Li, Lǔ, Ding, Xu, Li (bib0044) 2009; 1 Wang, Jiang (bib0057) 2004; 36 Capozzoli, Piscitelli, Brandi, Grassi, Chicco (bib0155) 2018; 157 Xue, Zhou, Fang, Chen, Liu, Liu (bib0101) 2017; 205 Yu, Yu, Sun, Deng, Wu, Cong (bib0171) 2017; 205 Patnaik, Marwah, Sharma, Ramakrishnan (bib0128) 2010 Patnaik, Marwah, Sharma, Ramakrishnan (bib0129) 2011; 2 Du, Jin, Wu (bib0163) 2007; 42 Du, Jin (bib0166) 2007; 48 Fan, Xiao, Song, Wang (bib0110) 2019; 251 Miller, Nagy, Schlueter (bib0115) 2015; 49 Karami, Wang (bib0074) 2018; 166 Du, Jin (bib0156) 2008; 49 Wang, Zhou, Xiao (bib0180) 2010; 42 Cabrera, Zareipour (bib0137) 2013; 62 Bagnasco, Fresi, Saviozzi, Silvestro, Vinci (bib0023) 2015; 103 Lee, House, Kyong (bib0056) 2004; 77 Fan, Xiao (bib0105) 2017; 111 Chicco, Ilie (bib0124) 2009; 24 Wang, Cui (bib0174) 2005; 82 Paudel, Elmitri, Couturier, Nguyen, Kamphuis, Lacarrière (bib0045) 2017; 138 Wang, Qin (bib0169) 2005; 46 Du, Jin (bib0167) 2007; 39 Miller, Schlueter (bib0116) 2015 Han, Gu, Wang, Li (bib0080) 2011; 34 Shi, Li, Chen, Hu, Wang, Guo (bib0178) 2018; 129 Dong, Cao, Lee (bib0024) 2005; 37 International Energy Agency (IEA), Transition to Sustainable Buildings: Strategies and Opportunities to 2050, 27 Jun 2013 Xu, Xiao, Wang (bib0173) 2008; 28 Zogg, Shafai, Geering (bib0147) 2006; 14 Chung (bib0071) 2012; 95 Feng, Li (bib0104) 2017; 105 Reinhardt, Koessler (bib0132) 2014 Beghi, Brignoli, Cecchinato, Menegazzo, Rampazzo (bib0175) 2015 Capozzoli, Cerquitelli, Piscitelli (bib0021) 2016 Li, Hu, Chen, Li, Hu, Guo (bib0100) 2017; 185 Fan, Wang, Gang, Li (bib0034) 2019; 236 Swider, Browne, Bansal, Kecman (bib0066) 2001; 21 Wu, Clements-Croome (bib0113) 2007; 39 Han, Gu, Kang, Li (bib0078) 2011; 31 Fan, Song, Xiao, Xue (bib0109) 2019; 158 Du, Fan, Jin, Chi (bib0058) 2014; 73 Guan, Luh, Michel, Chi (bib0054) 2013; 28 Yu, Haghighat, Fung (bib0008) 2016; 25 Dahl, Brun, Andresen (bib0055) 2017; 193 Wang, Gao (bib0072) 2017; 14 Amber, Ahmad, Aslam, Kousar, Usman, Khan (bib0037) 2018; 157 Gao, Malkawi (bib0114) 2014; 84 Han, Cao, Gu, Ren (bib0081) 2010; 16 Hou, Lian, Yao, Yuan (bib0032) 2006; 83 Mavromatidis, Acha, Shah (bib0064) 2013; 62 Li, Hu, Chen, Shen, Li, Hu (bib0097) 2016; 116 Santamouris, Mihalakakou, Patargias, Gaitani, Sfakianaki, Papaglastra (bib0123) 2007; 39 Van Every, Rodriguez, Jones, Mammoli, Martínez-Ramón (bib0070) 2017; 149 Fonseca, Miller, Schlueter (bib0131) 2017; 122 Chen, Lan (bib0170) 2009; 41 Hou, Lian (bib0047) 2009 Xiao, Fan (bib0136) 2014; 75 Zhao, Wang, Xiao (bib0094) 2013; 112 Li, Wen (bib0162) 2014; 68 Zhu, Jin, Du (bib0062) 2012; 44 Qin, Zhang (bib0122) 2017; 156 Pieri, IoannisTzouvadakis (bib0118) 2015; 94 Li, Hu, Chen, Li, Hu, Guo (bib0096) 2016; 133 Guo, Tan, Chen, Li, Wang, Huang (bib0092) 2018; 225 Chen, Wen (bib0135) 2017 He, Menicucci, Caudell, Mammoli (bib0090) 2011 Fu, Li, Zhang, Xu (bib0039) 2015; 121 Mat Daut, Hassan, Abdullah, Rahman, Abdullah, Hussin (bib0016) 2017; 70 Yan, Ma, Dai, Shen, Ji, Xie (bib0084) 2018; 86 Liu, Wang, Li, Chen, Shen, Xing (bib0126) 2017; 208 Amasyali (10.1016/j.enbenv.2019.11.003_bib0014) 2018; 81 Du (10.1016/j.enbenv.2019.11.003_bib0163) 2007; 42 Hou (10.1016/j.enbenv.2019.11.003_bib0032) 2006; 83 Guan (10.1016/j.enbenv.2019.11.003_bib0054) 2013; 28 Nikolaou (10.1016/j.enbenv.2019.11.003_bib0112) 2012; 3 Zhao (10.1016/j.enbenv.2019.11.003_bib0010) 2012; 16 Paudel (10.1016/j.enbenv.2019.11.003_bib0045) 2017; 138 Turner (10.1016/j.enbenv.2019.11.003_bib0073) 2017; 151 Shi (10.1016/j.enbenv.2019.11.003_bib0038) 2016; 216 Yan (10.1016/j.enbenv.2019.11.003_bib0093) 2016; 133 Dong (10.1016/j.enbenv.2019.11.003_bib0024) 2005; 37 Han (10.1016/j.enbenv.2019.11.003_bib0080) 2011; 34 Kwok (10.1016/j.enbenv.2019.11.003_bib0031) 2011; 52 Du (10.1016/j.enbenv.2019.11.003_bib0168) 2007; 13 Xu (10.1016/j.enbenv.2019.11.003_bib0173) 2008; 28 Shi (10.1016/j.enbenv.2019.11.003_bib0178) 2018; 129 Miller (10.1016/j.enbenv.2019.11.003_bib0115) 2015; 49 Guo (10.1016/j.enbenv.2019.11.003_bib0176) 2017; 142 Wang (10.1016/j.enbenv.2019.11.003_bib0169) 2005; 46 Li (10.1016/j.enbenv.2019.11.003_bib0162) 2014; 68 Xiao (10.1016/j.enbenv.2019.11.003_bib0142) 2017 Wang (10.1016/j.enbenv.2019.11.003_bib0158) 2004; 45 Fan (10.1016/j.enbenv.2019.11.003_bib0105) 2017; 111 Van Every (10.1016/j.enbenv.2019.11.003_bib0070) 2017; 149 Gao (10.1016/j.enbenv.2019.11.003_bib0114) 2014; 84 Tran (10.1016/j.enbenv.2019.11.003_bib0069) 2016; 72 Roth (10.1016/j.enbenv.2019.11.003_bib0007) 2004 Yu (10.1016/j.enbenv.2019.11.003_bib0008) 2016; 25 Ahmad (10.1016/j.enbenv.2019.11.003_bib0011) 2014; 33 Wang (10.1016/j.enbenv.2019.11.003_bib0157) 2004; 36 Naji (10.1016/j.enbenv.2019.11.003_bib0028) 2016; 97 Zhao (10.1016/j.enbenv.2019.11.003_bib0025) 2016; 102 Biswas (10.1016/j.enbenv.2019.11.003_bib0027) 2016; 117 Miller (10.1016/j.enbenv.2019.11.003_bib0116) 2015 Fu (10.1016/j.enbenv.2019.11.003_bib0039) 2015; 121 Katipamula (10.1016/j.enbenv.2019.11.003_bib0005) 2005; 11 Patnaik (10.1016/j.enbenv.2019.11.003_bib0129) 2011; 2 Fonseca (10.1016/j.enbenv.2019.11.003_bib0131) 2017; 122 He (10.1016/j.enbenv.2019.11.003_bib0091) 2012; 86 Habib (10.1016/j.enbenv.2019.11.003_bib0133) 2015 Qin (10.1016/j.enbenv.2019.11.003_bib0122) 2017; 156 Li (10.1016/j.enbenv.2019.11.003_bib0097) 2016; 116 Li (10.1016/j.enbenv.2019.11.003_bib0100) 2017; 185 Zhang (10.1016/j.enbenv.2019.11.003_bib0052) 2017; 205 Du (10.1016/j.enbenv.2019.11.003_bib0179) 2017; 122 Wu (10.1016/j.enbenv.2019.11.003_bib0113) 2007; 39 Guo (10.1016/j.enbenv.2019.11.003_bib0092) 2018; 225 Zogg (10.1016/j.enbenv.2019.11.003_bib0146) 2001 Wang (10.1016/j.enbenv.2019.11.003_bib0072) 2017; 14 Han (10.1016/j.enbenv.2019.11.003_bib0079) 2011; 43 Sun (10.1016/j.enbenv.2019.11.003_bib0083) 2016; 108 Liu (10.1016/j.enbenv.2019.11.003_bib0126) 2017; 208 Han (10.1016/j.enbenv.2019.11.003_bib0081) 2010; 16 Lee (10.1016/j.enbenv.2019.11.003_bib0006) 2016; 56 Khan (10.1016/j.enbenv.2019.11.003_bib0149) 2013; 42 Chalal (10.1016/j.enbenv.2019.11.003_bib0012) 2016; 64 Cabrera (10.1016/j.enbenv.2019.11.003_bib0137) 2013; 62 Zhang (10.1016/j.enbenv.2019.11.003_bib0140) 2019; 158 Zhao (10.1016/j.enbenv.2019.11.003_bib0046) 2010; 4 Sun (10.1016/j.enbenv.2019.11.003_bib0088) 2017; 127 Reinhardt (10.1016/j.enbenv.2019.11.003_bib0132) 2014 Li (10.1016/j.enbenv.2019.11.003_bib0020) 2014; 124 Miller (10.1016/j.enbenv.2019.11.003_bib0022) 2018; 81 Karami (10.1016/j.enbenv.2019.11.003_bib0074) 2018; 166 Zhang (10.1016/j.enbenv.2019.11.003_bib0141) 2019; 253 Kalluri (10.1016/j.enbenv.2019.11.003_bib0134) 2016; 127 Du (10.1016/j.enbenv.2019.11.003_bib0152) 2014; 73 Jakkula (10.1016/j.enbenv.2019.11.003_bib0154) 2010 Chicco (10.1016/j.enbenv.2019.11.003_bib0111) 2012; 42 Han (10.1016/j.enbenv.2019.11.003_bib0138) 2000; 29 Quan (10.1016/j.enbenv.2019.11.003_bib0053) 2014; 73 Du (10.1016/j.enbenv.2019.11.003_bib0058) 2014; 73 Wang (10.1016/j.enbenv.2019.11.003_bib0174) 2005; 82 Fan (10.1016/j.enbenv.2019.11.003_bib0063) 2010; 45 Ahmad (10.1016/j.enbenv.2019.11.003_bib0030) 2017; 147 Beghi (10.1016/j.enbenv.2019.11.003_bib0175) 2015 Yan (10.1016/j.enbenv.2019.11.003_bib0098) 2017; 228 Wang (10.1016/j.enbenv.2019.11.003_bib0102) 2018; 171 Liu (10.1016/j.enbenv.2019.11.003_bib0040) 2015 Fan (10.1016/j.enbenv.2019.11.003_bib0049) 2019; 51 Wall (10.1016/j.enbenv.2019.11.003_bib0153) 2011; 117 Dahl (10.1016/j.enbenv.2019.11.003_bib0055) 2017; 193 Beghi (10.1016/j.enbenv.2019.11.003_bib0099) 2014; 47 Wang (10.1016/j.enbenv.2019.11.003_bib0159) 2006; 12 Li (10.1016/j.enbenv.2019.11.003_bib0044) 2009; 1 Gunay (10.1016/j.enbenv.2019.11.003_bib0144) 2019; 47 Fumo (10.1016/j.enbenv.2019.11.003_bib0013) 2014; 31 Fan (10.1016/j.enbenv.2019.11.003_bib0106) 2018; 39 Chou (10.1016/j.enbenv.2019.11.003_bib0050) 2014; 82 Santamouris (10.1016/j.enbenv.2019.11.003_bib0123) 2007; 39 Harish (10.1016/j.enbenv.2019.11.003_bib0003) 2016; 56 Du (10.1016/j.enbenv.2019.11.003_bib0059) 2014; 72 Chen (10.1016/j.enbenv.2019.11.003_bib0135) 2017 Du (10.1016/j.enbenv.2019.11.003_bib0061) 2008; 14 Xue (10.1016/j.enbenv.2019.11.003_bib0101) 2017; 205 Patnaik (10.1016/j.enbenv.2019.11.003_bib0127) 2009 Du (10.1016/j.enbenv.2019.11.003_bib0156) 2008; 49 Shao (10.1016/j.enbenv.2019.11.003_bib0130) 2013; 2013 Fan (10.1016/j.enbenv.2019.11.003_bib0004) 2019; 240 He (10.1016/j.enbenv.2019.11.003_bib0090) 2011 Guo (10.1016/j.enbenv.2019.11.003_bib0177) 2017; 115 Tran (10.1016/j.enbenv.2019.11.003_bib0065) 2016; 133 Vázquez-Canteli (10.1016/j.enbenv.2019.11.003_bib0002) 2019; 45 Lee (10.1016/j.enbenv.2019.11.003_bib0056) 2004; 77 Zhou (10.1016/j.enbenv.2019.11.003_bib0086) 2009; 15 Capozzoli (10.1016/j.enbenv.2019.11.003_bib0148) 2015; 42 Du (10.1016/j.enbenv.2019.11.003_bib0167) 2007; 39 Wei (10.1016/j.enbenv.2019.11.003_bib0018) 2018; 82 Amber (10.1016/j.enbenv.2019.11.003_bib0037) 2018; 157 Capozzoli (10.1016/j.enbenv.2019.11.003_bib0021) 2016 Lai (10.1016/j.enbenv.2019.11.003_bib0041) 2008; 85 Li (10.1016/j.enbenv.2019.11.003_bib0043) 2010 Yan (10.1016/j.enbenv.2019.11.003_bib0082) 2014; 81 Fan (10.1016/j.enbenv.2019.11.003_bib0110) 2019; 251 Lavin (10.1016/j.enbenv.2019.11.003_bib0117) 2015; 8 10.1016/j.enbenv.2019.11.003_bib0001 Fan (10.1016/j.enbenv.2019.11.003_bib0034) 2019; 236 Fan (10.1016/j.enbenv.2019.11.003_bib0009) 2018; 159 Zhao (10.1016/j.enbenv.2019.11.003_bib0068) 2013; 19 Kwac (10.1016/j.enbenv.2019.11.003_bib0120) 2014; 5 Fan (10.1016/j.enbenv.2019.11.003_bib0143) 2015; 50 Xiao (10.1016/j.enbenv.2019.11.003_bib0160) 2006; 15 Du (10.1016/j.enbenv.2019.11.003_bib0166) 2007; 48 Bagnasco (10.1016/j.enbenv.2019.11.003_bib0023) 2015; 103 Zogg (10.1016/j.enbenv.2019.11.003_bib0147) 2006; 14 Fan (10.1016/j.enbenv.2019.11.003_bib0108) 2018; 224 House (10.1016/j.enbenv.2019.11.003_bib0145) 1999 Zhu (10.1016/j.enbenv.2019.11.003_bib0062) 2012; 44 Han (10.1016/j.enbenv.2019.11.003_bib0078) 2011; 31 Mocanu (10.1016/j.enbenv.2019.11.003_bib0036) 2016; 6 Mavromatidis (10.1016/j.enbenv.2019.11.003_bib0064) 2013; 62 Hao (10.1016/j.enbenv.2019.11.003_bib0181) 2005; 37 Fan (10.1016/j.enbenv.2019.11.003_bib0026) 2017; 195 Zhao (10.1016/j.enbenv.2019.11.003_bib0094) 2013; 112 Capozzoli (10.1016/j.enbenv.2019.11.003_bib0155) 2018; 157 Hou (10.1016/j.enbenv.2019.11.003_bib0047) 2009 Iglesias (10.1016/j.enbenv.2019.11.003_bib0121) 2013; 6 Narayanaswamy (10.1016/j.enbenv.2019.11.003_bib0151) 2014 Du (10.1016/j.enbenv.2019.11.003_bib0164) 2009; 41 Bourdeau (10.1016/j.enbenv.2019.11.003_bib0019) 2019; 48 Marino (10.1016/j.enbenv.2019.11.003_bib0035) 2016; 2016 Petcharat (10.1016/j.enbenv.2019.11.003_bib0125) 2012; 52 Massana (10.1016/j.enbenv.2019.11.003_bib0042) 2015; 92 Xiao (10.1016/j.enbenv.2019.11.003_bib0136) 2014; 75 Yan (10.1016/j.enbenv.2019.11.003_bib0084) 2018; 86 Fan (10.1016/j.enbenv.2019.11.003_bib0051) 2014; 127 Swider (10.1016/j.enbenv.2019.11.003_bib0066) 2001; 21 Liang (10.1016/j.enbenv.2019.11.003_bib0076) 2007; 30 Zhao (10.1016/j.enbenv.2019.11.003_bib0095) 2014; 20 Feng (10.1016/j.enbenv.2019.11.003_bib0104) 2017; 105 Hu (10.1016/j.enbenv.2019.11.003_bib0172) 2016; 63 Wang (10.1016/j.enbenv.2019.11.003_bib0057) 2004; 36 Pieri (10.1016/j.enbenv.2019.11.003_bib0118) 2015; 94 Mena (10.1016/j.enbenv.2019.11.003_bib0029) 2014; 82 Li (10.1016/j.enbenv.2019.11.003_bib0096) 2016; 133 Qiu (10.1016/j.enbenv.2019.11.003_bib0103) 2019; 12 Mat Daut (10.1016/j.enbenv.2019.11.003_bib0016) 2017; 70 Zheng (10.1016/j.enbenv.2019.11.003_bib0048) 2017; 205 Chung (10.1016/j.enbenv.2019.11.003_bib0071) 2012; 95 Kocyigit (10.1016/j.enbenv.2019.11.003_bib0087) 2015; 50 Chen (10.1016/j.enbenv.2019.11.003_bib0170) 2009; 41 Zhao (10.1016/j.enbenv.2019.11.003_bib0075) 2019; 109 Chicco (10.1016/j.enbenv.2019.11.003_bib0124) 2009; 24 Li (10.1016/j.enbenv.2019.11.003_bib0150) 2018; 173 Wang (10.1016/j.enbenv.2019.11.003_bib0015) 2017; 75 Zhao (10.1016/j.enbenv.2019.11.003_bib0067) 2013; 51 Lee (10.1016/j.enbenv.2019.11.003_bib0085) 1996; 102 Du (10.1016/j.enbenv.2019.11.003_bib0060) 2009; 86 Jin (10.1016/j.enbenv.2019.11.003_bib0165) 2006; 26 Fan (10.1016/j.enbenv.2019.11.003_bib0109) 2019; 158 Patnaik (10.1016/j.enbenv.2019.11.003_bib0128) 2010 Yu (10.1016/j.enbenv.2019.11.003_bib0171) 2017; 205 Deb (10.1016/j.enbenv.2019.11.003_bib0017) 2017; 74 Dehestani (10.1016/j.enbenv.2019.11.003_bib0077) 2011; 1 Magoulès (10.1016/j.enbenv.2019.11.003_bib0089) 2013; 62 Madhikermi (10.1016/j.enbenv.2019.11.003_bib0161) 2018 Wang (10.1016/j.enbenv.2019.11.003_bib0180) 2010; 42 Farrou (10.1016/j.enbenv.2019.11.003_bib0119) 2012; 55 Ben-Nakhi (10.1016/j.enbenv.2019.11.003_bib0033) 2004; 45 Fan (10.1016/j.enbenv.2019.11.003_bib0107) 2015; 109 Yu (10.1016/j.enbenv.2019.11.003_bib0139) 2012; 47 |
| References_xml | – volume: 94 start-page: 252 year: 2015 end-page: 262 ident: bib0118 article-title: Identifying energy consumption patterns in the ATTICA hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint publication-title: Energy Build. – volume: 21 start-page: 311 year: 2001 end-page: 329 ident: bib0066 article-title: Modelling of vapour-compression liquid chillers with neural networks publication-title: Appl. Therm. Eng. – volume: 97 start-page: 506 year: 2016 end-page: 516 ident: bib0028 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy – volume: 13 start-page: 349 year: 2007 end-page: 367 ident: bib0168 article-title: PCA-FDA-based fault diagnosis for sensors in VAV systems publication-title: HVAC&R Res. – volume: 51 start-page: 560 year: 2013 end-page: 572 ident: bib0067 article-title: A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression publication-title: Appl. Therm. Eng. – volume: 47 start-page: 518 year: 2019 end-page: 533 ident: bib0144 article-title: Text-mining building maintenance work orders for component fault frequency publication-title: Build. Res Inf. – volume: 195 start-page: 222 year: 2017 end-page: 233 ident: bib0026 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl. Energy – volume: 133 start-page: 230 year: 2016 end-page: 245 ident: bib0096 article-title: A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based publication-title: Energy Build. – volume: 117 start-page: 449 year: 2011 end-page: 456 ident: bib0153 article-title: A dynamic machine learning-based technique for automated fault detection in HVAC systems publication-title: ASHRAE Trans. – volume: 121 start-page: 1016 year: 2015 end-page: 1022 ident: bib0039 article-title: Using support vector machine to predict next day electricity load of public buildings with sub-metering devices publication-title: Procedia Eng. – volume: 52 start-page: 2555 year: 2011 end-page: 2564 ident: bib0031 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Conv. Manag. – volume: 111 start-page: 1070 year: 2017 end-page: 1078 ident: bib0105 article-title: Assessment of building operational performance using data mining techniques: a case study publication-title: Energy Procedia – volume: 92 start-page: 322 year: 2015 end-page: 330 ident: bib0042 article-title: Short-term load forecasting in a non-residential building contrasting models and attributes publication-title: Energy Build. – start-page: 1 year: 2009 end-page: 4 ident: bib0047 article-title: An application of support vector machines in cooling load prediction publication-title: Proceedings of the International Workshop on Intelligent Systems and Applications – volume: 86 start-page: 2318 year: 2012 end-page: 2333 ident: bib0091 article-title: Application of Adaptive Resonance Theory neural networks to monitor solar hot water systems and detect existing or developing faults publication-title: Solar Energy – volume: 2 start-page: 1 year: 2011 end-page: 29 ident: bib0129 article-title: Temporal data mining approaches for sustainable chiller management in data centers publication-title: ACM Trans. Intell. Syst. Technol. – volume: 12 start-page: 195 year: 2019 end-page: 205 ident: bib0103 article-title: Data mining based framework to identify rule based operation strategies for buildings with power metering system publication-title: Build. Simul. – volume: 133 start-page: 37 year: 2016 end-page: 45 ident: bib0093 article-title: A decision tree based data-driven diagnostic strategy for air handling units publication-title: Energy Build. – volume: 1 start-page: 66 year: 2011 end-page: 72 ident: bib0077 article-title: Online support vector machine application for model based fault detection and isolation of HVAC system publication-title: Int. J. Mach. Learn. Comput. – volume: 43 start-page: 2524 year: 2011 end-page: 2532 ident: bib0079 article-title: Automated fdd of multiple-simultaneous faults (MSF) and the application to building chillers publication-title: Energy Build. – volume: 86 start-page: 1624 year: 2009 end-page: 1631 ident: bib0060 article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network publication-title: Appl. Energy – start-page: 70 year: 2001 end-page: 76 ident: bib0146 article-title: Geering HPBT-IIC on CA. a fault diagnosis system for heat pumps publication-title: Proceedings of the IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204) – volume: 122 start-page: 237 year: 2017 end-page: 248 ident: bib0179 article-title: Data-driven based reliability evaluation for measurements of sensors in a vapor compression system publication-title: Energy – volume: 253 year: 2019 ident: bib0141 article-title: An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems publication-title: Appl. Energy – volume: 64 start-page: 761 year: 2016 end-page: 776 ident: bib0012 article-title: Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review publication-title: Renew. Sustain. Energy Rev. – volume: 77 start-page: 153 year: 2004 end-page: 170 ident: bib0056 article-title: Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks publication-title: Appl. Energy – start-page: 303 year: 2015 end-page: 308 ident: bib0133 article-title: Finding the different patterns in buildings data using bag of words representation with clustering publication-title: Proceedings of 13th International Conference on Frontiers of Information Technology (FIT) – volume: 52 start-page: 145 year: 2012 end-page: 152 ident: bib0125 article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings publication-title: Energy Build. – volume: 49 start-page: 3654 year: 2008 end-page: 3665 ident: bib0156 article-title: Multiple faults diagnosis for sensors in air handling unit using Fisher discriminant analysis publication-title: Energy Conv. Manag. – volume: 82 start-page: 437 year: 2014 end-page: 446 ident: bib0050 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build. – reference: International Energy Agency (IEA), Transition to Sustainable Buildings: Strategies and Opportunities to 2050, 27 Jun 2013, – start-page: 1059 year: 2011 end-page: 1065 ident: bib0090 article-title: Real-time fault detection for solar hot water systems using adaptive resonance theory neural networks publication-title: Proceedings of the 5th International Conference on Energy Sustainability – start-page: 728 year: 2017 end-page: 732 ident: bib0135 article-title: Whole building system fault detection based on weather pattern matching and PCA method publication-title: Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE) – volume: 142 start-page: 167 year: 2017 end-page: 178 ident: bib0176 article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis publication-title: Energy Build. – volume: 2013 start-page: 1327 year: 2013 end-page: 1333 ident: bib0130 article-title: A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings publication-title: Proceedings of Twenty-Seventh AAAI Conference on Artificial Intelligence – start-page: 1 year: 2017 end-page: 3 ident: bib0142 article-title: Mining big building operational data for building cooling load prediction and energy efficiency improvement publication-title: Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP) – volume: 24 start-page: 1619 year: 2009 end-page: 1628 ident: bib0124 article-title: Support vector clustering of electrical load pattern data publication-title: IEEE Trans. Power Syst. – volume: 62 start-page: 133 year: 2013 end-page: 138 ident: bib0089 article-title: Development of an rdp neural network for building energy consumption fault detection and diagnosis publication-title: Energy Build. – start-page: 531 year: 2014 end-page: 538 ident: bib0132 article-title: PowerSAX: fast motif matching in distributed power meter data using symbolic representations publication-title: Proceedings of 39th Annual IEEE Conference on Local Computer Networks Workshops – start-page: 50 year: 2014 end-page: 59 ident: bib0151 article-title: Data driven investigation of faults in HVAC systems with Model, Cluster and Compare (MCC) publication-title: Proceedings of 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings – volume: 39 start-page: 117 year: 2018 end-page: 128 ident: bib0106 article-title: Mining big building operational data for improving building energy efficiency: a case study publication-title: Build. Serv. Eng. Res. Technol. – volume: 6 start-page: 579 year: 2013 end-page: 597 ident: bib0121 article-title: Analysis of similarity measures in times series clustering for the discovery of building energy patterns publication-title: Energies – volume: 37 start-page: 545 year: 2005 end-page: 553 ident: bib0024 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. – volume: 19 start-page: 593 year: 2013 end-page: 601 ident: bib0068 article-title: A system-level incipient fault-detection method for HVAC systems publication-title: HVAC&R Res. – volume: 156 start-page: 78 year: 2017 end-page: 84 ident: bib0122 article-title: Sampling for building energy consumption with fuzzy theory publication-title: Energy Build. – volume: 109 start-page: 85 year: 2019 end-page: 101 ident: bib0075 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future publication-title: Renew. Sustain. Energy Rev. – volume: 228 start-page: 205 year: 2017 end-page: 212 ident: bib0098 article-title: Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM publication-title: Neurocomputing – start-page: 125 year: 2010 end-page: 136 ident: bib0128 article-title: Data mining for modeling chiller systems in data centers publication-title: Advances in Intelligent Data Analysis IX – volume: 28 start-page: 226 year: 2008 end-page: 237 ident: bib0173 article-title: Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods publication-title: Appl. Therm. Eng. – volume: 81 start-page: 1192 year: 2018 end-page: 1205 ident: bib0014 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew. Sustain. Energy Rev. – volume: 122 start-page: 229 year: 2017 end-page: 234 ident: bib0131 article-title: Unsupervised load shape clustering for urban building performance assessment publication-title: Energy Procedia – volume: 208 start-page: 522 year: 2017 end-page: 539 ident: bib0126 article-title: Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques publication-title: Appl. Energy – volume: 216 start-page: 478 year: 2016 end-page: 488 ident: bib0038 article-title: Energy consumption prediction of office buildings based on echo state networks publication-title: Neurocomputing – volume: 157 start-page: 336 year: 2018 end-page: 352 ident: bib0155 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy – volume: 251 year: 2019 ident: bib0110 article-title: A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management publication-title: Appl. Energy – volume: 151 start-page: 1 year: 2017 end-page: 17 ident: bib0073 article-title: Residential HVAC fault detection using a system identification approach publication-title: Energy Build. – volume: 56 start-page: 760 year: 2016 end-page: 777 ident: bib0006 article-title: Energy savings by energy management systems: a review publication-title: Renew. Sustain. Energy Rev. – volume: 39 start-page: 1183 year: 2007 end-page: 1191 ident: bib0113 article-title: Understanding the indoor environment through mining sensory data—A case study publication-title: Energy Build. – volume: 30 start-page: 1104 year: 2007 end-page: 1114 ident: bib0076 article-title: Model-based fault detection and diagnosis of HVAC systems using support vector machine method publication-title: Int. J. Refrigeration – volume: 39 start-page: 923 year: 2007 end-page: 934 ident: bib0167 article-title: Detection and diagnosis for multiple faults in VAV systems publication-title: Energy Build. – volume: 73 start-page: 1 year: 2014 end-page: 11 ident: bib0058 article-title: Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis publication-title: Build. Environ. – volume: 42 start-page: 4324 year: 2015 end-page: 4338 ident: bib0148 article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings publication-title: Expert Syst. Appl. – volume: 15 start-page: 57 year: 2009 end-page: 75 ident: bib0086 article-title: A novel strategy for the fault detection and diagnosis of centrifugal chiller systems publication-title: HVAC&R Res. – volume: 49 start-page: 1 year: 2015 end-page: 17 ident: bib0115 article-title: Automated daily pattern filtering of measured building performance data publication-title: Autom. Construct. – volume: 83 start-page: 1033 year: 2006 end-page: 1046 ident: bib0032 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique publication-title: Appl. Energy – volume: 82 start-page: 197 year: 2005 end-page: 213 ident: bib0174 article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method publication-title: Appl. Energy – volume: 29 start-page: 1 year: 2000 end-page: 12 ident: bib0138 article-title: Mining frequent patterns without candidate generation publication-title: SIGMOD Rec. (ACM Spec. Interest Group Manag. Data) – volume: 41 start-page: 881 year: 2009 end-page: 887 ident: bib0170 article-title: A fault detection technique for air-source heat pump water chiller/heaters publication-title: Energy Build. – volume: 70 start-page: 1108 year: 2017 end-page: 1118 ident: bib0016 article-title: Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: a review publication-title: Renew. Sustain. Energy Rev. – volume: 102 start-page: 540 year: 1996 end-page: 549 ident: bib0085 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – volume: 1 start-page: 55 year: 2009 end-page: 58 ident: bib0044 article-title: Building cooling load forecasting model based on LS-SVM publication-title: Proceedings of the Asia-Pacific Conference on Information Processing – volume: 46 start-page: 2482 year: 2005 end-page: 2500 ident: bib0169 article-title: Sensor fault detection and validation of VAV terminals in air conditioning systems publication-title: Energy Conv. Manag. – volume: 37 start-page: 175 year: 2005 end-page: 180 ident: bib0181 article-title: Fault-tolerant control and data recovery in HVAC monitoring system publication-title: Energy Build. – volume: 105 start-page: 2499 year: 2017 end-page: 2505 ident: bib0104 article-title: A methodology to identify multiple equipment coordinated control with power metering system publication-title: Energy Procedia – volume: 47 start-page: 430 year: 2012 end-page: 440 ident: bib0139 article-title: A novel methodology for knowledge discovery through mining associations between building operational data publication-title: Energy Build. – volume: 127 start-page: 1 year: 2014 end-page: 10 ident: bib0051 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl. Energy – volume: 95 start-page: 45 year: 2012 end-page: 49 ident: bib0071 article-title: Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings publication-title: Appl. Energy – volume: 34 start-page: 586 year: 2011 end-page: 599 ident: bib0080 article-title: Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning publication-title: Int. J. Refrigeration – start-page: 665 year: 2004 ident: bib0007 article-title: The energy impact of faults in U.S. commercial buildings publication-title: Proceedings of the International Refrigeration and Air Conditioning Conference – volume: 108 start-page: 989 year: 2016 end-page: 998 ident: bib0083 article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount publication-title: Appl. Therm. Eng. – start-page: 136 year: 2015 end-page: 143 ident: bib0116 article-title: Forensically discovering simulation feedback knowledge from a campus energy information system publication-title: Proceedings of the Symposium on Simulation for Architecture & Urban Design – volume: 81 start-page: 287 year: 2014 end-page: 295 ident: bib0082 article-title: ARX model based fault detection and diagnosis for chillers using support vector machines publication-title: Energy Build. – volume: 147 start-page: 77 year: 2017 end-page: 89 ident: bib0030 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. – volume: 5 start-page: 420 year: 2014 end-page: 430 ident: bib0120 article-title: Household energy consumption segmentation using hourly data publication-title: IEEE Trans. Smart Grid – volume: 4 start-page: 231 year: 2010 end-page: 249 ident: bib0046 article-title: Parallel support vector machines applied to the prediction of multiple buildings energy consumption publication-title: J. Algorithm Comput. Technol. – volume: 50 start-page: 69 year: 2015 end-page: 79 ident: bib0087 article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network publication-title: Int. J. Refrigeration – volume: 47 start-page: 1953 year: 2014 end-page: 1958 ident: bib0099 article-title: A one-class SVM based tool for machine learning novelty detection in HVAC chiller systems publication-title: IFAC Proc. Vol. – volume: 205 start-page: 1064 year: 2017 end-page: 1071 ident: bib0171 article-title: Research on the PCA-based intelligent fault detection methodology for sewage source heat pump system publication-title: Procedia Eng. – volume: 205 start-page: 716 year: 2017 end-page: 723 ident: bib0048 article-title: Study on building energy load prediction based on monitoring data publication-title: Procedia Eng. – volume: 85 start-page: 1563 year: 2008 end-page: 1588 ident: bib0041 article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings publication-title: Int. J. Comput. Math. – volume: 31 start-page: 582 year: 2011 end-page: 592 ident: bib0078 article-title: Study on a hybrid SVM model for chiller FDD applications publication-title: Appl. Therm. Eng. – volume: 116 start-page: 104 year: 2016 end-page: 113 ident: bib0097 article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm publication-title: Energy Build. – volume: 193 start-page: 455 year: 2017 end-page: 465 ident: bib0055 article-title: Using ensemble weather predictions in district heating operation and load forecasting publication-title: Appl. Energy – volume: 42 start-page: 68 year: 2012 end-page: 80 ident: bib0111 article-title: Overview and performance assessment of the clustering methods for electrical load pattern grouping publication-title: Energy – volume: 173 start-page: 502 year: 2018 end-page: 515 ident: bib0150 article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis publication-title: Energy Build. – volume: 205 start-page: 2422 year: 2017 end-page: 2428 ident: bib0052 article-title: An improved cooling load prediction method for buildings with the estimation of prediction intervals publication-title: Procedia Eng. – volume: 12 start-page: 127 year: 2006 end-page: 150 ident: bib0159 article-title: Sensor fault detection and diagnosis of air-handling units using a condition-based adaptive statistical method publication-title: HVAC&R Res. – volume: 16 start-page: 295 year: 2010 end-page: 313 ident: bib0081 article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems publication-title: HVAC&R Res. – volume: 63 start-page: 133 year: 2016 end-page: 143 ident: bib0172 article-title: Sensitivity analysis for PCA-based chiller sensor fault detection publication-title: Int. J. Refrigeration – volume: 109 start-page: 75 year: 2015 end-page: 89 ident: bib0107 article-title: Temporal knowledge discovery in big BAS data for building energy management publication-title: Energy Build. – start-page: 29 year: 2010 end-page: 33 ident: bib0154 article-title: Outlier detection in smart environment structured power datasets publication-title: Proceedings of the Sixth International Conference on Intelligent Environments – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bib0005 article-title: Review article: methods for fault detection, diagnostics, and prognostics for building systems—A review, part I publication-title: HVAC&R Res. – start-page: 1305 year: 2009 end-page: 1314 ident: bib0127 article-title: Sustainable operation and management of data center chillers using temporal data mining publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 31 start-page: 53 year: 2014 end-page: 60 ident: bib0013 article-title: A review on the basics of building energy estimation publication-title: Renew. Sustain. Energy Rev. – volume: 51 year: 2019 ident: bib0049 article-title: Analysis of hourly cooling load prediction accuracy with data-mining approaches on different training time scales publication-title: Sustain. Cities Soc. – start-page: 1628 year: 2015 end-page: 1632 ident: bib0040 article-title: Time series forecasting method of building energy consumption using support vector regression publication-title: Proceedings of the IEEE International Conference on Information and Automation – volume: 159 start-page: 296 year: 2018 end-page: 308 ident: bib0009 article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review publication-title: Energy Build. – volume: 224 start-page: 116 year: 2018 end-page: 123 ident: bib0108 article-title: Discovering gradual patterns in building operations for improving building energy efficiency publication-title: Appl. Energy – volume: 42 start-page: 477 year: 2010 end-page: 490 ident: bib0180 article-title: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults publication-title: Energy Build. – volume: 2016 start-page: 7046 year: 2016 end-page: 7051 ident: bib0035 article-title: Building energy load forecasting using deep neural networks publication-title: Proceedings of the IECON (Industrial Electronics Conference) – volume: 48 start-page: 693 year: 2007 end-page: 702 ident: bib0166 article-title: Detection and diagnosis for sensor fault in HVAC systems publication-title: Energy Conv. Manag. – volume: 75 start-page: 796 year: 2017 end-page: 808 ident: bib0015 article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models publication-title: Renew. Sustain. Energy Rev. – volume: 82 start-page: 142 year: 2014 end-page: 155 ident: bib0029 article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building publication-title: Energy Build. – volume: 28 start-page: 3806 year: 2013 end-page: 3817 ident: bib0054 article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation publication-title: IEEE Trans. Power Syst. – volume: 36 start-page: 147 year: 2004 end-page: 160 ident: bib0157 article-title: AHU sensor fault diagnosis using principal component analysis method publication-title: Energy Build. – volume: 48 year: 2019 ident: bib0019 article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques publication-title: Sustain. Cities Soc. – volume: 133 start-page: 246 year: 2016 end-page: 256 ident: bib0065 article-title: Comparative investigations on reference models for fault detection and diagnosis in centrifugal chiller systems publication-title: Energy Build. – volume: 45 start-page: 243 year: 2019 end-page: 257 ident: bib0002 article-title: Fusing tensorflow with building energy simulation for intelligent energy management in smart cities publication-title: Sustain. Cities Soc. – volume: 138 start-page: 240 year: 2017 end-page: 256 ident: bib0045 article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine publication-title: Energy Build. – volume: 14 start-page: 959 year: 2008 end-page: 973 ident: bib0061 article-title: Wavelet neural network-based fault diagnosis in Air-Handling units publication-title: HVAC&R Res. – volume: 44 start-page: 7 year: 2012 end-page: 16 ident: bib0062 article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal publication-title: Energy Build. – volume: 149 start-page: 216 year: 2017 end-page: 224 ident: bib0070 article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models publication-title: Energy Build. – volume: 205 start-page: 926 year: 2017 end-page: 940 ident: bib0101 article-title: Fault detection and operation optimization in district heating substations based on data mining techniques publication-title: Appl. Energy – volume: 185 start-page: 846 year: 2017 end-page: 861 ident: bib0100 article-title: Data partitioning and association mining for identifying vrf energy consumption patterns under various part loads and refrigerant charge conditions publication-title: Appl. Energy – volume: 42 start-page: 3221 year: 2007 end-page: 3232 ident: bib0163 article-title: Fault detection and diagnosis based on improved PCA with JAA method in VAV systems publication-title: Build. Environ. – volume: 62 start-page: 210 year: 2013 end-page: 216 ident: bib0137 article-title: Data association mining for identifying lighting energy waste patterns in educational institutes publication-title: Energy Build. – volume: 39 start-page: 45 year: 2007 end-page: 51 ident: bib0123 article-title: Using intelligent clustering techniques to classify the energy performance of school buildings publication-title: Energy Build. – volume: 103 start-page: 261 year: 2015 end-page: 270 ident: bib0023 article-title: Electrical consumption forecasting in hospital facilities: an application case publication-title: Energy Build. – volume: 72 start-page: 157 year: 2014 end-page: 166 ident: bib0059 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. – volume: 16 start-page: 3586 year: 2012 end-page: 3592 ident: bib0010 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. – volume: 62 start-page: 304 year: 2013 end-page: 314 ident: bib0064 article-title: Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms publication-title: Energy Build. – volume: 124 start-page: 325 year: 2014 end-page: 334 ident: bib0020 article-title: Methods for benchmarking building energy consumption against its past or intended performance: an overview publication-title: Appl. Energy – start-page: 105 year: 1999 ident: bib0145 article-title: Classification techniques for fault detection and diagnosis of an air-handling unit publication-title: ASHRAE J. – start-page: 353 year: 2016 end-page: 389 ident: bib0021 article-title: Chapter 11 - Enhancing energy efficiency in buildings through innovative data analytics technologies publication-title: Pervasive Computing – volume: 158 start-page: 2481 year: 2019 end-page: 2487 ident: bib0109 article-title: Discovering complex knowledge in massive building operational data using graph mining for building energy management publication-title: Energy Procedia – volume: 3 start-page: 2196 year: 2012 end-page: 2210 ident: bib0112 article-title: On the application of clustering techniques for office buildings’ energy and thermal comfort classification publication-title: IEEE Trans. Smart Grid – volume: 45 start-page: 2667 year: 2004 end-page: 2686 ident: bib0158 article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method publication-title: Energy Conver. Manag. – volume: 8 start-page: 681 year: 2015 end-page: 689 ident: bib0117 article-title: Clustering time-series energy data from smart meters publication-title: Energy Eff. – volume: 112 start-page: 1041 year: 2013 end-page: 1048 ident: bib0094 article-title: Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD) publication-title: Appl. Energy – volume: 74 start-page: 902 year: 2017 end-page: 924 ident: bib0017 article-title: A review on time series forecasting techniques for building energy consumption publication-title: Renew. Sustain. Energy Rev. – volume: 84 start-page: 607 year: 2014 end-page: 616 ident: bib0114 article-title: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm publication-title: Energy Build. – volume: 33 start-page: 102 year: 2014 end-page: 109 ident: bib0011 article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting publication-title: Renew. Sustain. Energy Rev. – volume: 158 start-page: 2701 year: 2019 end-page: 2706 ident: bib0140 article-title: An improved association rule mining-based method for discovering abnormal operation patterns of HVAC systems publication-title: Energy Procedia – volume: 127 start-page: 399 year: 2016 end-page: 410 ident: bib0134 article-title: Applicability of using time series subsequences to study office plug load appliances publication-title: Energy Build. – volume: 41 start-page: 279 year: 2009 end-page: 286 ident: bib0164 article-title: A robot fault diagnostic tool for flow rate sensors in air dampers and VAV terminals publication-title: Energy Build. – volume: 14 start-page: 1435 year: 2006 end-page: 1444 ident: bib0147 article-title: Fault diagnosis for heat pumps with parameter identification and clustering publication-title: Control Eng. Pract. – volume: 129 start-page: 1252 year: 2018 end-page: 1262 ident: bib0178 article-title: An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model publication-title: Appl. Therm. Eng. – volume: 171 start-page: 839 year: 2018 end-page: 854 ident: bib0102 article-title: Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns publication-title: Energy Conv. Manag. – start-page: 343 year: 2018 end-page: 350 ident: bib0161 article-title: Heat recovery unit failure detection in air handling unit publication-title: Advances in Production Management Systems. Smart Manufacturing For Industry 4.0 – volume: 14 start-page: 634 year: 2017 end-page: 645 ident: bib0072 article-title: Automated performance tracking for heat exchangers in HVAC publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 45 start-page: 2698 year: 2010 end-page: 2708 ident: bib0063 article-title: A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis publication-title: Build. Environ. – volume: 240 start-page: 35 year: 2019 end-page: 45 ident: bib0004 article-title: Deep learning-based feature engineering methods for improved building energy prediction publication-title: Appl. Energy – volume: 25 start-page: 33 year: 2016 end-page: 38 ident: bib0008 article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities publication-title: Sustain. Cities Soc. – volume: 55 start-page: 553 year: 2012 end-page: 562 ident: bib0119 article-title: A method for energy classification of hotels: a case-study of Greece publication-title: Energy Build. – volume: 42 start-page: 557 year: 2013 end-page: 566 ident: bib0149 article-title: Fault detection analysis of building energy consumption using data mining techniques publication-title: Energy Procedia – volume: 36 start-page: 599 year: 2004 end-page: 610 ident: bib0057 article-title: Valve fault detection and diagnosis based on CMAC neural networks publication-title: Energy Build. – volume: 75 start-page: 109 year: 2014 end-page: 118 ident: bib0136 article-title: Data mining in building automation system for improving building operational performance publication-title: Energy Build. – volume: 117 start-page: 84 year: 2016 end-page: 92 ident: bib0027 article-title: Prediction of residential building energy consumption: a neural network approach publication-title: Energy – volume: 102 start-page: 660 year: 2016 end-page: 668 ident: bib0025 article-title: Energy consumption predicting model of vrv (variable refrigerant volume) system in office buildings based on data mining publication-title: Energy – volume: 72 start-page: 81 year: 2016 end-page: 96 ident: bib0069 article-title: An enhanced chiller FDD strategy based on the combination of the LSSVR-DE model and EWMA control charts publication-title: Int. J. Refrigeration – volume: 86 start-page: 401 year: 2018 end-page: 409 ident: bib0084 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrigeration – volume: 82 start-page: 1027 year: 2018 end-page: 1047 ident: bib0018 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. – volume: 225 start-page: 732 year: 2018 end-page: 745 ident: bib0092 article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving publication-title: Appl. Energy – volume: 73 start-page: 916 year: 2014 end-page: 925 ident: bib0053 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy – volume: 127 start-page: 718 year: 2017 end-page: 728 ident: bib0088 article-title: A hybrid ICA-BPNN-based FDD strategy for refrigerant charge faults in variable refrigerant flow system publication-title: Appl. Therm. Eng. – volume: 68 start-page: 63 year: 2014 end-page: 71 ident: bib0162 article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform publication-title: Energy Build. – volume: 20 start-page: 798 year: 2014 end-page: 809 ident: bib0095 article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers publication-title: HVAC&R Res. – volume: 157 start-page: 886 year: 2018 end-page: 893 ident: bib0037 article-title: Intelligent techniques for forecasting electricity consumption of buildings publication-title: Energy – volume: 56 start-page: 1272 year: 2016 end-page: 1292 ident: bib0003 article-title: A review on modeling and simulation of building energy systems publication-title: Renew. Sustain. Energy Rev. – volume: 81 start-page: 1365 year: 2018 end-page: 1377 ident: bib0022 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy Rev. – volume: 50 start-page: 81 year: 2015 end-page: 90 ident: bib0143 article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics publication-title: Autom. Constr. – volume: 45 start-page: 2127 year: 2004 end-page: 2141 ident: bib0033 article-title: Cooling load prediction for buildings using general regression neural networks publication-title: Energy Conv. Manag. – reference: . – start-page: 223 year: 2010 end-page: 226 ident: bib0043 article-title: Prediction model of annual energy consumption of residential buildings publication-title: Proceedings of the International Conference on Advances in Energy Engineering – volume: 15 start-page: 489 year: 2006 end-page: 503 ident: bib0160 article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems publication-title: Autom. Constr. – volume: 236 start-page: 700 year: 2019 end-page: 710 ident: bib0034 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl. Energy – volume: 115 start-page: 744 year: 2017 end-page: 755 ident: bib0177 article-title: Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults publication-title: Appl. Therm. Eng. – volume: 166 start-page: 477 year: 2018 end-page: 488 ident: bib0074 article-title: Fault detection and diagnosis for nonlinear systems: a new adaptive Gaussian mixture modeling approach publication-title: Energy Build. – volume: 26 start-page: 1226 year: 2006 end-page: 1237 ident: bib0165 article-title: Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method publication-title: Appl. Therm. Eng. – volume: 6 start-page: 91 year: 2016 end-page: 99 ident: bib0036 article-title: Deep learning for estimating building energy consumption publication-title: Sustain. Energy Grids Netw. – volume: 73 start-page: 1 year: 2014 end-page: 11 ident: bib0152 article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis publication-title: Build. Environ. – start-page: 966 year: 2015 end-page: 971 ident: bib0175 article-title: A data-driven approach for fault diagnosis in HVAC chiller systems publication-title: Proceedings of IEEE Conference on Control Applications (CCA) – volume: 133 start-page: 246 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0065 article-title: Comparative investigations on reference models for fault detection and diagnosis in centrifugal chiller systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.062 – volume: 37 start-page: 545 year: 2005 ident: 10.1016/j.enbenv.2019.11.003_bib0024 article-title: Applying support vector machines to predict building energy consumption in tropical region publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.09.009 – volume: 171 start-page: 839 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0102 article-title: Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2018.06.017 – volume: 8 start-page: 681 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0117 article-title: Clustering time-series energy data from smart meters publication-title: Energy Eff. doi: 10.1007/s12053-014-9316-0 – start-page: 29 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0154 article-title: Outlier detection in smart environment structured power datasets – volume: 36 start-page: 599 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0057 article-title: Valve fault detection and diagnosis based on CMAC neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.01.037 – volume: 156 start-page: 78 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0122 article-title: Sampling for building energy consumption with fuzzy theory publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.09.047 – volume: 117 start-page: 84 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0027 article-title: Prediction of residential building energy consumption: a neural network approach publication-title: Energy doi: 10.1016/j.energy.2016.10.066 – volume: 51 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0049 article-title: Analysis of hourly cooling load prediction accuracy with data-mining approaches on different training time scales publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101717 – volume: 83 start-page: 1033 year: 2006 ident: 10.1016/j.enbenv.2019.11.003_bib0032 article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique publication-title: Appl. Energy doi: 10.1016/j.apenergy.2005.08.006 – volume: 68 start-page: 63 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0162 article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.08.044 – start-page: 1 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0142 article-title: Mining big building operational data for building cooling load prediction and energy efficiency improvement – volume: 124 start-page: 325 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0020 article-title: Methods for benchmarking building energy consumption against its past or intended performance: an overview publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.03.020 – volume: 19 start-page: 593 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0068 article-title: A system-level incipient fault-detection method for HVAC systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2013.789371 – volume: 251 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0110 article-title: A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113395 – volume: 75 start-page: 796 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0015 article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.079 – volume: 12 start-page: 127 year: 2006 ident: 10.1016/j.enbenv.2019.11.003_bib0159 article-title: Sensor fault detection and diagnosis of air-handling units using a condition-based adaptive statistical method publication-title: HVAC&R Res. doi: 10.1080/10789669.2006.10391171 – volume: 48 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0019 article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101533 – volume: 6 start-page: 91 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0036 article-title: Deep learning for estimating building energy consumption publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2016.02.005 – volume: 14 start-page: 959 year: 2008 ident: 10.1016/j.enbenv.2019.11.003_bib0061 article-title: Wavelet neural network-based fault diagnosis in Air-Handling units publication-title: HVAC&R Res. doi: 10.1080/10789669.2008.10391049 – volume: 116 start-page: 104 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0097 article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.045 – volume: 46 start-page: 2482 year: 2005 ident: 10.1016/j.enbenv.2019.11.003_bib0169 article-title: Sensor fault detection and validation of VAV terminals in air conditioning systems publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2004.11.011 – start-page: 343 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0161 article-title: Heat recovery unit failure detection in air handling unit – volume: 111 start-page: 1070 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0105 article-title: Assessment of building operational performance using data mining techniques: a case study publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.270 – volume: 42 start-page: 68 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0111 article-title: Overview and performance assessment of the clustering methods for electrical load pattern grouping publication-title: Energy doi: 10.1016/j.energy.2011.12.031 – volume: 73 start-page: 1 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0058 article-title: Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.021 – volume: 86 start-page: 1624 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0060 article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.01.015 – volume: 133 start-page: 37 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0093 article-title: A decision tree based data-driven diagnostic strategy for air handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.039 – volume: 112 start-page: 1041 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0094 article-title: Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.12.043 – volume: 193 start-page: 455 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0055 article-title: Using ensemble weather predictions in district heating operation and load forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.02.066 – volume: 253 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0141 article-title: An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113492 – volume: 36 start-page: 147 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0157 article-title: AHU sensor fault diagnosis using principal component analysis method publication-title: Energy Build. doi: 10.1016/j.enbuild.2003.10.002 – volume: 24 start-page: 1619 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0124 article-title: Support vector clustering of electrical load pattern data publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2009.2023009 – volume: 82 start-page: 1027 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0018 article-title: A review of data-driven approaches for prediction and classification of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.108 – volume: 45 start-page: 2698 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0063 article-title: A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.05.031 – volume: 225 start-page: 732 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0092 article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.075 – volume: 205 start-page: 926 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0101 article-title: Fault detection and operation optimization in district heating substations based on data mining techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.08.035 – volume: 6 start-page: 579 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0121 article-title: Analysis of similarity measures in times series clustering for the discovery of building energy patterns publication-title: Energies doi: 10.3390/en6020579 – volume: 42 start-page: 477 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0180 article-title: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.10.017 – start-page: 70 year: 2001 ident: 10.1016/j.enbenv.2019.11.003_bib0146 article-title: Geering HPBT-IIC on CA. a fault diagnosis system for heat pumps – volume: 105 start-page: 2499 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0104 article-title: A methodology to identify multiple equipment coordinated control with power metering system publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.721 – volume: 129 start-page: 1252 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0178 article-title: An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.09.117 – volume: 31 start-page: 582 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0078 article-title: Study on a hybrid SVM model for chiller FDD applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.10.021 – volume: 41 start-page: 279 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0164 article-title: A robot fault diagnostic tool for flow rate sensors in air dampers and VAV terminals publication-title: Energy Build. doi: 10.1016/j.enbuild.2008.09.007 – volume: 133 start-page: 230 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0096 article-title: A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based d-statistic and DV-contribution plots publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.037 – volume: 42 start-page: 557 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0149 article-title: Fault detection analysis of building energy consumption using data mining techniques publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.11.057 – volume: 92 start-page: 322 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0042 article-title: Short-term load forecasting in a non-residential building contrasting models and attributes publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.007 – volume: 47 start-page: 1953 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0099 article-title: A one-class SVM based tool for machine learning novelty detection in HVAC chiller systems publication-title: IFAC Proc. Vol. doi: 10.3182/20140824-6-ZA-1003.02382 – volume: 64 start-page: 761 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0012 article-title: Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.06.040 – start-page: 531 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0132 article-title: PowerSAX: fast motif matching in distributed power meter data using symbolic representations – volume: 63 start-page: 133 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0172 article-title: Sensitivity analysis for PCA-based chiller sensor fault detection publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2015.11.006 – volume: 208 start-page: 522 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0126 article-title: Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.09.116 – volume: 81 start-page: 287 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0082 article-title: ARX model based fault detection and diagnosis for chillers using support vector machines publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.05.049 – volume: 82 start-page: 142 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0029 article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.052 – volume: 39 start-page: 45 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0123 article-title: Using intelligent clustering techniques to classify the energy performance of school buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.04.018 – volume: 72 start-page: 157 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0059 article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.12.038 – volume: 13 start-page: 349 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0168 article-title: PCA-FDA-based fault diagnosis for sensors in VAV systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2007.10390958 – volume: 47 start-page: 430 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0139 article-title: A novel methodology for knowledge discovery through mining associations between building operational data publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.12.018 – start-page: 1305 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0127 article-title: Sustainable operation and management of data center chillers using temporal data mining – start-page: 1 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0047 article-title: An application of support vector machines in cooling load prediction – volume: 14 start-page: 634 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0072 article-title: Automated performance tracking for heat exchangers in HVAC publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2017.2666184 – volume: 43 start-page: 2524 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0079 article-title: Automated fdd of multiple-simultaneous faults (MSF) and the application to building chillers publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.06.011 – volume: 51 start-page: 560 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0067 article-title: A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.09.030 – volume: 52 start-page: 145 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0125 article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.06.006 – start-page: 728 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0135 article-title: Whole building system fault detection based on weather pattern matching and PCA method – volume: 16 start-page: 295 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0081 article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2010.10390906 – volume: 70 start-page: 1108 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0016 article-title: Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.12.015 – volume: 142 start-page: 167 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0176 article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.03.026 – volume: 166 start-page: 477 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0074 article-title: Fault detection and diagnosis for nonlinear systems: a new adaptive Gaussian mixture modeling approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.02.032 – start-page: 223 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0043 article-title: Prediction model of annual energy consumption of residential buildings – volume: 1 start-page: 66 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0077 article-title: Online support vector machine application for model based fault detection and isolation of HVAC system publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/IJMLC.2011.V1.10 – volume: 74 start-page: 902 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0017 article-title: A review on time series forecasting techniques for building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.02.085 – start-page: 1059 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0090 article-title: Real-time fault detection for solar hot water systems using adaptive resonance theory neural networks – volume: 81 start-page: 1192 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0014 article-title: A review of data-driven building energy consumption prediction studies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.04.095 – volume: 157 start-page: 886 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0037 article-title: Intelligent techniques for forecasting electricity consumption of buildings publication-title: Energy doi: 10.1016/j.energy.2018.05.155 – volume: 50 start-page: 81 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0143 article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics publication-title: Autom. Constr. doi: 10.1016/j.autcon.2014.12.006 – volume: 39 start-page: 117 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0106 article-title: Mining big building operational data for improving building energy efficiency: a case study publication-title: Build. Serv. Eng. Res. Technol. doi: 10.1177/0143624417704977 – volume: 115 start-page: 744 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0177 article-title: Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.01.008 – volume: 16 start-page: 3586 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0010 article-title: A review on the prediction of building energy consumption publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.02.049 – volume: 26 start-page: 1226 year: 2006 ident: 10.1016/j.enbenv.2019.11.003_bib0165 article-title: Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2005.10.039 – volume: 72 start-page: 81 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0069 article-title: An enhanced chiller FDD strategy based on the combination of the LSSVR-DE model and EWMA control charts publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2016.07.024 – volume: 102 start-page: 540 year: 1996 ident: 10.1016/j.enbenv.2019.11.003_bib0085 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – volume: 45 start-page: 2127 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0033 article-title: Cooling load prediction for buildings using general regression neural networks publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2003.10.009 – volume: 56 start-page: 760 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0006 article-title: Energy savings by energy management systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.067 – volume: 45 start-page: 2667 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0158 article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method publication-title: Energy Conver. Manag. doi: 10.1016/j.enconman.2003.12.008 – volume: 33 start-page: 102 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0011 article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.01.069 – volume: 122 start-page: 229 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0131 article-title: Unsupervised load shape clustering for urban building performance assessment publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.07.350 – volume: 55 start-page: 553 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0119 article-title: A method for energy classification of hotels: a case-study of Greece publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.08.010 – start-page: 353 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0021 article-title: Chapter 11 - Enhancing energy efficiency in buildings through innovative data analytics technologies – start-page: 665 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0007 article-title: The energy impact of faults in U.S. commercial buildings – volume: 15 start-page: 57 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0086 article-title: A novel strategy for the fault detection and diagnosis of centrifugal chiller systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2009.10390825 – volume: 147 start-page: 77 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0030 article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.04.038 – volume: 3 start-page: 2196 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0112 article-title: On the application of clustering techniques for office buildings’ energy and thermal comfort classification publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2215059 – volume: 62 start-page: 210 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0137 article-title: Data association mining for identifying lighting energy waste patterns in educational institutes publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.049 – volume: 41 start-page: 881 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0170 article-title: A fault detection technique for air-source heat pump water chiller/heaters publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.03.007 – volume: 37 start-page: 175 year: 2005 ident: 10.1016/j.enbenv.2019.11.003_bib0181 article-title: Fault-tolerant control and data recovery in HVAC monitoring system publication-title: Energy Build. doi: 10.1016/j.enbuild.2004.06.023 – volume: 5 start-page: 420 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0120 article-title: Household energy consumption segmentation using hourly data publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2013.2278477 – volume: 77 start-page: 153 year: 2004 ident: 10.1016/j.enbenv.2019.11.003_bib0056 article-title: Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks publication-title: Appl. Energy doi: 10.1016/S0306-2619(03)00107-7 – volume: 45 start-page: 243 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0002 article-title: Fusing tensorflow with building energy simulation for intelligent energy management in smart cities publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.11.021 – volume: 4 start-page: 231 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0046 article-title: Parallel support vector machines applied to the prediction of multiple buildings energy consumption publication-title: J. Algorithm Comput. Technol. doi: 10.1260/1748-3018.4.2.231 – volume: 12 start-page: 195 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0103 article-title: Data mining based framework to identify rule based operation strategies for buildings with power metering system publication-title: Build. Simul. doi: 10.1007/s12273-018-0472-6 – start-page: 136 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0116 article-title: Forensically discovering simulation feedback knowledge from a campus energy information system – volume: 195 start-page: 222 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0026 article-title: A short-term building cooling load prediction method using deep learning algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.064 – volume: 29 start-page: 1 issue: 2 year: 2000 ident: 10.1016/j.enbenv.2019.11.003_bib0138 article-title: Mining frequent patterns without candidate generation publication-title: SIGMOD Rec. (ACM Spec. Interest Group Manag. Data) – volume: 75 start-page: 109 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0136 article-title: Data mining in building automation system for improving building operational performance publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.02.005 – volume: 28 start-page: 3806 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0054 article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2013.2264488 – volume: 14 start-page: 1435 year: 2006 ident: 10.1016/j.enbenv.2019.11.003_bib0147 article-title: Fault diagnosis for heat pumps with parameter identification and clustering publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2005.11.002 – volume: 62 start-page: 133 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0089 article-title: Development of an rdp neural network for building energy consumption fault detection and diagnosis publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.02.050 – volume: 108 start-page: 989 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0083 article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.109 – volume: 47 start-page: 518 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0144 article-title: Text-mining building maintenance work orders for component fault frequency publication-title: Build. Res Inf. doi: 10.1080/09613218.2018.1459004 – start-page: 1628 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0040 article-title: Time series forecasting method of building energy consumption using support vector regression – volume: 127 start-page: 1 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0051 article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.04.016 – volume: 62 start-page: 304 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0064 article-title: Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.03.020 – volume: 82 start-page: 437 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0050 article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.036 – volume: 95 start-page: 45 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0071 article-title: Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.061 – volume: 216 start-page: 478 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0038 article-title: Energy consumption prediction of office buildings based on echo state networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.004 – volume: 158 start-page: 2701 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0140 article-title: An improved association rule mining-based method for discovering abnormal operation patterns of HVAC systems publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.02.025 – volume: 11 start-page: 3 year: 2005 ident: 10.1016/j.enbenv.2019.11.003_bib0005 article-title: Review article: methods for fault detection, diagnostics, and prognostics for building systems—A review, part I publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 – volume: 2016 start-page: 7046 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0035 article-title: Building energy load forecasting using deep neural networks – volume: 109 start-page: 75 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0107 article-title: Temporal knowledge discovery in big BAS data for building energy management publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.09.060 – volume: 25 start-page: 33 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0008 article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2015.12.001 – volume: 94 start-page: 252 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0118 article-title: Identifying energy consumption patterns in the ATTICA hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.02.017 – volume: 73 start-page: 916 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0053 article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2014.06.104 – volume: 158 start-page: 2481 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0109 article-title: Discovering complex knowledge in massive building operational data using graph mining for building energy management publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.378 – volume: 127 start-page: 399 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0134 article-title: Applicability of using time series subsequences to study office plug load appliances publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.05.076 – volume: 205 start-page: 716 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0048 article-title: Study on building energy load prediction based on monitoring data publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.894 – volume: 173 start-page: 502 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0150 article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.05.025 – volume: 49 start-page: 1 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0115 article-title: Automated daily pattern filtering of measured building performance data publication-title: Autom. Construct. doi: 10.1016/j.autcon.2014.09.004 – volume: 15 start-page: 489 year: 2006 ident: 10.1016/j.enbenv.2019.11.003_bib0160 article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems publication-title: Autom. Constr. doi: 10.1016/j.autcon.2005.06.001 – volume: 236 start-page: 700 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0034 article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.12.004 – volume: 81 start-page: 1365 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0022 article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.124 – volume: 30 start-page: 1104 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0076 article-title: Model-based fault detection and diagnosis of HVAC systems using support vector machine method publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2006.12.012 – volume: 149 start-page: 216 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0070 article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.05.053 – volume: 224 start-page: 116 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0108 article-title: Discovering gradual patterns in building operations for improving building energy efficiency publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.04.118 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0129 article-title: Temporal data mining approaches for sustainable chiller management in data centers publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1989734.1989738 – start-page: 303 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0133 article-title: Finding the different patterns in buildings data using bag of words representation with clustering – volume: 138 start-page: 240 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0045 article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.11.009 – volume: 56 start-page: 1272 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0003 article-title: A review on modeling and simulation of building energy systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.12.040 – volume: 86 start-page: 2318 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0091 article-title: Application of Adaptive Resonance Theory neural networks to monitor solar hot water systems and detect existing or developing faults publication-title: Solar Energy doi: 10.1016/j.solener.2012.05.015 – volume: 185 start-page: 846 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0100 article-title: Data partitioning and association mining for identifying vrf energy consumption patterns under various part loads and refrigerant charge conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.091 – volume: 21 start-page: 311 year: 2001 ident: 10.1016/j.enbenv.2019.11.003_bib0066 article-title: Modelling of vapour-compression liquid chillers with neural networks publication-title: Appl. Therm. Eng. doi: 10.1016/S1359-4311(00)00036-3 – volume: 127 start-page: 718 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0088 article-title: A hybrid ICA-BPNN-based FDD strategy for refrigerant charge faults in variable refrigerant flow system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.08.047 – volume: 103 start-page: 261 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0023 article-title: Electrical consumption forecasting in hospital facilities: an application case publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.05.056 – volume: 28 start-page: 226 year: 2008 ident: 10.1016/j.enbenv.2019.11.003_bib0173 article-title: Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2007.03.021 – volume: 84 start-page: 607 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0114 article-title: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.08.030 – volume: 205 start-page: 1064 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0171 article-title: Research on the PCA-based intelligent fault detection methodology for sewage source heat pump system publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.10.171 – volume: 42 start-page: 4324 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0148 article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.01.010 – volume: 122 start-page: 237 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0179 article-title: Data-driven based reliability evaluation for measurements of sensors in a vapor compression system publication-title: Energy doi: 10.1016/j.energy.2017.01.055 – volume: 49 start-page: 3654 year: 2008 ident: 10.1016/j.enbenv.2019.11.003_bib0156 article-title: Multiple faults diagnosis for sensors in air handling unit using Fisher discriminant analysis publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2008.06.032 – start-page: 105 year: 1999 ident: 10.1016/j.enbenv.2019.11.003_bib0145 article-title: Classification techniques for fault detection and diagnosis of an air-handling unit publication-title: ASHRAE J. – volume: 31 start-page: 53 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0013 article-title: A review on the basics of building energy estimation publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.040 – volume: 2013 start-page: 1327 year: 2013 ident: 10.1016/j.enbenv.2019.11.003_bib0130 article-title: A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings – volume: 97 start-page: 506 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0028 article-title: Estimating building energy consumption using extreme learning machine method publication-title: Energy doi: 10.1016/j.energy.2015.11.037 – volume: 205 start-page: 2422 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0052 article-title: An improved cooling load prediction method for buildings with the estimation of prediction intervals publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.09.967 – volume: 39 start-page: 923 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0167 article-title: Detection and diagnosis for multiple faults in VAV systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.09.015 – volume: 240 start-page: 35 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0004 article-title: Deep learning-based feature engineering methods for improved building energy prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.052 – volume: 52 start-page: 2555 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0031 article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2011.02.002 – volume: 86 start-page: 401 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0084 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2017.11.003 – volume: 157 start-page: 336 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0155 article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings publication-title: Energy doi: 10.1016/j.energy.2018.05.127 – volume: 102 start-page: 660 year: 2016 ident: 10.1016/j.enbenv.2019.11.003_bib0025 article-title: Energy consumption predicting model of vrv (variable refrigerant volume) system in office buildings based on data mining publication-title: Energy doi: 10.1016/j.energy.2016.02.134 – volume: 82 start-page: 197 year: 2005 ident: 10.1016/j.enbenv.2019.11.003_bib0174 article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2004.11.002 – ident: 10.1016/j.enbenv.2019.11.003_bib0001 doi: 10.1787/9789264202955-en – volume: 121 start-page: 1016 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0039 article-title: Using support vector machine to predict next day electricity load of public buildings with sub-metering devices publication-title: Procedia Eng. doi: 10.1016/j.proeng.2015.09.097 – volume: 34 start-page: 586 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0080 article-title: Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2010.08.011 – volume: 20 start-page: 798 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0095 article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers publication-title: HVAC&R Res. doi: 10.1080/10789669.2014.938006 – volume: 151 start-page: 1 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0073 article-title: Residential HVAC fault detection using a system identification approach publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.06.008 – start-page: 125 year: 2010 ident: 10.1016/j.enbenv.2019.11.003_bib0128 article-title: Data mining for modeling chiller systems in data centers – start-page: 50 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0151 article-title: Data driven investigation of faults in HVAC systems with Model, Cluster and Compare (MCC) – volume: 159 start-page: 296 year: 2018 ident: 10.1016/j.enbenv.2019.11.003_bib0009 article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.008 – volume: 109 start-page: 85 year: 2019 ident: 10.1016/j.enbenv.2019.11.003_bib0075 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.021 – volume: 1 start-page: 55 year: 2009 ident: 10.1016/j.enbenv.2019.11.003_bib0044 article-title: Building cooling load forecasting model based on LS-SVM – volume: 42 start-page: 3221 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0163 article-title: Fault detection and diagnosis based on improved PCA with JAA method in VAV systems publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.08.011 – volume: 48 start-page: 693 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0166 article-title: Detection and diagnosis for sensor fault in HVAC systems publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2006.09.023 – volume: 73 start-page: 1 year: 2014 ident: 10.1016/j.enbenv.2019.11.003_bib0152 article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.11.021 – volume: 44 start-page: 7 year: 2012 ident: 10.1016/j.enbenv.2019.11.003_bib0062 article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.09.043 – volume: 50 start-page: 69 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0087 article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network publication-title: Int. J. Refrigeration doi: 10.1016/j.ijrefrig.2014.10.017 – volume: 117 start-page: 449 year: 2011 ident: 10.1016/j.enbenv.2019.11.003_bib0153 article-title: A dynamic machine learning-based technique for automated fault detection in HVAC systems publication-title: ASHRAE Trans. – volume: 39 start-page: 1183 year: 2007 ident: 10.1016/j.enbenv.2019.11.003_bib0113 article-title: Understanding the indoor environment through mining sensory data—A case study publication-title: Energy Build. doi: 10.1016/j.enbuild.2006.07.011 – volume: 85 start-page: 1563 year: 2008 ident: 10.1016/j.enbenv.2019.11.003_bib0041 article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings publication-title: Int. J. Comput. Math. doi: 10.1080/00207160802033582 – volume: 228 start-page: 205 year: 2017 ident: 10.1016/j.enbenv.2019.11.003_bib0098 article-title: Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.076 – start-page: 966 year: 2015 ident: 10.1016/j.enbenv.2019.11.003_bib0175 article-title: A data-driven approach for fault diagnosis in HVAC chiller systems |
| SSID | ssj0002511641 |
| Score | 2.5720642 |
| SecondaryResourceType | review_article |
| Snippet | •Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are... With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely... |
| SourceID | doaj crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 149 |
| SubjectTerms | Big data Building energy efficiency Building energy systems Supervised data mining Unsupervised data mining |
| Title | A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis |
| URI | https://dx.doi.org/10.1016/j.enbenv.2019.11.003 https://doaj.org/article/6db5c81a73de4e4090d512cd8382c563 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2666-1233 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511641 issn: 2666-1233 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2666-1233 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511641 issn: 2666-1233 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xT90wELYqxNAOCCgVj1J0A2NDgx07DhtFIIYWMbQSW2T7HCkI8p7eC29k7d_GZycoU1nIkMFy4sh3yt0l330fY8eI6NBbmfnKyawQhc4st1WG1ktiLNK6MVFsory50Xd31e1E6oswYYkeOG3cD4VWOn1qSoG-8KEayTHEKIdaaO6kijyfIeuZFFP0DqbEWUXZyhCASGhGiLFvLoK7CD3VrQnZVZ0QieeomTXEpUjfPwlPk5Bztc22hlwRztMz7rAPvttlnyYMgp_Zv3NIzScwb4DQnvAYFR-gHz-Zh0oY2g7sIH8NPjb7QWJwXp3Br7lBWCzpfw3Z6DssIuNmBy0OQCKTxhvz9NAD-j6CtzowHQImoF672mN_ry7_XFxng7ZC5kQ4iIOYCxSNq7w-bUpTiNwalFg1ilpTufLKWGV9bpXCUjjJTW5MSBeJ4F00WnxhG9288_sMBDfY5NzbwmJR-dJw6xSvpMSS586IGRPjztZuIB4n_YuHekSY3dfJHjXZI9QkRFg6Y9nrVYtEvPHG_J9ktNe5RJsdB4Iz1YMz1W8504yVo8nrIQNJmUW4Vfvf5Q_eY_mv7COncj4Cgw7ZRr988t_Yplv37Wp5FD08nH8_X74AOKgCew |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+data+mining+technologies+in+building+energy+systems%3A+Load+prediction%2C+pattern+identification%2C+fault+detection+and+diagnosis&rft.jtitle=Energy+and+built+environment&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+Chaobo&rft.au=Zhang%2C+Yiwen&rft.au=Wang%2C+Zihao&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=2666-1233&rft.eissn=2666-1233&rft.volume=1&rft.issue=2&rft.spage=149&rft.epage=164&rft_id=info:doi/10.1016%2Fj.enbenv.2019.11.003&rft.externalDocID=S2666123319300121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1233&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1233&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1233&client=summon |