A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis

•Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed...

Full description

Saved in:
Bibliographic Details
Published in:Energy and built environment Vol. 1; no. 2; pp. 149 - 164
Main Authors: Zhao, Yang, Zhang, Chaobo, Zhang, Yiwen, Wang, Zihao, Li, Junyang
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2020
KeAi Communications Co., Ltd
Subjects:
ISSN:2666-1233, 2666-1233
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed. With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems.
AbstractList With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems.
•Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are reviewed.•Strengths and shortcomings of the existing data mining-based methods are revealed.•Four important research tasks in the future are proposed. With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely utilized to release the values of massive amounts of building operation data with an aim of improving the operation performance of building energy systems. This paper aims at making a comprehensive literature review of the applications of data mining technologies in this domain. In general, data mining technologies can be classified into two categories, i.e., supervised data mining technologies and unsupervised data mining technologies. In this field, supervised data mining technologies are usually utilized for building energy load prediction and fault detection/diagnosis. And unsupervised data mining technologies are usually utilized for building operation pattern identification and fault detection/diagnosis. Comprehensive discussions are made about the strengths and shortcomings of the data mining-based methods. Based on this review, suggestions for future researches are proposed towards effective and efficient data mining solutions for building energy systems.
Author Wang, Zihao
Zhang, Chaobo
Li, Junyang
Zhang, Yiwen
Zhao, Yang
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
– sequence: 2
  givenname: Chaobo
  surname: Zhang
  fullname: Zhang, Chaobo
  email: chaobo.zhang@zju.edu.cn
– sequence: 3
  givenname: Yiwen
  surname: Zhang
  fullname: Zhang, Yiwen
– sequence: 4
  givenname: Zihao
  surname: Wang
  fullname: Wang, Zihao
– sequence: 5
  givenname: Junyang
  surname: Li
  fullname: Li, Junyang
BookMark eNqFkd1q3DAQhU1Joek2b9ALPUDX1Y8t27kohNCfwEJv2msxlsbuLF5pkZSUfYK-drVxKaEX6dxoOOJ8MOe8ri588FhVbwWvBRf6_b5GP6J_qCUXQy1Ezbl6UV1KrfVWSKUunuyvqquU9pxz2QqhG3FZ_bphER8If7IwMQcZ2IE8-ZlltD98WMJMmBh5Nt7T4s4f6DHOJ5ZOKeMhXbNdAMeOER3ZTMG_Y0fIGaNn5NBnmsjCqk9wv2TmsJDPAgPvmCOYfUiU3lQvJ1gSXv15N9X3Tx-_3X7Z7r5-vru92W2tKrPteSeVU5MdsBdTB43iI7jWDZPWTddJjRpGPSIftXadsq0EDiDU0Eit1NSrTXW3cl2AvTlGOkA8mQBkHoUQZwMxk13QaDe2thfQKYcNNnzgrhXSul710rYFt6malWVjSCni9JcnuDl3Y_Zm7cacuzFCmNJNsV3_Y7OUHzPKEWj5n_nDasYSUuktmmQJvS3xx5JruYKeB_wGsnKwyw
CitedBy_id crossref_primary_10_1016_j_scs_2020_102152
crossref_primary_10_1007_s00704_024_05155_7
crossref_primary_10_3390_en14010086
crossref_primary_10_1016_j_rser_2025_115817
crossref_primary_10_1016_j_buildenv_2021_107850
crossref_primary_10_1016_j_enbuild_2023_113877
crossref_primary_10_1016_j_measen_2024_101167
crossref_primary_10_1016_j_enbuild_2021_110929
crossref_primary_10_1016_j_autcon_2022_104578
crossref_primary_10_1007_s10668_022_02491_4
crossref_primary_10_1007_s12273_021_0871_y
crossref_primary_10_1016_j_energy_2024_132636
crossref_primary_10_3390_en14010081
crossref_primary_10_1016_j_applthermaleng_2023_122051
crossref_primary_10_1007_s40747_024_01380_9
crossref_primary_10_1016_j_jobe_2022_105732
crossref_primary_10_1016_j_jobe_2022_105458
crossref_primary_10_3390_en14010237
crossref_primary_10_1007_s12273_020_0723_1
crossref_primary_10_1016_j_jobe_2021_102502
crossref_primary_10_1109_ACCESS_2024_3514750
crossref_primary_10_3390_en16145402
crossref_primary_10_1016_j_scs_2022_104323
crossref_primary_10_1080_23744731_2021_2005375
crossref_primary_10_3390_s23010001
crossref_primary_10_1016_j_scs_2020_102420
crossref_primary_10_1038_s41598_023_34146_3
crossref_primary_10_1016_j_jobe_2021_103153
crossref_primary_10_1080_23744731_2024_2351311
crossref_primary_10_1016_j_buildenv_2021_107982
crossref_primary_10_1088_1742_6596_2774_1_012007
crossref_primary_10_1016_j_energy_2024_131898
crossref_primary_10_3390_en13184975
crossref_primary_10_1016_j_ijrefrig_2024_02_019
crossref_primary_10_1016_j_jobe_2025_113016
crossref_primary_10_1016_j_enbuild_2025_115808
crossref_primary_10_1007_s12273_024_1200_z
crossref_primary_10_1016_j_energy_2025_134824
crossref_primary_10_1016_j_autcon_2021_103624
crossref_primary_10_1016_j_buildenv_2022_109099
crossref_primary_10_1016_j_buildenv_2024_111855
crossref_primary_10_1016_j_jobe_2022_105509
crossref_primary_10_1016_j_apenergy_2024_122654
crossref_primary_10_1016_j_enbuild_2024_114170
crossref_primary_10_1016_j_jobe_2022_104498
crossref_primary_10_1080_17508975_2024_2369055
crossref_primary_10_1016_j_buildenv_2021_108548
crossref_primary_10_1016_j_ress_2021_108281
crossref_primary_10_1016_j_energy_2022_123767
crossref_primary_10_1016_j_cie_2024_110329
crossref_primary_10_1016_j_enbuild_2020_110492
crossref_primary_10_1016_j_energy_2023_127826
crossref_primary_10_1016_j_energy_2025_134512
crossref_primary_10_1016_j_esd_2024_101596
crossref_primary_10_1016_j_enbuild_2022_112601
crossref_primary_10_1007_s12273_021_0807_6
crossref_primary_10_1038_s41598_024_65727_5
crossref_primary_10_3390_math9212706
crossref_primary_10_1016_j_enbuild_2024_114540
crossref_primary_10_1016_j_ijrefrig_2022_08_017
crossref_primary_10_3390_app11125708
crossref_primary_10_1016_j_apenergy_2025_125358
crossref_primary_10_1016_j_jclepro_2022_131626
crossref_primary_10_1016_j_buildenv_2023_110134
crossref_primary_10_1007_s12273_024_1149_y
crossref_primary_10_1016_j_scs_2025_106811
crossref_primary_10_1016_j_rineng_2024_102890
crossref_primary_10_1016_j_enbuild_2023_113171
crossref_primary_10_1016_j_enbuild_2021_111195
crossref_primary_10_1080_23311916_2023_2199518
crossref_primary_10_1016_j_enbuild_2021_111073
crossref_primary_10_3390_civileng2040053
crossref_primary_10_1016_j_jobe_2024_109137
crossref_primary_10_1002_cpe_7354
crossref_primary_10_1007_s12273_025_1242_x
crossref_primary_10_1007_s13198_023_02172_z
crossref_primary_10_1016_j_enbenv_2023_07_005
crossref_primary_10_1016_j_egyr_2023_12_016
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_1007_s12559_025_10402_8
crossref_primary_10_1007_s11082_023_05771_z
crossref_primary_10_1016_j_apenergy_2020_115834
crossref_primary_10_1108_F_09_2020_0107
crossref_primary_10_1155_2021_8610050
crossref_primary_10_3390_en14227465
crossref_primary_10_1039_D4NR00105B
crossref_primary_10_1002_er_7166
crossref_primary_10_1007_s12273_022_0887_y
crossref_primary_10_1016_j_apenergy_2024_124378
crossref_primary_10_3390_electronics12061448
crossref_primary_10_3390_su16229921
crossref_primary_10_1007_s11356_023_28329_8
crossref_primary_10_1016_j_apenergy_2023_121244
crossref_primary_10_1016_j_buildenv_2022_109357
crossref_primary_10_1016_j_enbuild_2024_115007
crossref_primary_10_3390_en15041394
crossref_primary_10_1016_j_enbuild_2023_112872
crossref_primary_10_1016_j_energy_2022_124915
crossref_primary_10_1007_s12273_021_0849_9
crossref_primary_10_1007_s11036_024_02396_8
crossref_primary_10_1016_j_engappai_2023_106480
crossref_primary_10_1016_j_energy_2022_125969
crossref_primary_10_3390_buildings12010015
crossref_primary_10_1007_s13198_023_02120_x
crossref_primary_10_1016_j_scs_2021_103445
crossref_primary_10_1108_IJESM_02_2021_0025
crossref_primary_10_1016_j_energy_2024_131460
crossref_primary_10_3390_en17215463
crossref_primary_10_1016_j_enbuild_2020_110601
crossref_primary_10_1016_j_ijrefrig_2024_01_006
crossref_primary_10_1016_j_arcontrol_2022_04_010
crossref_primary_10_1016_j_energy_2024_133640
crossref_primary_10_1016_j_jobe_2023_107289
crossref_primary_10_3390_buildings14082491
crossref_primary_10_1016_j_rser_2024_114804
crossref_primary_10_1007_s10854_020_04017_y
crossref_primary_10_1016_j_buildenv_2025_112973
crossref_primary_10_1080_17508975_2021_1922336
crossref_primary_10_1016_j_enconman_2023_117369
crossref_primary_10_1016_j_enbenv_2023_06_005
crossref_primary_10_1016_j_energy_2022_125853
crossref_primary_10_1016_j_jmsy_2022_04_004
crossref_primary_10_1016_j_jobe_2020_101972
crossref_primary_10_1016_j_energy_2022_123798
crossref_primary_10_1007_s11063_023_11256_7
crossref_primary_10_1016_j_energy_2023_128446
crossref_primary_10_1016_j_enbuild_2022_112188
crossref_primary_10_1016_j_enbuild_2022_112461
crossref_primary_10_1016_j_energy_2022_125858
crossref_primary_10_1016_j_apenergy_2021_117139
crossref_primary_10_1016_j_seta_2020_100969
crossref_primary_10_1016_j_enbuild_2024_114811
crossref_primary_10_1016_j_apenergy_2021_116969
crossref_primary_10_1016_j_buildenv_2025_112688
crossref_primary_10_1016_j_enbuild_2021_111407
crossref_primary_10_1016_j_autcon_2022_104303
crossref_primary_10_1016_j_enbuild_2021_111769
crossref_primary_10_15446_dyna_v90n225_105688
crossref_primary_10_1016_j_buildenv_2022_108760
crossref_primary_10_1016_j_energy_2022_126432
crossref_primary_10_1016_j_applthermaleng_2024_123696
crossref_primary_10_1016_j_eswa_2022_117649
crossref_primary_10_1080_0951192X_2023_2177748
crossref_primary_10_1093_ijlct_ctac008
crossref_primary_10_3390_math13172722
crossref_primary_10_1016_j_enbenv_2024_08_006
crossref_primary_10_1016_j_egyai_2025_100557
crossref_primary_10_3390_buildings14061835
crossref_primary_10_1016_j_jobe_2023_107021
crossref_primary_10_1016_j_enbuild_2020_110301
crossref_primary_10_1016_j_jobe_2023_108071
crossref_primary_10_1007_s00202_025_03242_0
crossref_primary_10_1016_j_seta_2021_101255
crossref_primary_10_1016_j_enbuild_2021_111318
crossref_primary_10_1016_j_aei_2024_102810
crossref_primary_10_1016_j_buildenv_2023_109982
crossref_primary_10_1016_j_apenergy_2023_121830
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_1016_j_enbuild_2022_112244
crossref_primary_10_1007_s12273_023_0996_2
crossref_primary_10_1093_ijlct_ctac115
crossref_primary_10_1155_2022_6774922
crossref_primary_10_1177_16878132241229817
crossref_primary_10_3390_en16165972
crossref_primary_10_1016_j_energy_2023_130043
crossref_primary_10_1016_j_enbuild_2020_110671
crossref_primary_10_1016_j_enbuild_2021_111426
crossref_primary_10_1088_1757_899X_1090_1_012053
crossref_primary_10_1080_07373937_2021_1872610
crossref_primary_10_1109_ACCESS_2023_3286020
crossref_primary_10_1016_j_enbuild_2021_111423
crossref_primary_10_1016_j_nxener_2025_100321
crossref_primary_10_1088_1742_6596_3001_1_012011
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1007_s12273_021_0885_0
crossref_primary_10_1016_j_egyr_2022_10_441
crossref_primary_10_1016_j_enbuild_2023_113768
crossref_primary_10_1016_j_enbenv_2024_03_003
crossref_primary_10_1016_j_iot_2024_101175
crossref_primary_10_1016_j_apenergy_2021_118088
crossref_primary_10_1016_j_buildenv_2024_111670
crossref_primary_10_1016_j_solener_2020_10_075
crossref_primary_10_1016_j_apenergy_2022_119478
crossref_primary_10_3390_math12203295
crossref_primary_10_1007_s12046_025_02833_8
crossref_primary_10_1080_17512549_2020_1863858
crossref_primary_10_1016_j_enbuild_2022_112098
crossref_primary_10_1016_j_enbuild_2025_115583
crossref_primary_10_1016_j_scs_2021_103514
crossref_primary_10_1007_s12273_021_0791_x
Cites_doi 10.1016/j.enbuild.2016.09.062
10.1016/j.enbuild.2004.09.009
10.1016/j.enconman.2018.06.017
10.1007/s12053-014-9316-0
10.1016/j.enbuild.2004.01.037
10.1016/j.enbuild.2017.09.047
10.1016/j.energy.2016.10.066
10.1016/j.scs.2019.101717
10.1016/j.apenergy.2005.08.006
10.1016/j.enbuild.2013.08.044
10.1016/j.apenergy.2014.03.020
10.1080/10789669.2013.789371
10.1016/j.apenergy.2019.113395
10.1016/j.rser.2016.10.079
10.1080/10789669.2006.10391171
10.1016/j.scs.2019.101533
10.1016/j.segan.2016.02.005
10.1080/10789669.2008.10391049
10.1016/j.enbuild.2015.12.045
10.1016/j.enconman.2004.11.011
10.1016/j.egypro.2017.03.270
10.1016/j.energy.2011.12.031
10.1016/j.buildenv.2013.11.021
10.1016/j.apenergy.2009.01.015
10.1016/j.enbuild.2016.09.039
10.1016/j.apenergy.2012.12.043
10.1016/j.apenergy.2017.02.066
10.1016/j.apenergy.2019.113492
10.1016/j.enbuild.2003.10.002
10.1109/TPWRS.2009.2023009
10.1016/j.rser.2017.09.108
10.1016/j.buildenv.2010.05.031
10.1016/j.apenergy.2018.05.075
10.1016/j.apenergy.2017.08.035
10.3390/en6020579
10.1016/j.enbuild.2009.10.017
10.1016/j.egypro.2017.03.721
10.1016/j.applthermaleng.2017.09.117
10.1016/j.applthermaleng.2010.10.021
10.1016/j.enbuild.2008.09.007
10.1016/j.enbuild.2016.09.037
10.1016/j.egypro.2013.11.057
10.1016/j.enbuild.2015.02.007
10.3182/20140824-6-ZA-1003.02382
10.1016/j.rser.2016.06.040
10.1016/j.ijrefrig.2015.11.006
10.1016/j.apenergy.2017.09.116
10.1016/j.enbuild.2014.05.049
10.1016/j.enbuild.2014.06.052
10.1016/j.enbuild.2006.04.018
10.1016/j.enbuild.2013.12.038
10.1080/10789669.2007.10390958
10.1016/j.enbuild.2011.12.018
10.1109/TASE.2017.2666184
10.1016/j.enbuild.2011.06.011
10.1016/j.applthermaleng.2012.09.030
10.1016/j.enbuild.2012.06.006
10.1080/10789669.2010.10390906
10.1016/j.rser.2016.12.015
10.1016/j.enbuild.2017.03.026
10.1016/j.enbuild.2018.02.032
10.7763/IJMLC.2011.V1.10
10.1016/j.rser.2017.02.085
10.1016/j.rser.2017.04.095
10.1016/j.energy.2018.05.155
10.1016/j.autcon.2014.12.006
10.1177/0143624417704977
10.1016/j.applthermaleng.2017.01.008
10.1016/j.rser.2012.02.049
10.1016/j.applthermaleng.2005.10.039
10.1016/j.ijrefrig.2016.07.024
10.1016/j.enconman.2003.10.009
10.1016/j.rser.2015.11.067
10.1016/j.enconman.2003.12.008
10.1016/j.rser.2014.01.069
10.1016/j.egypro.2017.07.350
10.1016/j.enbuild.2012.08.010
10.1080/10789669.2009.10390825
10.1016/j.enbuild.2017.04.038
10.1109/TSG.2012.2215059
10.1016/j.enbuild.2013.02.049
10.1016/j.enbuild.2009.03.007
10.1016/j.enbuild.2004.06.023
10.1109/TSG.2013.2278477
10.1016/S0306-2619(03)00107-7
10.1016/j.scs.2018.11.021
10.1260/1748-3018.4.2.231
10.1007/s12273-018-0472-6
10.1016/j.apenergy.2017.03.064
10.1016/j.enbuild.2014.02.005
10.1109/TPWRS.2013.2264488
10.1016/j.conengprac.2005.11.002
10.1016/j.enbuild.2013.02.050
10.1016/j.applthermaleng.2016.07.109
10.1080/09613218.2018.1459004
10.1016/j.apenergy.2014.04.016
10.1016/j.enbuild.2013.03.020
10.1016/j.enbuild.2014.07.036
10.1016/j.apenergy.2012.01.061
10.1016/j.neucom.2016.08.004
10.1016/j.egypro.2019.02.025
10.1080/10789669.2005.10391123
10.1016/j.enbuild.2015.09.060
10.1016/j.scs.2015.12.001
10.1016/j.enbuild.2015.02.017
10.1016/j.energy.2014.06.104
10.1016/j.egypro.2019.01.378
10.1016/j.enbuild.2016.05.076
10.1016/j.proeng.2017.09.894
10.1016/j.enbuild.2018.05.025
10.1016/j.autcon.2014.09.004
10.1016/j.autcon.2005.06.001
10.1016/j.apenergy.2018.12.004
10.1016/j.rser.2017.05.124
10.1016/j.ijrefrig.2006.12.012
10.1016/j.enbuild.2017.05.053
10.1016/j.apenergy.2018.04.118
10.1145/1989734.1989738
10.1016/j.enbuild.2016.11.009
10.1016/j.rser.2015.12.040
10.1016/j.solener.2012.05.015
10.1016/j.apenergy.2016.10.091
10.1016/S1359-4311(00)00036-3
10.1016/j.applthermaleng.2017.08.047
10.1016/j.enbuild.2015.05.056
10.1016/j.applthermaleng.2007.03.021
10.1016/j.enbuild.2014.08.030
10.1016/j.proeng.2017.10.171
10.1016/j.eswa.2015.01.010
10.1016/j.energy.2017.01.055
10.1016/j.enconman.2008.06.032
10.1016/j.rser.2013.11.040
10.1016/j.energy.2015.11.037
10.1016/j.proeng.2017.09.967
10.1016/j.enbuild.2006.09.015
10.1016/j.apenergy.2019.02.052
10.1016/j.enconman.2011.02.002
10.1016/j.ijrefrig.2017.11.003
10.1016/j.energy.2018.05.127
10.1016/j.energy.2016.02.134
10.1016/j.apenergy.2004.11.002
10.1787/9789264202955-en
10.1016/j.proeng.2015.09.097
10.1016/j.ijrefrig.2010.08.011
10.1080/10789669.2014.938006
10.1016/j.enbuild.2017.06.008
10.1016/j.enbuild.2017.11.008
10.1016/j.rser.2019.04.021
10.1016/j.buildenv.2006.08.011
10.1016/j.enconman.2006.09.023
10.1016/j.enbuild.2011.09.043
10.1016/j.ijrefrig.2014.10.017
10.1016/j.enbuild.2006.07.011
10.1080/00207160802033582
10.1016/j.neucom.2016.09.076
ContentType Journal Article
Copyright 2019 Southwest Jiaotong University
Copyright_xml – notice: 2019 Southwest Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.enbenv.2019.11.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-1233
EndPage 164
ExternalDocumentID oai_doaj_org_article_6db5c81a73de4e4090d512cd8382c563
10_1016_j_enbenv_2019_11_003
S2666123319300121
GroupedDBID 6I.
AAEDW
AAFTH
AALRI
AAXUO
ACHIH
AFPKN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
7WY
8FL
AAFWJ
AAYWO
AAYXX
ABUWG
ACVFH
ADCNI
ADVLN
AEUPX
AFFHD
AFKRA
AFPUW
AIGII
AKBMS
AKYEP
BENPR
BEZIV
CCPQU
CITATION
DWQXO
FRNLG
M0C
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
ID FETCH-LOGICAL-c3333-80723d3fc9e81f7a430bad5d9f6647726e6ab6be0b66d73c52a0aa13942633f83
IEDL.DBID DOA
ISSN 2666-1233
IngestDate Fri Oct 03 12:39:45 EDT 2025
Thu Nov 20 00:42:55 EST 2025
Tue Nov 18 20:59:34 EST 2025
Fri Feb 23 02:48:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Unsupervised data mining
Building energy systems
Big data
Building energy efficiency
Supervised data mining
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3333-80723d3fc9e81f7a430bad5d9f6647726e6ab6be0b66d73c52a0aa13942633f83
OpenAccessLink https://doaj.org/article/6db5c81a73de4e4090d512cd8382c563
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_6db5c81a73de4e4090d512cd8382c563
crossref_primary_10_1016_j_enbenv_2019_11_003
crossref_citationtrail_10_1016_j_enbenv_2019_11_003
elsevier_sciencedirect_doi_10_1016_j_enbenv_2019_11_003
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationTitle Energy and built environment
PublicationYear 2020
Publisher Elsevier B.V
KeAi Communications Co., Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co., Ltd
References Zheng, Zhuang, Lian, Yu (bib0048) 2017; 205
Du, Fan, Jin, Chi (bib0152) 2014; 73
Fan, Sun, Zhao, Song, Wang (bib0004) 2019; 240
Dehestani, Eftekhari, Guo, Ling, Su, Nguyen (bib0077) 2011; 1
Zhao, Xiao, Wen, Lu, Wang (bib0095) 2014; 20
Fan, Ding, Liao (bib0049) 2019; 51
Fan, Xiao, Yan (bib0143) 2015; 50
Zhao, Magoulès (bib0010) 2012; 16
Kwok (bib0031) 2011; 52
Capozzoli, Lauro, Khan (bib0148) 2015; 42
Tran, Chen, Ao, Cam (bib0069) 2016; 72
Fumo (bib0013) 2014; 31
Gunay, Shen, Yang (bib0144) 2019; 47
Ahmad, Hassan, Abdullah, Rahman, Hussin, Abdullah (bib0011) 2014; 33
Du, Jin, Yang (bib0060) 2009; 86
Patnaik, Marwah, Sharma, Ramakrishnan (bib0127) 2009
Jakkula, Cook (bib0154) 2010
Li, Hu (bib0150) 2018; 173
Tran, Chen, Jiang (bib0065) 2016; 133
Chalal, Benachir, White, Shrahily (bib0012) 2016; 64
Yu, Haghighat, Fung, Zhou (bib0139) 2012; 47
Zogg, Shafai (bib0146) 2001
Lee, Park, House, Kelly (bib0085) 1996; 102
He, Caudell, Menicucci, Mammoli (bib0091) 2012; 86
Marino, Amarasinghe, Manic (bib0035) 2016; 2016
Kocyigit (bib0087) 2015; 50
Wang, Li, Duić, Mi, Hodge, Shafie-khah (bib0102) 2018; 171
Amasyali, El-Gohary (bib0014) 2018; 81
Zhang, Zhao, Zhang, Fan, Li (bib0052) 2017; 205
Wang, Xiao (bib0159) 2006; 12
Roth, Westphalen, Llana, Feng (bib0007) 2004
.
Turner, Staino, Basu (bib0073) 2017; 151
Zhou, Wang, Xiao (bib0086) 2009; 15
Bourdeau, Zhai, Nefzaoui, Guo, Chatellier (bib0019) 2019; 48
Mena, Rodríguez, Castilla, Arahal (bib0029) 2014; 82
Sun, Li, Chen, Liu, Li, Hu (bib0083) 2016; 108
Jin, Du (bib0165) 2006; 26
Fan, Xiao, Madsen, Wang (bib0107) 2015; 109
Wei, Zhang, Shi, Xia, Pan, Wu (bib0018) 2018; 82
Li, Han, Xu (bib0020) 2014; 124
Harish, Kumar (bib0003) 2016; 56
Sun, Li, Chen, Huang, Shi, Hu (bib0088) 2017; 127
Magoulès, Zhao, Elizondo (bib0089) 2013; 62
Deb, Zhang, Yang, Lee, Shah (bib0017) 2017; 74
Quan, Srinivasan, Khosravi (bib0053) 2014; 73
Hao, Zhang, Chen (bib0181) 2005; 37
House, Lee, Shin (bib0145) 1999
Katipamula, Brambley (bib0005) 2005; 11
Shi, Liu, Wei (bib0038) 2016; 216
Du, Chen, Jin (bib0179) 2017; 122
Zhao, Zhong, Zhang, Su (bib0025) 2016; 102
Naji, Keivani, Shamshirband, Alengaram, Jumaat, Mansor (bib0028) 2016; 97
Beghi, Cecchinato, Corazzol, Rampazzo, Simmini, Susto (bib0099) 2014; 47
Guo, Li, Chen, Hu, Li, Xing (bib0176) 2017; 142
Biswas, Robinson, Fumo (bib0027) 2016; 117
Ben-Nakhi, Mahmoud (bib0033) 2004; 45
Mocanu, Nguyen, Gibescu, Kling (bib0036) 2016; 6
Fan, Du, Jin, Yang, Guo (bib0063) 2010; 45
Habib, Zucker (bib0133) 2015
Madhikermi, Yousefnezhad, Främling (bib0161) 2018
Zhao, Magoulès (bib0046) 2010; 4
Wang, Srinivasan (bib0015) 2017; 75
Nikolaou, Kolokotsa, Stavrakakis, Skias (bib0112) 2012; 3
Du, Jin, Yang (bib0164) 2009; 41
Zhang, Zhao, Zhang (bib0140) 2019; 158
Xiao, Wang, Fan (bib0142) 2017
Lee, Cheng (bib0006) 2016; 56
Ahmad, Mourshed, Rezgui (bib0030) 2017; 147
Fan, Sun, Shan, Xiao, Wang (bib0108) 2018; 224
Massana, Pous, Burgas, Melendez, Colomer (bib0042) 2015; 92
Shao, Marwah, Ramakrishnan (bib0130) 2013; 2013
Liu, Chen, Mori (bib0040) 2015
Liang, Du (bib0076) 2007; 30
Zhao, Li, Zhang, Zhang (bib0075) 2019; 109
Lai, Magoulès, Lherminier (bib0041) 2008; 85
Li, Ren, Meng (bib0043) 2010
Kalluri, Kamilaris, Kondepudi, Kua, Tham (bib0134) 2016; 127
Zhao, Wang, Xiao (bib0067) 2013; 51
Chou, Bui (bib0050) 2014; 82
Kwac, Flora, Rajagopal (bib0120) 2014; 5
Khan, Capozzoli, Corgnati, Cerquitelli (bib0149) 2013; 42
Narayanaswamy, Balaji, Gupta, Agarwal (bib0151) 2014
Du, Fan, Chi, Jin (bib0059) 2014; 72
Fan, Xiao, Wang (bib0051) 2014; 127
Vázquez-Canteli, Ulyanin, Kämpf, Nagy (bib0002) 2019; 45
Han, Pei, Yin (bib0138) 2000; 29
Wang, Xiao (bib0157) 2004; 36
Du, Jin, Yang (bib0061) 2008; 14
Wang, Xiao (bib0158) 2004; 45
Zhao, Wang, Xiao (bib0068) 2013; 19
Iglesias, Kastner (bib0121) 2013; 6
Han, Gu, Hong, Kang (bib0079) 2011; 43
Farrou, Kolokotroni, Santamouris (bib0119) 2012; 55
Miller, Nagy, Schlueter (bib0022) 2018; 81
Wall, Guo, Li, West (bib0153) 2011; 117
Xiao, Wang, Zhang (bib0160) 2006; 15
Fan, Xiao (bib0106) 2018; 39
Fan, Xiao, Li, Wang (bib0009) 2018; 159
Yan, Ji, Shen (bib0098) 2017; 228
Qiu, Feng, Li, Yang, Xu, Li (bib0103) 2019; 12
Yan, Shen, Mulumba, Afshari (bib0082) 2014; 81
Du, Jin, Wu (bib0168) 2007; 13
Chicco (bib0111) 2012; 42
Guo, Li, Chen, Hu, Li, Liu (bib0177) 2017; 115
Yan, Ma, Zhao, Kokogiannakis (bib0093) 2016; 133
Lavin, Klabjan (bib0117) 2015; 8
Zhang, Xue, Zhao, Zhang, Li (bib0141) 2019; 253
Hu, Li, Chen, Li, Liu (bib0172) 2016; 63
Fan, Xiao, Zhao (bib0026) 2017; 195
Petcharat, Chungpaibulpatana, Rakkwamsuk (bib0125) 2012; 52
Li, Lǔ, Ding, Xu, Li (bib0044) 2009; 1
Wang, Jiang (bib0057) 2004; 36
Capozzoli, Piscitelli, Brandi, Grassi, Chicco (bib0155) 2018; 157
Xue, Zhou, Fang, Chen, Liu, Liu (bib0101) 2017; 205
Yu, Yu, Sun, Deng, Wu, Cong (bib0171) 2017; 205
Patnaik, Marwah, Sharma, Ramakrishnan (bib0128) 2010
Patnaik, Marwah, Sharma, Ramakrishnan (bib0129) 2011; 2
Du, Jin, Wu (bib0163) 2007; 42
Du, Jin (bib0166) 2007; 48
Fan, Xiao, Song, Wang (bib0110) 2019; 251
Miller, Nagy, Schlueter (bib0115) 2015; 49
Karami, Wang (bib0074) 2018; 166
Du, Jin (bib0156) 2008; 49
Wang, Zhou, Xiao (bib0180) 2010; 42
Cabrera, Zareipour (bib0137) 2013; 62
Bagnasco, Fresi, Saviozzi, Silvestro, Vinci (bib0023) 2015; 103
Lee, House, Kyong (bib0056) 2004; 77
Fan, Xiao (bib0105) 2017; 111
Chicco, Ilie (bib0124) 2009; 24
Wang, Cui (bib0174) 2005; 82
Paudel, Elmitri, Couturier, Nguyen, Kamphuis, Lacarrière (bib0045) 2017; 138
Wang, Qin (bib0169) 2005; 46
Du, Jin (bib0167) 2007; 39
Miller, Schlueter (bib0116) 2015
Han, Gu, Wang, Li (bib0080) 2011; 34
Shi, Li, Chen, Hu, Wang, Guo (bib0178) 2018; 129
Dong, Cao, Lee (bib0024) 2005; 37
International Energy Agency (IEA), Transition to Sustainable Buildings: Strategies and Opportunities to 2050, 27 Jun 2013
Xu, Xiao, Wang (bib0173) 2008; 28
Zogg, Shafai, Geering (bib0147) 2006; 14
Chung (bib0071) 2012; 95
Feng, Li (bib0104) 2017; 105
Reinhardt, Koessler (bib0132) 2014
Beghi, Brignoli, Cecchinato, Menegazzo, Rampazzo (bib0175) 2015
Capozzoli, Cerquitelli, Piscitelli (bib0021) 2016
Li, Hu, Chen, Li, Hu, Guo (bib0100) 2017; 185
Fan, Wang, Gang, Li (bib0034) 2019; 236
Swider, Browne, Bansal, Kecman (bib0066) 2001; 21
Wu, Clements-Croome (bib0113) 2007; 39
Han, Gu, Kang, Li (bib0078) 2011; 31
Fan, Song, Xiao, Xue (bib0109) 2019; 158
Du, Fan, Jin, Chi (bib0058) 2014; 73
Guan, Luh, Michel, Chi (bib0054) 2013; 28
Yu, Haghighat, Fung (bib0008) 2016; 25
Dahl, Brun, Andresen (bib0055) 2017; 193
Wang, Gao (bib0072) 2017; 14
Amber, Ahmad, Aslam, Kousar, Usman, Khan (bib0037) 2018; 157
Gao, Malkawi (bib0114) 2014; 84
Han, Cao, Gu, Ren (bib0081) 2010; 16
Hou, Lian, Yao, Yuan (bib0032) 2006; 83
Mavromatidis, Acha, Shah (bib0064) 2013; 62
Li, Hu, Chen, Shen, Li, Hu (bib0097) 2016; 116
Santamouris, Mihalakakou, Patargias, Gaitani, Sfakianaki, Papaglastra (bib0123) 2007; 39
Van Every, Rodriguez, Jones, Mammoli, Martínez-Ramón (bib0070) 2017; 149
Fonseca, Miller, Schlueter (bib0131) 2017; 122
Chen, Lan (bib0170) 2009; 41
Hou, Lian (bib0047) 2009
Xiao, Fan (bib0136) 2014; 75
Zhao, Wang, Xiao (bib0094) 2013; 112
Li, Wen (bib0162) 2014; 68
Zhu, Jin, Du (bib0062) 2012; 44
Qin, Zhang (bib0122) 2017; 156
Pieri, IoannisTzouvadakis (bib0118) 2015; 94
Li, Hu, Chen, Li, Hu, Guo (bib0096) 2016; 133
Guo, Tan, Chen, Li, Wang, Huang (bib0092) 2018; 225
Chen, Wen (bib0135) 2017
He, Menicucci, Caudell, Mammoli (bib0090) 2011
Fu, Li, Zhang, Xu (bib0039) 2015; 121
Mat Daut, Hassan, Abdullah, Rahman, Abdullah, Hussin (bib0016) 2017; 70
Yan, Ma, Dai, Shen, Ji, Xie (bib0084) 2018; 86
Liu, Wang, Li, Chen, Shen, Xing (bib0126) 2017; 208
Amasyali (10.1016/j.enbenv.2019.11.003_bib0014) 2018; 81
Du (10.1016/j.enbenv.2019.11.003_bib0163) 2007; 42
Hou (10.1016/j.enbenv.2019.11.003_bib0032) 2006; 83
Guan (10.1016/j.enbenv.2019.11.003_bib0054) 2013; 28
Nikolaou (10.1016/j.enbenv.2019.11.003_bib0112) 2012; 3
Zhao (10.1016/j.enbenv.2019.11.003_bib0010) 2012; 16
Paudel (10.1016/j.enbenv.2019.11.003_bib0045) 2017; 138
Turner (10.1016/j.enbenv.2019.11.003_bib0073) 2017; 151
Shi (10.1016/j.enbenv.2019.11.003_bib0038) 2016; 216
Yan (10.1016/j.enbenv.2019.11.003_bib0093) 2016; 133
Dong (10.1016/j.enbenv.2019.11.003_bib0024) 2005; 37
Han (10.1016/j.enbenv.2019.11.003_bib0080) 2011; 34
Kwok (10.1016/j.enbenv.2019.11.003_bib0031) 2011; 52
Du (10.1016/j.enbenv.2019.11.003_bib0168) 2007; 13
Xu (10.1016/j.enbenv.2019.11.003_bib0173) 2008; 28
Shi (10.1016/j.enbenv.2019.11.003_bib0178) 2018; 129
Miller (10.1016/j.enbenv.2019.11.003_bib0115) 2015; 49
Guo (10.1016/j.enbenv.2019.11.003_bib0176) 2017; 142
Wang (10.1016/j.enbenv.2019.11.003_bib0169) 2005; 46
Li (10.1016/j.enbenv.2019.11.003_bib0162) 2014; 68
Xiao (10.1016/j.enbenv.2019.11.003_bib0142) 2017
Wang (10.1016/j.enbenv.2019.11.003_bib0158) 2004; 45
Fan (10.1016/j.enbenv.2019.11.003_bib0105) 2017; 111
Van Every (10.1016/j.enbenv.2019.11.003_bib0070) 2017; 149
Gao (10.1016/j.enbenv.2019.11.003_bib0114) 2014; 84
Tran (10.1016/j.enbenv.2019.11.003_bib0069) 2016; 72
Roth (10.1016/j.enbenv.2019.11.003_bib0007) 2004
Yu (10.1016/j.enbenv.2019.11.003_bib0008) 2016; 25
Ahmad (10.1016/j.enbenv.2019.11.003_bib0011) 2014; 33
Wang (10.1016/j.enbenv.2019.11.003_bib0157) 2004; 36
Naji (10.1016/j.enbenv.2019.11.003_bib0028) 2016; 97
Zhao (10.1016/j.enbenv.2019.11.003_bib0025) 2016; 102
Biswas (10.1016/j.enbenv.2019.11.003_bib0027) 2016; 117
Miller (10.1016/j.enbenv.2019.11.003_bib0116) 2015
Fu (10.1016/j.enbenv.2019.11.003_bib0039) 2015; 121
Katipamula (10.1016/j.enbenv.2019.11.003_bib0005) 2005; 11
Patnaik (10.1016/j.enbenv.2019.11.003_bib0129) 2011; 2
Fonseca (10.1016/j.enbenv.2019.11.003_bib0131) 2017; 122
He (10.1016/j.enbenv.2019.11.003_bib0091) 2012; 86
Habib (10.1016/j.enbenv.2019.11.003_bib0133) 2015
Qin (10.1016/j.enbenv.2019.11.003_bib0122) 2017; 156
Li (10.1016/j.enbenv.2019.11.003_bib0097) 2016; 116
Li (10.1016/j.enbenv.2019.11.003_bib0100) 2017; 185
Zhang (10.1016/j.enbenv.2019.11.003_bib0052) 2017; 205
Du (10.1016/j.enbenv.2019.11.003_bib0179) 2017; 122
Wu (10.1016/j.enbenv.2019.11.003_bib0113) 2007; 39
Guo (10.1016/j.enbenv.2019.11.003_bib0092) 2018; 225
Zogg (10.1016/j.enbenv.2019.11.003_bib0146) 2001
Wang (10.1016/j.enbenv.2019.11.003_bib0072) 2017; 14
Han (10.1016/j.enbenv.2019.11.003_bib0079) 2011; 43
Sun (10.1016/j.enbenv.2019.11.003_bib0083) 2016; 108
Liu (10.1016/j.enbenv.2019.11.003_bib0126) 2017; 208
Han (10.1016/j.enbenv.2019.11.003_bib0081) 2010; 16
Lee (10.1016/j.enbenv.2019.11.003_bib0006) 2016; 56
Khan (10.1016/j.enbenv.2019.11.003_bib0149) 2013; 42
Chalal (10.1016/j.enbenv.2019.11.003_bib0012) 2016; 64
Cabrera (10.1016/j.enbenv.2019.11.003_bib0137) 2013; 62
Zhang (10.1016/j.enbenv.2019.11.003_bib0140) 2019; 158
Zhao (10.1016/j.enbenv.2019.11.003_bib0046) 2010; 4
Sun (10.1016/j.enbenv.2019.11.003_bib0088) 2017; 127
Reinhardt (10.1016/j.enbenv.2019.11.003_bib0132) 2014
Li (10.1016/j.enbenv.2019.11.003_bib0020) 2014; 124
Miller (10.1016/j.enbenv.2019.11.003_bib0022) 2018; 81
Karami (10.1016/j.enbenv.2019.11.003_bib0074) 2018; 166
Zhang (10.1016/j.enbenv.2019.11.003_bib0141) 2019; 253
Kalluri (10.1016/j.enbenv.2019.11.003_bib0134) 2016; 127
Du (10.1016/j.enbenv.2019.11.003_bib0152) 2014; 73
Jakkula (10.1016/j.enbenv.2019.11.003_bib0154) 2010
Chicco (10.1016/j.enbenv.2019.11.003_bib0111) 2012; 42
Han (10.1016/j.enbenv.2019.11.003_bib0138) 2000; 29
Quan (10.1016/j.enbenv.2019.11.003_bib0053) 2014; 73
Du (10.1016/j.enbenv.2019.11.003_bib0058) 2014; 73
Wang (10.1016/j.enbenv.2019.11.003_bib0174) 2005; 82
Fan (10.1016/j.enbenv.2019.11.003_bib0063) 2010; 45
Ahmad (10.1016/j.enbenv.2019.11.003_bib0030) 2017; 147
Beghi (10.1016/j.enbenv.2019.11.003_bib0175) 2015
Yan (10.1016/j.enbenv.2019.11.003_bib0098) 2017; 228
Wang (10.1016/j.enbenv.2019.11.003_bib0102) 2018; 171
Liu (10.1016/j.enbenv.2019.11.003_bib0040) 2015
Fan (10.1016/j.enbenv.2019.11.003_bib0049) 2019; 51
Wall (10.1016/j.enbenv.2019.11.003_bib0153) 2011; 117
Dahl (10.1016/j.enbenv.2019.11.003_bib0055) 2017; 193
Beghi (10.1016/j.enbenv.2019.11.003_bib0099) 2014; 47
Wang (10.1016/j.enbenv.2019.11.003_bib0159) 2006; 12
Li (10.1016/j.enbenv.2019.11.003_bib0044) 2009; 1
Gunay (10.1016/j.enbenv.2019.11.003_bib0144) 2019; 47
Fumo (10.1016/j.enbenv.2019.11.003_bib0013) 2014; 31
Fan (10.1016/j.enbenv.2019.11.003_bib0106) 2018; 39
Chou (10.1016/j.enbenv.2019.11.003_bib0050) 2014; 82
Santamouris (10.1016/j.enbenv.2019.11.003_bib0123) 2007; 39
Harish (10.1016/j.enbenv.2019.11.003_bib0003) 2016; 56
Du (10.1016/j.enbenv.2019.11.003_bib0059) 2014; 72
Chen (10.1016/j.enbenv.2019.11.003_bib0135) 2017
Du (10.1016/j.enbenv.2019.11.003_bib0061) 2008; 14
Xue (10.1016/j.enbenv.2019.11.003_bib0101) 2017; 205
Patnaik (10.1016/j.enbenv.2019.11.003_bib0127) 2009
Du (10.1016/j.enbenv.2019.11.003_bib0156) 2008; 49
Shao (10.1016/j.enbenv.2019.11.003_bib0130) 2013; 2013
Fan (10.1016/j.enbenv.2019.11.003_bib0004) 2019; 240
He (10.1016/j.enbenv.2019.11.003_bib0090) 2011
Guo (10.1016/j.enbenv.2019.11.003_bib0177) 2017; 115
Tran (10.1016/j.enbenv.2019.11.003_bib0065) 2016; 133
Vázquez-Canteli (10.1016/j.enbenv.2019.11.003_bib0002) 2019; 45
Lee (10.1016/j.enbenv.2019.11.003_bib0056) 2004; 77
Zhou (10.1016/j.enbenv.2019.11.003_bib0086) 2009; 15
Capozzoli (10.1016/j.enbenv.2019.11.003_bib0148) 2015; 42
Du (10.1016/j.enbenv.2019.11.003_bib0167) 2007; 39
Wei (10.1016/j.enbenv.2019.11.003_bib0018) 2018; 82
Amber (10.1016/j.enbenv.2019.11.003_bib0037) 2018; 157
Capozzoli (10.1016/j.enbenv.2019.11.003_bib0021) 2016
Lai (10.1016/j.enbenv.2019.11.003_bib0041) 2008; 85
Li (10.1016/j.enbenv.2019.11.003_bib0043) 2010
Yan (10.1016/j.enbenv.2019.11.003_bib0082) 2014; 81
Fan (10.1016/j.enbenv.2019.11.003_bib0110) 2019; 251
Lavin (10.1016/j.enbenv.2019.11.003_bib0117) 2015; 8
10.1016/j.enbenv.2019.11.003_bib0001
Fan (10.1016/j.enbenv.2019.11.003_bib0034) 2019; 236
Fan (10.1016/j.enbenv.2019.11.003_bib0009) 2018; 159
Zhao (10.1016/j.enbenv.2019.11.003_bib0068) 2013; 19
Kwac (10.1016/j.enbenv.2019.11.003_bib0120) 2014; 5
Fan (10.1016/j.enbenv.2019.11.003_bib0143) 2015; 50
Xiao (10.1016/j.enbenv.2019.11.003_bib0160) 2006; 15
Du (10.1016/j.enbenv.2019.11.003_bib0166) 2007; 48
Bagnasco (10.1016/j.enbenv.2019.11.003_bib0023) 2015; 103
Zogg (10.1016/j.enbenv.2019.11.003_bib0147) 2006; 14
Fan (10.1016/j.enbenv.2019.11.003_bib0108) 2018; 224
House (10.1016/j.enbenv.2019.11.003_bib0145) 1999
Zhu (10.1016/j.enbenv.2019.11.003_bib0062) 2012; 44
Han (10.1016/j.enbenv.2019.11.003_bib0078) 2011; 31
Mocanu (10.1016/j.enbenv.2019.11.003_bib0036) 2016; 6
Mavromatidis (10.1016/j.enbenv.2019.11.003_bib0064) 2013; 62
Hao (10.1016/j.enbenv.2019.11.003_bib0181) 2005; 37
Fan (10.1016/j.enbenv.2019.11.003_bib0026) 2017; 195
Zhao (10.1016/j.enbenv.2019.11.003_bib0094) 2013; 112
Capozzoli (10.1016/j.enbenv.2019.11.003_bib0155) 2018; 157
Hou (10.1016/j.enbenv.2019.11.003_bib0047) 2009
Iglesias (10.1016/j.enbenv.2019.11.003_bib0121) 2013; 6
Narayanaswamy (10.1016/j.enbenv.2019.11.003_bib0151) 2014
Du (10.1016/j.enbenv.2019.11.003_bib0164) 2009; 41
Bourdeau (10.1016/j.enbenv.2019.11.003_bib0019) 2019; 48
Marino (10.1016/j.enbenv.2019.11.003_bib0035) 2016; 2016
Petcharat (10.1016/j.enbenv.2019.11.003_bib0125) 2012; 52
Massana (10.1016/j.enbenv.2019.11.003_bib0042) 2015; 92
Xiao (10.1016/j.enbenv.2019.11.003_bib0136) 2014; 75
Yan (10.1016/j.enbenv.2019.11.003_bib0084) 2018; 86
Fan (10.1016/j.enbenv.2019.11.003_bib0051) 2014; 127
Swider (10.1016/j.enbenv.2019.11.003_bib0066) 2001; 21
Liang (10.1016/j.enbenv.2019.11.003_bib0076) 2007; 30
Zhao (10.1016/j.enbenv.2019.11.003_bib0095) 2014; 20
Feng (10.1016/j.enbenv.2019.11.003_bib0104) 2017; 105
Hu (10.1016/j.enbenv.2019.11.003_bib0172) 2016; 63
Wang (10.1016/j.enbenv.2019.11.003_bib0057) 2004; 36
Pieri (10.1016/j.enbenv.2019.11.003_bib0118) 2015; 94
Mena (10.1016/j.enbenv.2019.11.003_bib0029) 2014; 82
Li (10.1016/j.enbenv.2019.11.003_bib0096) 2016; 133
Qiu (10.1016/j.enbenv.2019.11.003_bib0103) 2019; 12
Mat Daut (10.1016/j.enbenv.2019.11.003_bib0016) 2017; 70
Zheng (10.1016/j.enbenv.2019.11.003_bib0048) 2017; 205
Chung (10.1016/j.enbenv.2019.11.003_bib0071) 2012; 95
Kocyigit (10.1016/j.enbenv.2019.11.003_bib0087) 2015; 50
Chen (10.1016/j.enbenv.2019.11.003_bib0170) 2009; 41
Zhao (10.1016/j.enbenv.2019.11.003_bib0075) 2019; 109
Chicco (10.1016/j.enbenv.2019.11.003_bib0124) 2009; 24
Li (10.1016/j.enbenv.2019.11.003_bib0150) 2018; 173
Wang (10.1016/j.enbenv.2019.11.003_bib0015) 2017; 75
Zhao (10.1016/j.enbenv.2019.11.003_bib0067) 2013; 51
Lee (10.1016/j.enbenv.2019.11.003_bib0085) 1996; 102
Du (10.1016/j.enbenv.2019.11.003_bib0060) 2009; 86
Jin (10.1016/j.enbenv.2019.11.003_bib0165) 2006; 26
Fan (10.1016/j.enbenv.2019.11.003_bib0109) 2019; 158
Patnaik (10.1016/j.enbenv.2019.11.003_bib0128) 2010
Yu (10.1016/j.enbenv.2019.11.003_bib0171) 2017; 205
Deb (10.1016/j.enbenv.2019.11.003_bib0017) 2017; 74
Dehestani (10.1016/j.enbenv.2019.11.003_bib0077) 2011; 1
Magoulès (10.1016/j.enbenv.2019.11.003_bib0089) 2013; 62
Madhikermi (10.1016/j.enbenv.2019.11.003_bib0161) 2018
Wang (10.1016/j.enbenv.2019.11.003_bib0180) 2010; 42
Farrou (10.1016/j.enbenv.2019.11.003_bib0119) 2012; 55
Ben-Nakhi (10.1016/j.enbenv.2019.11.003_bib0033) 2004; 45
Fan (10.1016/j.enbenv.2019.11.003_bib0107) 2015; 109
Yu (10.1016/j.enbenv.2019.11.003_bib0139) 2012; 47
References_xml – volume: 94
  start-page: 252
  year: 2015
  end-page: 262
  ident: bib0118
  article-title: Identifying energy consumption patterns in the ATTICA hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint
  publication-title: Energy Build.
– volume: 21
  start-page: 311
  year: 2001
  end-page: 329
  ident: bib0066
  article-title: Modelling of vapour-compression liquid chillers with neural networks
  publication-title: Appl. Therm. Eng.
– volume: 97
  start-page: 506
  year: 2016
  end-page: 516
  ident: bib0028
  article-title: Estimating building energy consumption using extreme learning machine method
  publication-title: Energy
– volume: 13
  start-page: 349
  year: 2007
  end-page: 367
  ident: bib0168
  article-title: PCA-FDA-based fault diagnosis for sensors in VAV systems
  publication-title: HVAC&R Res.
– volume: 51
  start-page: 560
  year: 2013
  end-page: 572
  ident: bib0067
  article-title: A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression
  publication-title: Appl. Therm. Eng.
– volume: 47
  start-page: 518
  year: 2019
  end-page: 533
  ident: bib0144
  article-title: Text-mining building maintenance work orders for component fault frequency
  publication-title: Build. Res Inf.
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib0026
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
– volume: 133
  start-page: 230
  year: 2016
  end-page: 245
  ident: bib0096
  article-title: A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based
  publication-title: Energy Build.
– volume: 117
  start-page: 449
  year: 2011
  end-page: 456
  ident: bib0153
  article-title: A dynamic machine learning-based technique for automated fault detection in HVAC systems
  publication-title: ASHRAE Trans.
– volume: 121
  start-page: 1016
  year: 2015
  end-page: 1022
  ident: bib0039
  article-title: Using support vector machine to predict next day electricity load of public buildings with sub-metering devices
  publication-title: Procedia Eng.
– volume: 52
  start-page: 2555
  year: 2011
  end-page: 2564
  ident: bib0031
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Conv. Manag.
– volume: 111
  start-page: 1070
  year: 2017
  end-page: 1078
  ident: bib0105
  article-title: Assessment of building operational performance using data mining techniques: a case study
  publication-title: Energy Procedia
– volume: 92
  start-page: 322
  year: 2015
  end-page: 330
  ident: bib0042
  article-title: Short-term load forecasting in a non-residential building contrasting models and attributes
  publication-title: Energy Build.
– start-page: 1
  year: 2009
  end-page: 4
  ident: bib0047
  article-title: An application of support vector machines in cooling load prediction
  publication-title: Proceedings of the International Workshop on Intelligent Systems and Applications
– volume: 86
  start-page: 2318
  year: 2012
  end-page: 2333
  ident: bib0091
  article-title: Application of Adaptive Resonance Theory neural networks to monitor solar hot water systems and detect existing or developing faults
  publication-title: Solar Energy
– volume: 2
  start-page: 1
  year: 2011
  end-page: 29
  ident: bib0129
  article-title: Temporal data mining approaches for sustainable chiller management in data centers
  publication-title: ACM Trans. Intell. Syst. Technol.
– volume: 12
  start-page: 195
  year: 2019
  end-page: 205
  ident: bib0103
  article-title: Data mining based framework to identify rule based operation strategies for buildings with power metering system
  publication-title: Build. Simul.
– volume: 133
  start-page: 37
  year: 2016
  end-page: 45
  ident: bib0093
  article-title: A decision tree based data-driven diagnostic strategy for air handling units
  publication-title: Energy Build.
– volume: 1
  start-page: 66
  year: 2011
  end-page: 72
  ident: bib0077
  article-title: Online support vector machine application for model based fault detection and isolation of HVAC system
  publication-title: Int. J. Mach. Learn. Comput.
– volume: 43
  start-page: 2524
  year: 2011
  end-page: 2532
  ident: bib0079
  article-title: Automated fdd of multiple-simultaneous faults (MSF) and the application to building chillers
  publication-title: Energy Build.
– volume: 86
  start-page: 1624
  year: 2009
  end-page: 1631
  ident: bib0060
  article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network
  publication-title: Appl. Energy
– start-page: 70
  year: 2001
  end-page: 76
  ident: bib0146
  article-title: Geering HPBT-IIC on CA. a fault diagnosis system for heat pumps
  publication-title: Proceedings of the IEEE International Conference on Control Applications (CCA’01) (Cat. No.01CH37204)
– volume: 122
  start-page: 237
  year: 2017
  end-page: 248
  ident: bib0179
  article-title: Data-driven based reliability evaluation for measurements of sensors in a vapor compression system
  publication-title: Energy
– volume: 253
  year: 2019
  ident: bib0141
  article-title: An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems
  publication-title: Appl. Energy
– volume: 64
  start-page: 761
  year: 2016
  end-page: 776
  ident: bib0012
  article-title: Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 77
  start-page: 153
  year: 2004
  end-page: 170
  ident: bib0056
  article-title: Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
  publication-title: Appl. Energy
– start-page: 303
  year: 2015
  end-page: 308
  ident: bib0133
  article-title: Finding the different patterns in buildings data using bag of words representation with clustering
  publication-title: Proceedings of 13th International Conference on Frontiers of Information Technology (FIT)
– volume: 52
  start-page: 145
  year: 2012
  end-page: 152
  ident: bib0125
  article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings
  publication-title: Energy Build.
– volume: 49
  start-page: 3654
  year: 2008
  end-page: 3665
  ident: bib0156
  article-title: Multiple faults diagnosis for sensors in air handling unit using Fisher discriminant analysis
  publication-title: Energy Conv. Manag.
– volume: 82
  start-page: 437
  year: 2014
  end-page: 446
  ident: bib0050
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build.
– reference: International Energy Agency (IEA), Transition to Sustainable Buildings: Strategies and Opportunities to 2050, 27 Jun 2013,
– start-page: 1059
  year: 2011
  end-page: 1065
  ident: bib0090
  article-title: Real-time fault detection for solar hot water systems using adaptive resonance theory neural networks
  publication-title: Proceedings of the 5th International Conference on Energy Sustainability
– start-page: 728
  year: 2017
  end-page: 732
  ident: bib0135
  article-title: Whole building system fault detection based on weather pattern matching and PCA method
  publication-title: Proceedings of the 3rd IEEE International Conference on Control Science and Systems Engineering (ICCSSE)
– volume: 142
  start-page: 167
  year: 2017
  end-page: 178
  ident: bib0176
  article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis
  publication-title: Energy Build.
– volume: 2013
  start-page: 1327
  year: 2013
  end-page: 1333
  ident: bib0130
  article-title: A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings
  publication-title: Proceedings of Twenty-Seventh AAAI Conference on Artificial Intelligence
– start-page: 1
  year: 2017
  end-page: 3
  ident: bib0142
  article-title: Mining big building operational data for building cooling load prediction and energy efficiency improvement
  publication-title: Proceedings of the IEEE International Conference on Smart Computing (SMARTCOMP)
– volume: 24
  start-page: 1619
  year: 2009
  end-page: 1628
  ident: bib0124
  article-title: Support vector clustering of electrical load pattern data
  publication-title: IEEE Trans. Power Syst.
– volume: 62
  start-page: 133
  year: 2013
  end-page: 138
  ident: bib0089
  article-title: Development of an rdp neural network for building energy consumption fault detection and diagnosis
  publication-title: Energy Build.
– start-page: 531
  year: 2014
  end-page: 538
  ident: bib0132
  article-title: PowerSAX: fast motif matching in distributed power meter data using symbolic representations
  publication-title: Proceedings of 39th Annual IEEE Conference on Local Computer Networks Workshops
– start-page: 50
  year: 2014
  end-page: 59
  ident: bib0151
  article-title: Data driven investigation of faults in HVAC systems with Model, Cluster and Compare (MCC)
  publication-title: Proceedings of 1st ACM Conference on Embedded Systems for Energy-Efficient Buildings
– volume: 39
  start-page: 117
  year: 2018
  end-page: 128
  ident: bib0106
  article-title: Mining big building operational data for improving building energy efficiency: a case study
  publication-title: Build. Serv. Eng. Res. Technol.
– volume: 6
  start-page: 579
  year: 2013
  end-page: 597
  ident: bib0121
  article-title: Analysis of similarity measures in times series clustering for the discovery of building energy patterns
  publication-title: Energies
– volume: 37
  start-page: 545
  year: 2005
  end-page: 553
  ident: bib0024
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
– volume: 19
  start-page: 593
  year: 2013
  end-page: 601
  ident: bib0068
  article-title: A system-level incipient fault-detection method for HVAC systems
  publication-title: HVAC&R Res.
– volume: 156
  start-page: 78
  year: 2017
  end-page: 84
  ident: bib0122
  article-title: Sampling for building energy consumption with fuzzy theory
  publication-title: Energy Build.
– volume: 109
  start-page: 85
  year: 2019
  end-page: 101
  ident: bib0075
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future
  publication-title: Renew. Sustain. Energy Rev.
– volume: 228
  start-page: 205
  year: 2017
  end-page: 212
  ident: bib0098
  article-title: Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM
  publication-title: Neurocomputing
– start-page: 125
  year: 2010
  end-page: 136
  ident: bib0128
  article-title: Data mining for modeling chiller systems in data centers
  publication-title: Advances in Intelligent Data Analysis IX
– volume: 28
  start-page: 226
  year: 2008
  end-page: 237
  ident: bib0173
  article-title: Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods
  publication-title: Appl. Therm. Eng.
– volume: 81
  start-page: 1192
  year: 2018
  end-page: 1205
  ident: bib0014
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 122
  start-page: 229
  year: 2017
  end-page: 234
  ident: bib0131
  article-title: Unsupervised load shape clustering for urban building performance assessment
  publication-title: Energy Procedia
– volume: 208
  start-page: 522
  year: 2017
  end-page: 539
  ident: bib0126
  article-title: Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques
  publication-title: Appl. Energy
– volume: 216
  start-page: 478
  year: 2016
  end-page: 488
  ident: bib0038
  article-title: Energy consumption prediction of office buildings based on echo state networks
  publication-title: Neurocomputing
– volume: 157
  start-page: 336
  year: 2018
  end-page: 352
  ident: bib0155
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
– volume: 251
  year: 2019
  ident: bib0110
  article-title: A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management
  publication-title: Appl. Energy
– volume: 151
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0073
  article-title: Residential HVAC fault detection using a system identification approach
  publication-title: Energy Build.
– volume: 56
  start-page: 760
  year: 2016
  end-page: 777
  ident: bib0006
  article-title: Energy savings by energy management systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 39
  start-page: 1183
  year: 2007
  end-page: 1191
  ident: bib0113
  article-title: Understanding the indoor environment through mining sensory data—A case study
  publication-title: Energy Build.
– volume: 30
  start-page: 1104
  year: 2007
  end-page: 1114
  ident: bib0076
  article-title: Model-based fault detection and diagnosis of HVAC systems using support vector machine method
  publication-title: Int. J. Refrigeration
– volume: 39
  start-page: 923
  year: 2007
  end-page: 934
  ident: bib0167
  article-title: Detection and diagnosis for multiple faults in VAV systems
  publication-title: Energy Build.
– volume: 73
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0058
  article-title: Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis
  publication-title: Build. Environ.
– volume: 42
  start-page: 4324
  year: 2015
  end-page: 4338
  ident: bib0148
  article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 57
  year: 2009
  end-page: 75
  ident: bib0086
  article-title: A novel strategy for the fault detection and diagnosis of centrifugal chiller systems
  publication-title: HVAC&R Res.
– volume: 49
  start-page: 1
  year: 2015
  end-page: 17
  ident: bib0115
  article-title: Automated daily pattern filtering of measured building performance data
  publication-title: Autom. Construct.
– volume: 83
  start-page: 1033
  year: 2006
  end-page: 1046
  ident: bib0032
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique
  publication-title: Appl. Energy
– volume: 82
  start-page: 197
  year: 2005
  end-page: 213
  ident: bib0174
  article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
  publication-title: Appl. Energy
– volume: 29
  start-page: 1
  year: 2000
  end-page: 12
  ident: bib0138
  article-title: Mining frequent patterns without candidate generation
  publication-title: SIGMOD Rec. (ACM Spec. Interest Group Manag. Data)
– volume: 41
  start-page: 881
  year: 2009
  end-page: 887
  ident: bib0170
  article-title: A fault detection technique for air-source heat pump water chiller/heaters
  publication-title: Energy Build.
– volume: 70
  start-page: 1108
  year: 2017
  end-page: 1118
  ident: bib0016
  article-title: Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 102
  start-page: 540
  year: 1996
  end-page: 549
  ident: bib0085
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– volume: 1
  start-page: 55
  year: 2009
  end-page: 58
  ident: bib0044
  article-title: Building cooling load forecasting model based on LS-SVM
  publication-title: Proceedings of the Asia-Pacific Conference on Information Processing
– volume: 46
  start-page: 2482
  year: 2005
  end-page: 2500
  ident: bib0169
  article-title: Sensor fault detection and validation of VAV terminals in air conditioning systems
  publication-title: Energy Conv. Manag.
– volume: 37
  start-page: 175
  year: 2005
  end-page: 180
  ident: bib0181
  article-title: Fault-tolerant control and data recovery in HVAC monitoring system
  publication-title: Energy Build.
– volume: 105
  start-page: 2499
  year: 2017
  end-page: 2505
  ident: bib0104
  article-title: A methodology to identify multiple equipment coordinated control with power metering system
  publication-title: Energy Procedia
– volume: 47
  start-page: 430
  year: 2012
  end-page: 440
  ident: bib0139
  article-title: A novel methodology for knowledge discovery through mining associations between building operational data
  publication-title: Energy Build.
– volume: 127
  start-page: 1
  year: 2014
  end-page: 10
  ident: bib0051
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl. Energy
– volume: 95
  start-page: 45
  year: 2012
  end-page: 49
  ident: bib0071
  article-title: Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings
  publication-title: Appl. Energy
– volume: 34
  start-page: 586
  year: 2011
  end-page: 599
  ident: bib0080
  article-title: Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning
  publication-title: Int. J. Refrigeration
– start-page: 665
  year: 2004
  ident: bib0007
  article-title: The energy impact of faults in U.S. commercial buildings
  publication-title: Proceedings of the International Refrigeration and Air Conditioning Conference
– volume: 108
  start-page: 989
  year: 2016
  end-page: 998
  ident: bib0083
  article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount
  publication-title: Appl. Therm. Eng.
– start-page: 136
  year: 2015
  end-page: 143
  ident: bib0116
  article-title: Forensically discovering simulation feedback knowledge from a campus energy information system
  publication-title: Proceedings of the Symposium on Simulation for Architecture & Urban Design
– volume: 81
  start-page: 287
  year: 2014
  end-page: 295
  ident: bib0082
  article-title: ARX model based fault detection and diagnosis for chillers using support vector machines
  publication-title: Energy Build.
– volume: 147
  start-page: 77
  year: 2017
  end-page: 89
  ident: bib0030
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
– volume: 5
  start-page: 420
  year: 2014
  end-page: 430
  ident: bib0120
  article-title: Household energy consumption segmentation using hourly data
  publication-title: IEEE Trans. Smart Grid
– volume: 4
  start-page: 231
  year: 2010
  end-page: 249
  ident: bib0046
  article-title: Parallel support vector machines applied to the prediction of multiple buildings energy consumption
  publication-title: J. Algorithm Comput. Technol.
– volume: 50
  start-page: 69
  year: 2015
  end-page: 79
  ident: bib0087
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrigeration
– volume: 47
  start-page: 1953
  year: 2014
  end-page: 1958
  ident: bib0099
  article-title: A one-class SVM based tool for machine learning novelty detection in HVAC chiller systems
  publication-title: IFAC Proc. Vol.
– volume: 205
  start-page: 1064
  year: 2017
  end-page: 1071
  ident: bib0171
  article-title: Research on the PCA-based intelligent fault detection methodology for sewage source heat pump system
  publication-title: Procedia Eng.
– volume: 205
  start-page: 716
  year: 2017
  end-page: 723
  ident: bib0048
  article-title: Study on building energy load prediction based on monitoring data
  publication-title: Procedia Eng.
– volume: 85
  start-page: 1563
  year: 2008
  end-page: 1588
  ident: bib0041
  article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings
  publication-title: Int. J. Comput. Math.
– volume: 31
  start-page: 582
  year: 2011
  end-page: 592
  ident: bib0078
  article-title: Study on a hybrid SVM model for chiller FDD applications
  publication-title: Appl. Therm. Eng.
– volume: 116
  start-page: 104
  year: 2016
  end-page: 113
  ident: bib0097
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energy Build.
– volume: 193
  start-page: 455
  year: 2017
  end-page: 465
  ident: bib0055
  article-title: Using ensemble weather predictions in district heating operation and load forecasting
  publication-title: Appl. Energy
– volume: 42
  start-page: 68
  year: 2012
  end-page: 80
  ident: bib0111
  article-title: Overview and performance assessment of the clustering methods for electrical load pattern grouping
  publication-title: Energy
– volume: 173
  start-page: 502
  year: 2018
  end-page: 515
  ident: bib0150
  article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis
  publication-title: Energy Build.
– volume: 205
  start-page: 2422
  year: 2017
  end-page: 2428
  ident: bib0052
  article-title: An improved cooling load prediction method for buildings with the estimation of prediction intervals
  publication-title: Procedia Eng.
– volume: 12
  start-page: 127
  year: 2006
  end-page: 150
  ident: bib0159
  article-title: Sensor fault detection and diagnosis of air-handling units using a condition-based adaptive statistical method
  publication-title: HVAC&R Res.
– volume: 16
  start-page: 295
  year: 2010
  end-page: 313
  ident: bib0081
  article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems
  publication-title: HVAC&R Res.
– volume: 63
  start-page: 133
  year: 2016
  end-page: 143
  ident: bib0172
  article-title: Sensitivity analysis for PCA-based chiller sensor fault detection
  publication-title: Int. J. Refrigeration
– volume: 109
  start-page: 75
  year: 2015
  end-page: 89
  ident: bib0107
  article-title: Temporal knowledge discovery in big BAS data for building energy management
  publication-title: Energy Build.
– start-page: 29
  year: 2010
  end-page: 33
  ident: bib0154
  article-title: Outlier detection in smart environment structured power datasets
  publication-title: Proceedings of the Sixth International Conference on Intelligent Environments
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib0005
  article-title: Review article: methods for fault detection, diagnostics, and prognostics for building systems—A review, part I
  publication-title: HVAC&R Res.
– start-page: 1305
  year: 2009
  end-page: 1314
  ident: bib0127
  article-title: Sustainable operation and management of data center chillers using temporal data mining
  publication-title: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 31
  start-page: 53
  year: 2014
  end-page: 60
  ident: bib0013
  article-title: A review on the basics of building energy estimation
  publication-title: Renew. Sustain. Energy Rev.
– volume: 51
  year: 2019
  ident: bib0049
  article-title: Analysis of hourly cooling load prediction accuracy with data-mining approaches on different training time scales
  publication-title: Sustain. Cities Soc.
– start-page: 1628
  year: 2015
  end-page: 1632
  ident: bib0040
  article-title: Time series forecasting method of building energy consumption using support vector regression
  publication-title: Proceedings of the IEEE International Conference on Information and Automation
– volume: 159
  start-page: 296
  year: 2018
  end-page: 308
  ident: bib0009
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energy Build.
– volume: 224
  start-page: 116
  year: 2018
  end-page: 123
  ident: bib0108
  article-title: Discovering gradual patterns in building operations for improving building energy efficiency
  publication-title: Appl. Energy
– volume: 42
  start-page: 477
  year: 2010
  end-page: 490
  ident: bib0180
  article-title: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults
  publication-title: Energy Build.
– volume: 2016
  start-page: 7046
  year: 2016
  end-page: 7051
  ident: bib0035
  article-title: Building energy load forecasting using deep neural networks
  publication-title: Proceedings of the IECON (Industrial Electronics Conference)
– volume: 48
  start-page: 693
  year: 2007
  end-page: 702
  ident: bib0166
  article-title: Detection and diagnosis for sensor fault in HVAC systems
  publication-title: Energy Conv. Manag.
– volume: 75
  start-page: 796
  year: 2017
  end-page: 808
  ident: bib0015
  article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models
  publication-title: Renew. Sustain. Energy Rev.
– volume: 82
  start-page: 142
  year: 2014
  end-page: 155
  ident: bib0029
  article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building
  publication-title: Energy Build.
– volume: 28
  start-page: 3806
  year: 2013
  end-page: 3817
  ident: bib0054
  article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 36
  start-page: 147
  year: 2004
  end-page: 160
  ident: bib0157
  article-title: AHU sensor fault diagnosis using principal component analysis method
  publication-title: Energy Build.
– volume: 48
  year: 2019
  ident: bib0019
  article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques
  publication-title: Sustain. Cities Soc.
– volume: 133
  start-page: 246
  year: 2016
  end-page: 256
  ident: bib0065
  article-title: Comparative investigations on reference models for fault detection and diagnosis in centrifugal chiller systems
  publication-title: Energy Build.
– volume: 45
  start-page: 243
  year: 2019
  end-page: 257
  ident: bib0002
  article-title: Fusing tensorflow with building energy simulation for intelligent energy management in smart cities
  publication-title: Sustain. Cities Soc.
– volume: 138
  start-page: 240
  year: 2017
  end-page: 256
  ident: bib0045
  article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine
  publication-title: Energy Build.
– volume: 14
  start-page: 959
  year: 2008
  end-page: 973
  ident: bib0061
  article-title: Wavelet neural network-based fault diagnosis in Air-Handling units
  publication-title: HVAC&R Res.
– volume: 44
  start-page: 7
  year: 2012
  end-page: 16
  ident: bib0062
  article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal
  publication-title: Energy Build.
– volume: 149
  start-page: 216
  year: 2017
  end-page: 224
  ident: bib0070
  article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models
  publication-title: Energy Build.
– volume: 205
  start-page: 926
  year: 2017
  end-page: 940
  ident: bib0101
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Appl. Energy
– volume: 185
  start-page: 846
  year: 2017
  end-page: 861
  ident: bib0100
  article-title: Data partitioning and association mining for identifying vrf energy consumption patterns under various part loads and refrigerant charge conditions
  publication-title: Appl. Energy
– volume: 42
  start-page: 3221
  year: 2007
  end-page: 3232
  ident: bib0163
  article-title: Fault detection and diagnosis based on improved PCA with JAA method in VAV systems
  publication-title: Build. Environ.
– volume: 62
  start-page: 210
  year: 2013
  end-page: 216
  ident: bib0137
  article-title: Data association mining for identifying lighting energy waste patterns in educational institutes
  publication-title: Energy Build.
– volume: 39
  start-page: 45
  year: 2007
  end-page: 51
  ident: bib0123
  article-title: Using intelligent clustering techniques to classify the energy performance of school buildings
  publication-title: Energy Build.
– volume: 103
  start-page: 261
  year: 2015
  end-page: 270
  ident: bib0023
  article-title: Electrical consumption forecasting in hospital facilities: an application case
  publication-title: Energy Build.
– volume: 72
  start-page: 157
  year: 2014
  end-page: 166
  ident: bib0059
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
– volume: 16
  start-page: 3586
  year: 2012
  end-page: 3592
  ident: bib0010
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 62
  start-page: 304
  year: 2013
  end-page: 314
  ident: bib0064
  article-title: Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms
  publication-title: Energy Build.
– volume: 124
  start-page: 325
  year: 2014
  end-page: 334
  ident: bib0020
  article-title: Methods for benchmarking building energy consumption against its past or intended performance: an overview
  publication-title: Appl. Energy
– start-page: 105
  year: 1999
  ident: bib0145
  article-title: Classification techniques for fault detection and diagnosis of an air-handling unit
  publication-title: ASHRAE J.
– start-page: 353
  year: 2016
  end-page: 389
  ident: bib0021
  article-title: Chapter 11 - Enhancing energy efficiency in buildings through innovative data analytics technologies
  publication-title: Pervasive Computing
– volume: 158
  start-page: 2481
  year: 2019
  end-page: 2487
  ident: bib0109
  article-title: Discovering complex knowledge in massive building operational data using graph mining for building energy management
  publication-title: Energy Procedia
– volume: 3
  start-page: 2196
  year: 2012
  end-page: 2210
  ident: bib0112
  article-title: On the application of clustering techniques for office buildings’ energy and thermal comfort classification
  publication-title: IEEE Trans. Smart Grid
– volume: 45
  start-page: 2667
  year: 2004
  end-page: 2686
  ident: bib0158
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energy Conver. Manag.
– volume: 8
  start-page: 681
  year: 2015
  end-page: 689
  ident: bib0117
  article-title: Clustering time-series energy data from smart meters
  publication-title: Energy Eff.
– volume: 112
  start-page: 1041
  year: 2013
  end-page: 1048
  ident: bib0094
  article-title: Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)
  publication-title: Appl. Energy
– volume: 74
  start-page: 902
  year: 2017
  end-page: 924
  ident: bib0017
  article-title: A review on time series forecasting techniques for building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 84
  start-page: 607
  year: 2014
  end-page: 616
  ident: bib0114
  article-title: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm
  publication-title: Energy Build.
– volume: 33
  start-page: 102
  year: 2014
  end-page: 109
  ident: bib0011
  article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting
  publication-title: Renew. Sustain. Energy Rev.
– volume: 158
  start-page: 2701
  year: 2019
  end-page: 2706
  ident: bib0140
  article-title: An improved association rule mining-based method for discovering abnormal operation patterns of HVAC systems
  publication-title: Energy Procedia
– volume: 127
  start-page: 399
  year: 2016
  end-page: 410
  ident: bib0134
  article-title: Applicability of using time series subsequences to study office plug load appliances
  publication-title: Energy Build.
– volume: 41
  start-page: 279
  year: 2009
  end-page: 286
  ident: bib0164
  article-title: A robot fault diagnostic tool for flow rate sensors in air dampers and VAV terminals
  publication-title: Energy Build.
– volume: 14
  start-page: 1435
  year: 2006
  end-page: 1444
  ident: bib0147
  article-title: Fault diagnosis for heat pumps with parameter identification and clustering
  publication-title: Control Eng. Pract.
– volume: 129
  start-page: 1252
  year: 2018
  end-page: 1262
  ident: bib0178
  article-title: An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model
  publication-title: Appl. Therm. Eng.
– volume: 171
  start-page: 839
  year: 2018
  end-page: 854
  ident: bib0102
  article-title: Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns
  publication-title: Energy Conv. Manag.
– start-page: 343
  year: 2018
  end-page: 350
  ident: bib0161
  article-title: Heat recovery unit failure detection in air handling unit
  publication-title: Advances in Production Management Systems. Smart Manufacturing For Industry 4.0
– volume: 14
  start-page: 634
  year: 2017
  end-page: 645
  ident: bib0072
  article-title: Automated performance tracking for heat exchangers in HVAC
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 45
  start-page: 2698
  year: 2010
  end-page: 2708
  ident: bib0063
  article-title: A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis
  publication-title: Build. Environ.
– volume: 240
  start-page: 35
  year: 2019
  end-page: 45
  ident: bib0004
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl. Energy
– volume: 25
  start-page: 33
  year: 2016
  end-page: 38
  ident: bib0008
  article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities
  publication-title: Sustain. Cities Soc.
– volume: 55
  start-page: 553
  year: 2012
  end-page: 562
  ident: bib0119
  article-title: A method for energy classification of hotels: a case-study of Greece
  publication-title: Energy Build.
– volume: 42
  start-page: 557
  year: 2013
  end-page: 566
  ident: bib0149
  article-title: Fault detection analysis of building energy consumption using data mining techniques
  publication-title: Energy Procedia
– volume: 36
  start-page: 599
  year: 2004
  end-page: 610
  ident: bib0057
  article-title: Valve fault detection and diagnosis based on CMAC neural networks
  publication-title: Energy Build.
– volume: 75
  start-page: 109
  year: 2014
  end-page: 118
  ident: bib0136
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
– volume: 117
  start-page: 84
  year: 2016
  end-page: 92
  ident: bib0027
  article-title: Prediction of residential building energy consumption: a neural network approach
  publication-title: Energy
– volume: 102
  start-page: 660
  year: 2016
  end-page: 668
  ident: bib0025
  article-title: Energy consumption predicting model of vrv (variable refrigerant volume) system in office buildings based on data mining
  publication-title: Energy
– volume: 72
  start-page: 81
  year: 2016
  end-page: 96
  ident: bib0069
  article-title: An enhanced chiller FDD strategy based on the combination of the LSSVR-DE model and EWMA control charts
  publication-title: Int. J. Refrigeration
– volume: 86
  start-page: 401
  year: 2018
  end-page: 409
  ident: bib0084
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrigeration
– volume: 82
  start-page: 1027
  year: 2018
  end-page: 1047
  ident: bib0018
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
– volume: 225
  start-page: 732
  year: 2018
  end-page: 745
  ident: bib0092
  article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving
  publication-title: Appl. Energy
– volume: 73
  start-page: 916
  year: 2014
  end-page: 925
  ident: bib0053
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
– volume: 127
  start-page: 718
  year: 2017
  end-page: 728
  ident: bib0088
  article-title: A hybrid ICA-BPNN-based FDD strategy for refrigerant charge faults in variable refrigerant flow system
  publication-title: Appl. Therm. Eng.
– volume: 68
  start-page: 63
  year: 2014
  end-page: 71
  ident: bib0162
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energy Build.
– volume: 20
  start-page: 798
  year: 2014
  end-page: 809
  ident: bib0095
  article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers
  publication-title: HVAC&R Res.
– volume: 157
  start-page: 886
  year: 2018
  end-page: 893
  ident: bib0037
  article-title: Intelligent techniques for forecasting electricity consumption of buildings
  publication-title: Energy
– volume: 56
  start-page: 1272
  year: 2016
  end-page: 1292
  ident: bib0003
  article-title: A review on modeling and simulation of building energy systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 81
  start-page: 1365
  year: 2018
  end-page: 1377
  ident: bib0022
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 50
  start-page: 81
  year: 2015
  end-page: 90
  ident: bib0143
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. Constr.
– volume: 45
  start-page: 2127
  year: 2004
  end-page: 2141
  ident: bib0033
  article-title: Cooling load prediction for buildings using general regression neural networks
  publication-title: Energy Conv. Manag.
– reference: .
– start-page: 223
  year: 2010
  end-page: 226
  ident: bib0043
  article-title: Prediction model of annual energy consumption of residential buildings
  publication-title: Proceedings of the International Conference on Advances in Energy Engineering
– volume: 15
  start-page: 489
  year: 2006
  end-page: 503
  ident: bib0160
  article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems
  publication-title: Autom. Constr.
– volume: 236
  start-page: 700
  year: 2019
  end-page: 710
  ident: bib0034
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl. Energy
– volume: 115
  start-page: 744
  year: 2017
  end-page: 755
  ident: bib0177
  article-title: Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults
  publication-title: Appl. Therm. Eng.
– volume: 166
  start-page: 477
  year: 2018
  end-page: 488
  ident: bib0074
  article-title: Fault detection and diagnosis for nonlinear systems: a new adaptive Gaussian mixture modeling approach
  publication-title: Energy Build.
– volume: 26
  start-page: 1226
  year: 2006
  end-page: 1237
  ident: bib0165
  article-title: Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 91
  year: 2016
  end-page: 99
  ident: bib0036
  article-title: Deep learning for estimating building energy consumption
  publication-title: Sustain. Energy Grids Netw.
– volume: 73
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0152
  article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis
  publication-title: Build. Environ.
– start-page: 966
  year: 2015
  end-page: 971
  ident: bib0175
  article-title: A data-driven approach for fault diagnosis in HVAC chiller systems
  publication-title: Proceedings of IEEE Conference on Control Applications (CCA)
– volume: 133
  start-page: 246
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0065
  article-title: Comparative investigations on reference models for fault detection and diagnosis in centrifugal chiller systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.062
– volume: 37
  start-page: 545
  year: 2005
  ident: 10.1016/j.enbenv.2019.11.003_bib0024
  article-title: Applying support vector machines to predict building energy consumption in tropical region
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.09.009
– volume: 171
  start-page: 839
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0102
  article-title: Association rule mining based quantitative analysis approach of household characteristics impacts on residential electricity consumption patterns
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2018.06.017
– volume: 8
  start-page: 681
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0117
  article-title: Clustering time-series energy data from smart meters
  publication-title: Energy Eff.
  doi: 10.1007/s12053-014-9316-0
– start-page: 29
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0154
  article-title: Outlier detection in smart environment structured power datasets
– volume: 36
  start-page: 599
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0057
  article-title: Valve fault detection and diagnosis based on CMAC neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.01.037
– volume: 156
  start-page: 78
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0122
  article-title: Sampling for building energy consumption with fuzzy theory
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.09.047
– volume: 117
  start-page: 84
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0027
  article-title: Prediction of residential building energy consumption: a neural network approach
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.066
– volume: 51
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0049
  article-title: Analysis of hourly cooling load prediction accuracy with data-mining approaches on different training time scales
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101717
– volume: 83
  start-page: 1033
  year: 2006
  ident: 10.1016/j.enbenv.2019.11.003_bib0032
  article-title: Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2005.08.006
– volume: 68
  start-page: 63
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0162
  article-title: A model-based fault detection and diagnostic methodology based on PCA method and wavelet transform
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.08.044
– start-page: 1
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0142
  article-title: Mining big building operational data for building cooling load prediction and energy efficiency improvement
– volume: 124
  start-page: 325
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0020
  article-title: Methods for benchmarking building energy consumption against its past or intended performance: an overview
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.020
– volume: 19
  start-page: 593
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0068
  article-title: A system-level incipient fault-detection method for HVAC systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2013.789371
– volume: 251
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0110
  article-title: A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113395
– volume: 75
  start-page: 796
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0015
  article-title: A review of artificial intelligence based building energy use prediction: contrasting the capabilities of single and ensemble prediction models
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.079
– volume: 12
  start-page: 127
  year: 2006
  ident: 10.1016/j.enbenv.2019.11.003_bib0159
  article-title: Sensor fault detection and diagnosis of air-handling units using a condition-based adaptive statistical method
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2006.10391171
– volume: 48
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0019
  article-title: Modeling and forecasting building energy consumption: a review of data-driven techniques
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101533
– volume: 6
  start-page: 91
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0036
  article-title: Deep learning for estimating building energy consumption
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2016.02.005
– volume: 14
  start-page: 959
  year: 2008
  ident: 10.1016/j.enbenv.2019.11.003_bib0061
  article-title: Wavelet neural network-based fault diagnosis in Air-Handling units
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2008.10391049
– volume: 116
  start-page: 104
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0097
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.045
– volume: 46
  start-page: 2482
  year: 2005
  ident: 10.1016/j.enbenv.2019.11.003_bib0169
  article-title: Sensor fault detection and validation of VAV terminals in air conditioning systems
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2004.11.011
– start-page: 343
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0161
  article-title: Heat recovery unit failure detection in air handling unit
– volume: 111
  start-page: 1070
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0105
  article-title: Assessment of building operational performance using data mining techniques: a case study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.270
– volume: 42
  start-page: 68
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0111
  article-title: Overview and performance assessment of the clustering methods for electrical load pattern grouping
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.031
– volume: 73
  start-page: 1
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0058
  article-title: Fault detection and diagnosis for buildings and hvac systems using combined neural networks and subtractive clustering analysis
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.021
– volume: 86
  start-page: 1624
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0060
  article-title: Fault diagnosis for temperature, flow rate and pressure sensors in VAV systems using wavelet neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.01.015
– volume: 133
  start-page: 37
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0093
  article-title: A decision tree based data-driven diagnostic strategy for air handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.039
– volume: 112
  start-page: 1041
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0094
  article-title: Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.12.043
– volume: 193
  start-page: 455
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0055
  article-title: Using ensemble weather predictions in district heating operation and load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.02.066
– volume: 253
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0141
  article-title: An improved association rule mining-based method for revealing operational problems of building heating, ventilation and air conditioning (HVAC) systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113492
– volume: 36
  start-page: 147
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0157
  article-title: AHU sensor fault diagnosis using principal component analysis method
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2003.10.002
– volume: 24
  start-page: 1619
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0124
  article-title: Support vector clustering of electrical load pattern data
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2023009
– volume: 82
  start-page: 1027
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0018
  article-title: A review of data-driven approaches for prediction and classification of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.108
– volume: 45
  start-page: 2698
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0063
  article-title: A hybrid FDD strategy for local system of AHU based on artificial neural network and wavelet analysis
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.05.031
– volume: 225
  start-page: 732
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0092
  article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.075
– volume: 205
  start-page: 926
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0101
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.08.035
– volume: 6
  start-page: 579
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0121
  article-title: Analysis of similarity measures in times series clustering for the discovery of building energy patterns
  publication-title: Energies
  doi: 10.3390/en6020579
– volume: 42
  start-page: 477
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0180
  article-title: A system-level fault detection and diagnosis strategy for HVAC systems involving sensor faults
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.10.017
– start-page: 70
  year: 2001
  ident: 10.1016/j.enbenv.2019.11.003_bib0146
  article-title: Geering HPBT-IIC on CA. a fault diagnosis system for heat pumps
– volume: 105
  start-page: 2499
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0104
  article-title: A methodology to identify multiple equipment coordinated control with power metering system
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.721
– volume: 129
  start-page: 1252
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0178
  article-title: An efficient VRF system fault diagnosis strategy for refrigerant charge amount based on PCA and dual neural network model
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.09.117
– volume: 31
  start-page: 582
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0078
  article-title: Study on a hybrid SVM model for chiller FDD applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.10.021
– volume: 41
  start-page: 279
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0164
  article-title: A robot fault diagnostic tool for flow rate sensors in air dampers and VAV terminals
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2008.09.007
– volume: 133
  start-page: 230
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0096
  article-title: A sensor fault detection and diagnosis strategy for screw chiller system using support vector data description-based d-statistic and DV-contribution plots
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.037
– volume: 42
  start-page: 557
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0149
  article-title: Fault detection analysis of building energy consumption using data mining techniques
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2013.11.057
– volume: 92
  start-page: 322
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0042
  article-title: Short-term load forecasting in a non-residential building contrasting models and attributes
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.007
– volume: 47
  start-page: 1953
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0099
  article-title: A one-class SVM based tool for machine learning novelty detection in HVAC chiller systems
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20140824-6-ZA-1003.02382
– volume: 64
  start-page: 761
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0012
  article-title: Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.06.040
– start-page: 531
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0132
  article-title: PowerSAX: fast motif matching in distributed power meter data using symbolic representations
– volume: 63
  start-page: 133
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0172
  article-title: Sensitivity analysis for PCA-based chiller sensor fault detection
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2015.11.006
– volume: 208
  start-page: 522
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0126
  article-title: Evaluation of the energy performance of variable refrigerant flow systems using dynamic energy benchmarks based on data mining techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.09.116
– volume: 81
  start-page: 287
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0082
  article-title: ARX model based fault detection and diagnosis for chillers using support vector machines
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.05.049
– volume: 82
  start-page: 142
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0029
  article-title: A prediction model based on neural networks for the energy consumption of a bioclimatic building
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.052
– volume: 39
  start-page: 45
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0123
  article-title: Using intelligent clustering techniques to classify the energy performance of school buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.04.018
– volume: 72
  start-page: 157
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0059
  article-title: Sensor fault detection and its efficiency analysis in air handling unit using the combined neural networks
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.12.038
– volume: 13
  start-page: 349
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0168
  article-title: PCA-FDA-based fault diagnosis for sensors in VAV systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2007.10390958
– volume: 47
  start-page: 430
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0139
  article-title: A novel methodology for knowledge discovery through mining associations between building operational data
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.12.018
– start-page: 1305
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0127
  article-title: Sustainable operation and management of data center chillers using temporal data mining
– start-page: 1
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0047
  article-title: An application of support vector machines in cooling load prediction
– volume: 14
  start-page: 634
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0072
  article-title: Automated performance tracking for heat exchangers in HVAC
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2017.2666184
– volume: 43
  start-page: 2524
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0079
  article-title: Automated fdd of multiple-simultaneous faults (MSF) and the application to building chillers
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.06.011
– volume: 51
  start-page: 560
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0067
  article-title: A statistical fault detection and diagnosis method for centrifugal chillers based on exponentially-weighted moving average control charts and support vector regression
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.09.030
– volume: 52
  start-page: 145
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0125
  article-title: Assessment of potential energy saving using cluster analysis: a case study of lighting systems in buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.06.006
– start-page: 728
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0135
  article-title: Whole building system fault detection based on weather pattern matching and PCA method
– volume: 16
  start-page: 295
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0081
  article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2010.10390906
– volume: 70
  start-page: 1108
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0016
  article-title: Building electrical energy consumption forecasting analysis using conventional and artificial intelligence methods: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.12.015
– volume: 142
  start-page: 167
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0176
  article-title: An enhanced PCA method with Savitzky-Golay method for VRF system sensor fault detection and diagnosis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.03.026
– volume: 166
  start-page: 477
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0074
  article-title: Fault detection and diagnosis for nonlinear systems: a new adaptive Gaussian mixture modeling approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.032
– start-page: 223
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0043
  article-title: Prediction model of annual energy consumption of residential buildings
– volume: 1
  start-page: 66
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0077
  article-title: Online support vector machine application for model based fault detection and isolation of HVAC system
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2011.V1.10
– volume: 74
  start-page: 902
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0017
  article-title: A review on time series forecasting techniques for building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.02.085
– start-page: 1059
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0090
  article-title: Real-time fault detection for solar hot water systems using adaptive resonance theory neural networks
– volume: 81
  start-page: 1192
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0014
  article-title: A review of data-driven building energy consumption prediction studies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.04.095
– volume: 157
  start-page: 886
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0037
  article-title: Intelligent techniques for forecasting electricity consumption of buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.155
– volume: 50
  start-page: 81
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0143
  article-title: A framework for knowledge discovery in massive building automation data and its application in building diagnostics
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2014.12.006
– volume: 39
  start-page: 117
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0106
  article-title: Mining big building operational data for improving building energy efficiency: a case study
  publication-title: Build. Serv. Eng. Res. Technol.
  doi: 10.1177/0143624417704977
– volume: 115
  start-page: 744
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0177
  article-title: Modularized PCA method combined with expert-based multivariate decoupling for FDD in VRF systems including indoor unit faults
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.01.008
– volume: 16
  start-page: 3586
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0010
  article-title: A review on the prediction of building energy consumption
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.02.049
– volume: 26
  start-page: 1226
  year: 2006
  ident: 10.1016/j.enbenv.2019.11.003_bib0165
  article-title: Fault tolerant control of outdoor air and AHU supply air temperature in VAV air conditioning systems using PCA method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2005.10.039
– volume: 72
  start-page: 81
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0069
  article-title: An enhanced chiller FDD strategy based on the combination of the LSSVR-DE model and EWMA control charts
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2016.07.024
– volume: 102
  start-page: 540
  year: 1996
  ident: 10.1016/j.enbenv.2019.11.003_bib0085
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– volume: 45
  start-page: 2127
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0033
  article-title: Cooling load prediction for buildings using general regression neural networks
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2003.10.009
– volume: 56
  start-page: 760
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0006
  article-title: Energy savings by energy management systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.067
– volume: 45
  start-page: 2667
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0158
  article-title: Detection and diagnosis of AHU sensor faults using principal component analysis method
  publication-title: Energy Conver. Manag.
  doi: 10.1016/j.enconman.2003.12.008
– volume: 33
  start-page: 102
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0011
  article-title: A review on applications of ANN and SVM for building electrical energy consumption forecasting
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.01.069
– volume: 122
  start-page: 229
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0131
  article-title: Unsupervised load shape clustering for urban building performance assessment
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.07.350
– volume: 55
  start-page: 553
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0119
  article-title: A method for energy classification of hotels: a case-study of Greece
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.08.010
– start-page: 353
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0021
  article-title: Chapter 11 - Enhancing energy efficiency in buildings through innovative data analytics technologies
– start-page: 665
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0007
  article-title: The energy impact of faults in U.S. commercial buildings
– volume: 15
  start-page: 57
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0086
  article-title: A novel strategy for the fault detection and diagnosis of centrifugal chiller systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2009.10390825
– volume: 147
  start-page: 77
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0030
  article-title: Trees vs neurons: comparison between random forest and ANN for high-resolution prediction of building energy consumption
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.04.038
– volume: 3
  start-page: 2196
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0112
  article-title: On the application of clustering techniques for office buildings’ energy and thermal comfort classification
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2215059
– volume: 62
  start-page: 210
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0137
  article-title: Data association mining for identifying lighting energy waste patterns in educational institutes
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.049
– volume: 41
  start-page: 881
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0170
  article-title: A fault detection technique for air-source heat pump water chiller/heaters
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.03.007
– volume: 37
  start-page: 175
  year: 2005
  ident: 10.1016/j.enbenv.2019.11.003_bib0181
  article-title: Fault-tolerant control and data recovery in HVAC monitoring system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2004.06.023
– volume: 5
  start-page: 420
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0120
  article-title: Household energy consumption segmentation using hourly data
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2013.2278477
– volume: 77
  start-page: 153
  year: 2004
  ident: 10.1016/j.enbenv.2019.11.003_bib0056
  article-title: Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
  publication-title: Appl. Energy
  doi: 10.1016/S0306-2619(03)00107-7
– volume: 45
  start-page: 243
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0002
  article-title: Fusing tensorflow with building energy simulation for intelligent energy management in smart cities
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2018.11.021
– volume: 4
  start-page: 231
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0046
  article-title: Parallel support vector machines applied to the prediction of multiple buildings energy consumption
  publication-title: J. Algorithm Comput. Technol.
  doi: 10.1260/1748-3018.4.2.231
– volume: 12
  start-page: 195
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0103
  article-title: Data mining based framework to identify rule based operation strategies for buildings with power metering system
  publication-title: Build. Simul.
  doi: 10.1007/s12273-018-0472-6
– start-page: 136
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0116
  article-title: Forensically discovering simulation feedback knowledge from a campus energy information system
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0026
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.064
– volume: 29
  start-page: 1
  issue: 2
  year: 2000
  ident: 10.1016/j.enbenv.2019.11.003_bib0138
  article-title: Mining frequent patterns without candidate generation
  publication-title: SIGMOD Rec. (ACM Spec. Interest Group Manag. Data)
– volume: 75
  start-page: 109
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0136
  article-title: Data mining in building automation system for improving building operational performance
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.02.005
– volume: 28
  start-page: 3806
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0054
  article-title: Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2264488
– volume: 14
  start-page: 1435
  year: 2006
  ident: 10.1016/j.enbenv.2019.11.003_bib0147
  article-title: Fault diagnosis for heat pumps with parameter identification and clustering
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2005.11.002
– volume: 62
  start-page: 133
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0089
  article-title: Development of an rdp neural network for building energy consumption fault detection and diagnosis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.02.050
– volume: 108
  start-page: 989
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0083
  article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.109
– volume: 47
  start-page: 518
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0144
  article-title: Text-mining building maintenance work orders for component fault frequency
  publication-title: Build. Res Inf.
  doi: 10.1080/09613218.2018.1459004
– start-page: 1628
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0040
  article-title: Time series forecasting method of building energy consumption using support vector regression
– volume: 127
  start-page: 1
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0051
  article-title: Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.04.016
– volume: 62
  start-page: 304
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0064
  article-title: Diagnostic tools of energy performance for supermarkets using Artificial Neural Network algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.03.020
– volume: 82
  start-page: 437
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0050
  article-title: Modeling heating and cooling loads by artificial intelligence for energy-efficient building design
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.036
– volume: 95
  start-page: 45
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0071
  article-title: Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.01.061
– volume: 216
  start-page: 478
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0038
  article-title: Energy consumption prediction of office buildings based on echo state networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.08.004
– volume: 158
  start-page: 2701
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0140
  article-title: An improved association rule mining-based method for discovering abnormal operation patterns of HVAC systems
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.02.025
– volume: 11
  start-page: 3
  year: 2005
  ident: 10.1016/j.enbenv.2019.11.003_bib0005
  article-title: Review article: methods for fault detection, diagnostics, and prognostics for building systems—A review, part I
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
– volume: 2016
  start-page: 7046
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0035
  article-title: Building energy load forecasting using deep neural networks
– volume: 109
  start-page: 75
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0107
  article-title: Temporal knowledge discovery in big BAS data for building energy management
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.060
– volume: 25
  start-page: 33
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0008
  article-title: Advances and challenges in building engineering and data mining applications for energy-efficient communities
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2015.12.001
– volume: 94
  start-page: 252
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0118
  article-title: Identifying energy consumption patterns in the ATTICA hotel sector using cluster analysis techniques with the aim of reducing hotels’ CO2 footprint
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.02.017
– volume: 73
  start-page: 916
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0053
  article-title: Uncertainty handling using neural network-based prediction intervals for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.104
– volume: 158
  start-page: 2481
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0109
  article-title: Discovering complex knowledge in massive building operational data using graph mining for building energy management
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.378
– volume: 127
  start-page: 399
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0134
  article-title: Applicability of using time series subsequences to study office plug load appliances
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.05.076
– volume: 205
  start-page: 716
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0048
  article-title: Study on building energy load prediction based on monitoring data
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.894
– volume: 173
  start-page: 502
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0150
  article-title: Improved sensor fault detection, diagnosis and estimation for screw chillers using density-based clustering and principal component analysis
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.05.025
– volume: 49
  start-page: 1
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0115
  article-title: Automated daily pattern filtering of measured building performance data
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2014.09.004
– volume: 15
  start-page: 489
  year: 2006
  ident: 10.1016/j.enbenv.2019.11.003_bib0160
  article-title: A diagnostic tool for online sensor health monitoring in air-conditioning systems
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2005.06.001
– volume: 236
  start-page: 700
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0034
  article-title: Assessment of deep recurrent neural network-based strategies for short-term building energy predictions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.12.004
– volume: 81
  start-page: 1365
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0022
  article-title: A review of unsupervised statistical learning and visual analytics techniques applied to performance analysis of non-residential buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.124
– volume: 30
  start-page: 1104
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0076
  article-title: Model-based fault detection and diagnosis of HVAC systems using support vector machine method
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2006.12.012
– volume: 149
  start-page: 216
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0070
  article-title: Advanced detection of HVAC faults using unsupervised SVM novelty detection and Gaussian process models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.05.053
– volume: 224
  start-page: 116
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0108
  article-title: Discovering gradual patterns in building operations for improving building energy efficiency
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.04.118
– volume: 2
  start-page: 1
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0129
  article-title: Temporal data mining approaches for sustainable chiller management in data centers
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1989734.1989738
– start-page: 303
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0133
  article-title: Finding the different patterns in buildings data using bag of words representation with clustering
– volume: 138
  start-page: 240
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0045
  article-title: A relevant data selection method for energy consumption prediction of low energy building based on support vector machine
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.11.009
– volume: 56
  start-page: 1272
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0003
  article-title: A review on modeling and simulation of building energy systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.12.040
– volume: 86
  start-page: 2318
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0091
  article-title: Application of Adaptive Resonance Theory neural networks to monitor solar hot water systems and detect existing or developing faults
  publication-title: Solar Energy
  doi: 10.1016/j.solener.2012.05.015
– volume: 185
  start-page: 846
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0100
  article-title: Data partitioning and association mining for identifying vrf energy consumption patterns under various part loads and refrigerant charge conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.091
– volume: 21
  start-page: 311
  year: 2001
  ident: 10.1016/j.enbenv.2019.11.003_bib0066
  article-title: Modelling of vapour-compression liquid chillers with neural networks
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/S1359-4311(00)00036-3
– volume: 127
  start-page: 718
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0088
  article-title: A hybrid ICA-BPNN-based FDD strategy for refrigerant charge faults in variable refrigerant flow system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.08.047
– volume: 103
  start-page: 261
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0023
  article-title: Electrical consumption forecasting in hospital facilities: an application case
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.05.056
– volume: 28
  start-page: 226
  year: 2008
  ident: 10.1016/j.enbenv.2019.11.003_bib0173
  article-title: Enhanced chiller sensor fault detection, diagnosis and estimation using wavelet analysis and principal component analysis methods
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.03.021
– volume: 84
  start-page: 607
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0114
  article-title: A new methodology for building energy performance benchmarking: an approach based on intelligent clustering algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.08.030
– volume: 205
  start-page: 1064
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0171
  article-title: Research on the PCA-based intelligent fault detection methodology for sewage source heat pump system
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.10.171
– volume: 42
  start-page: 4324
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0148
  article-title: Fault detection analysis using data mining techniques for a cluster of smart office buildings
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.01.010
– volume: 122
  start-page: 237
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0179
  article-title: Data-driven based reliability evaluation for measurements of sensors in a vapor compression system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.01.055
– volume: 49
  start-page: 3654
  year: 2008
  ident: 10.1016/j.enbenv.2019.11.003_bib0156
  article-title: Multiple faults diagnosis for sensors in air handling unit using Fisher discriminant analysis
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2008.06.032
– start-page: 105
  year: 1999
  ident: 10.1016/j.enbenv.2019.11.003_bib0145
  article-title: Classification techniques for fault detection and diagnosis of an air-handling unit
  publication-title: ASHRAE J.
– volume: 31
  start-page: 53
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0013
  article-title: A review on the basics of building energy estimation
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.040
– volume: 2013
  start-page: 1327
  year: 2013
  ident: 10.1016/j.enbenv.2019.11.003_bib0130
  article-title: A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings
– volume: 97
  start-page: 506
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0028
  article-title: Estimating building energy consumption using extreme learning machine method
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.037
– volume: 205
  start-page: 2422
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0052
  article-title: An improved cooling load prediction method for buildings with the estimation of prediction intervals
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.09.967
– volume: 39
  start-page: 923
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0167
  article-title: Detection and diagnosis for multiple faults in VAV systems
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.09.015
– volume: 240
  start-page: 35
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0004
  article-title: Deep learning-based feature engineering methods for improved building energy prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.052
– volume: 52
  start-page: 2555
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0031
  article-title: A study of the importance of occupancy to building cooling load in prediction by intelligent approach
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2011.02.002
– volume: 86
  start-page: 401
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0084
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2017.11.003
– volume: 157
  start-page: 336
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0155
  article-title: Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings
  publication-title: Energy
  doi: 10.1016/j.energy.2018.05.127
– volume: 102
  start-page: 660
  year: 2016
  ident: 10.1016/j.enbenv.2019.11.003_bib0025
  article-title: Energy consumption predicting model of vrv (variable refrigerant volume) system in office buildings based on data mining
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.134
– volume: 82
  start-page: 197
  year: 2005
  ident: 10.1016/j.enbenv.2019.11.003_bib0174
  article-title: Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2004.11.002
– ident: 10.1016/j.enbenv.2019.11.003_bib0001
  doi: 10.1787/9789264202955-en
– volume: 121
  start-page: 1016
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0039
  article-title: Using support vector machine to predict next day electricity load of public buildings with sub-metering devices
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2015.09.097
– volume: 34
  start-page: 586
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0080
  article-title: Important sensors for chiller fault detection and diagnosis (FDD) from the perspective of feature selection and machine learning
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2010.08.011
– volume: 20
  start-page: 798
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0095
  article-title: A robust pattern recognition-based fault detection and diagnosis (FDD) method for chillers
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2014.938006
– volume: 151
  start-page: 1
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0073
  article-title: Residential HVAC fault detection using a system identification approach
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.06.008
– start-page: 125
  year: 2010
  ident: 10.1016/j.enbenv.2019.11.003_bib0128
  article-title: Data mining for modeling chiller systems in data centers
– start-page: 50
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0151
  article-title: Data driven investigation of faults in HVAC systems with Model, Cluster and Compare (MCC)
– volume: 159
  start-page: 296
  year: 2018
  ident: 10.1016/j.enbenv.2019.11.003_bib0009
  article-title: Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: a review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.008
– volume: 109
  start-page: 85
  year: 2019
  ident: 10.1016/j.enbenv.2019.11.003_bib0075
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.021
– volume: 1
  start-page: 55
  year: 2009
  ident: 10.1016/j.enbenv.2019.11.003_bib0044
  article-title: Building cooling load forecasting model based on LS-SVM
– volume: 42
  start-page: 3221
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0163
  article-title: Fault detection and diagnosis based on improved PCA with JAA method in VAV systems
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.08.011
– volume: 48
  start-page: 693
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0166
  article-title: Detection and diagnosis for sensor fault in HVAC systems
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2006.09.023
– volume: 73
  start-page: 1
  year: 2014
  ident: 10.1016/j.enbenv.2019.11.003_bib0152
  article-title: Fault detection and diagnosis for buildings and HVAC systems using combined neural networks and subtractive clustering analysis
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.11.021
– volume: 44
  start-page: 7
  year: 2012
  ident: 10.1016/j.enbenv.2019.11.003_bib0062
  article-title: Fault diagnosis for sensors in air handling unit based on neural network pre-processed by wavelet and fractal
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.09.043
– volume: 50
  start-page: 69
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0087
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrigeration
  doi: 10.1016/j.ijrefrig.2014.10.017
– volume: 117
  start-page: 449
  year: 2011
  ident: 10.1016/j.enbenv.2019.11.003_bib0153
  article-title: A dynamic machine learning-based technique for automated fault detection in HVAC systems
  publication-title: ASHRAE Trans.
– volume: 39
  start-page: 1183
  year: 2007
  ident: 10.1016/j.enbenv.2019.11.003_bib0113
  article-title: Understanding the indoor environment through mining sensory data—A case study
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2006.07.011
– volume: 85
  start-page: 1563
  year: 2008
  ident: 10.1016/j.enbenv.2019.11.003_bib0041
  article-title: Vapnik's learning theory applied to energy consumption forecasts in residential buildings
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160802033582
– volume: 228
  start-page: 205
  year: 2017
  ident: 10.1016/j.enbenv.2019.11.003_bib0098
  article-title: Online fault detection methods for chillers combining extended kalman filter and recursive one-class SVM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.076
– start-page: 966
  year: 2015
  ident: 10.1016/j.enbenv.2019.11.003_bib0175
  article-title: A data-driven approach for fault diagnosis in HVAC chiller systems
SSID ssj0002511641
Score 2.5720642
SecondaryResourceType review_article
Snippet •Supervised data mining-based methods for building energy systems are reviewed.•Unsupervised data mining-based methods for building energy systems are...
With the advent of the era of big data, buildings have become not only energy-intensive but also data-intensive. Data mining technologies have been widely...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 149
SubjectTerms Big data
Building energy efficiency
Building energy systems
Supervised data mining
Unsupervised data mining
Title A review of data mining technologies in building energy systems: Load prediction, pattern identification, fault detection and diagnosis
URI https://dx.doi.org/10.1016/j.enbenv.2019.11.003
https://doaj.org/article/6db5c81a73de4e4090d512cd8382c563
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2666-1233
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511641
  issn: 2666-1233
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-1233
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511641
  issn: 2666-1233
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV0xT90wELYqxNAOCCgVj1J0A2NDgx07DhtFIIYWMbQSW2T7HCkI8p7eC29k7d_GZycoU1nIkMFy4sh3yt0l330fY8eI6NBbmfnKyawQhc4st1WG1ktiLNK6MVFsory50Xd31e1E6oswYYkeOG3cD4VWOn1qSoG-8KEayTHEKIdaaO6kijyfIeuZFFP0DqbEWUXZyhCASGhGiLFvLoK7CD3VrQnZVZ0QieeomTXEpUjfPwlPk5Bztc22hlwRztMz7rAPvttlnyYMgp_Zv3NIzScwb4DQnvAYFR-gHz-Zh0oY2g7sIH8NPjb7QWJwXp3Br7lBWCzpfw3Z6DssIuNmBy0OQCKTxhvz9NAD-j6CtzowHQImoF672mN_ry7_XFxng7ZC5kQ4iIOYCxSNq7w-bUpTiNwalFg1ilpTufLKWGV9bpXCUjjJTW5MSBeJ4F00WnxhG9288_sMBDfY5NzbwmJR-dJw6xSvpMSS586IGRPjztZuIB4n_YuHekSY3dfJHjXZI9QkRFg6Y9nrVYtEvPHG_J9ktNe5RJsdB4Iz1YMz1W8504yVo8nrIQNJmUW4Vfvf5Q_eY_mv7COncj4Cgw7ZRr988t_Yplv37Wp5FD08nH8_X74AOKgCew
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+data+mining+technologies+in+building+energy+systems%3A+Load+prediction%2C+pattern+identification%2C+fault+detection+and+diagnosis&rft.jtitle=Energy+and+built+environment&rft.au=Zhao%2C+Yang&rft.au=Zhang%2C+Chaobo&rft.au=Zhang%2C+Yiwen&rft.au=Wang%2C+Zihao&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=2666-1233&rft.eissn=2666-1233&rft.volume=1&rft.issue=2&rft.spage=149&rft.epage=164&rft_id=info:doi/10.1016%2Fj.enbenv.2019.11.003&rft.externalDocID=S2666123319300121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-1233&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-1233&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-1233&client=summon