Human activity recognition based on hybrid learning algorithm for wearable sensor data

Human Activity Recognition (HAR), based on sensor devices and the Internet of Things (IoT), attracted many researchers since it has diversified applications in health sectors, smart environments, and entertainment. HAR has emerged as one of the important health monitoring applications and it necessi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Measurement. Sensors Ročník 24; s. 100512
Hlavní autori: Athota, Ravi Kumar, Sumathi, D.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2022
Elsevier
Predmet:
ISSN:2665-9174, 2665-9174
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human Activity Recognition (HAR), based on sensor devices and the Internet of Things (IoT), attracted many researchers since it has diversified applications in health sectors, smart environments, and entertainment. HAR has emerged as one of the important health monitoring applications and it necessitates the constant usage of smartphones, smartwatches, and wearable devices to capture patients' daily activities. To predict multiple human activities, deep learning (DL)-based methods have been successfully applied to time-series data that are generated by smartphones and wearable sensors. Although DL-based approaches were deployed in activity recognition, they still have encountered a few issues when working with time-series data. Those issues could be managed with the proposed methodology. This work proposed a couple of Hybrid Learning Algorithms (HLA) to build comprehensive classification methods for HAR using wearable sensor data. The aim of this work is to make use of the Convolution Memory Fusion Algorithm(CMFA) and Convolution Gated Fusion Algorithm(CGFA) that model learns both local features and long-term and gated-term dependencies in sequential data. Feature extraction has been enhanced with the deployment of various filter sizes. They are used to capture different local temporal dependencies, and thus the enhancement is implemented. This Amalgam Learning Model has been deployed on the WISDM dataset, and the proposed models have achieved 97.76%, 94.98% for smartwatch and smartphone of CMFA, 96.91%, 84.35% for smartwatch and smartphone of CGFA. Experimental results show that these models demonstrated greater accuracy than other existing deep neural network frameworks.
AbstractList Human Activity Recognition (HAR), based on sensor devices and the Internet of Things (IoT), attracted many researchers since it has diversified applications in health sectors, smart environments, and entertainment. HAR has emerged as one of the important health monitoring applications and it necessitates the constant usage of smartphones, smartwatches, and wearable devices to capture patients' daily activities. To predict multiple human activities, deep learning (DL)-based methods have been successfully applied to time-series data that are generated by smartphones and wearable sensors. Although DL-based approaches were deployed in activity recognition, they still have encountered a few issues when working with time-series data. Those issues could be managed with the proposed methodology. This work proposed a couple of Hybrid Learning Algorithms (HLA) to build comprehensive classification methods for HAR using wearable sensor data. The aim of this work is to make use of the Convolution Memory Fusion Algorithm(CMFA) and Convolution Gated Fusion Algorithm(CGFA) that model learns both local features and long-term and gated-term dependencies in sequential data. Feature extraction has been enhanced with the deployment of various filter sizes. They are used to capture different local temporal dependencies, and thus the enhancement is implemented. This Amalgam Learning Model has been deployed on the WISDM dataset, and the proposed models have achieved 97.76%, 94.98% for smartwatch and smartphone of CMFA, 96.91%, 84.35% for smartwatch and smartphone of CGFA. Experimental results show that these models demonstrated greater accuracy than other existing deep neural network frameworks.
ArticleNumber 100512
Author Athota, Ravi Kumar
Sumathi, D.
Author_xml – sequence: 1
  givenname: Ravi Kumar
  orcidid: 0000-0002-6838-2397
  surname: Athota
  fullname: Athota, Ravi Kumar
  email: athotaravikumar@gmail.com, ravikumar.20phd7109@vitap.ac.in
  organization: Ph.D. Research Scholar, School of Computer Science and Engineering, VIT-AP University, Vijayawada, AP, India
– sequence: 2
  givenname: D.
  surname: Sumathi
  fullname: Sumathi, D.
  email: sumathi.research28@gmail.com
  organization: Associate Professor Grade-2, School of Computer Science and Engineering, VIT-AP University, Vijayawada, AP, India
BookMark eNqFkctKAzEYhYMoWLVv4CIv0JrLdCbjQpDipSC4Ubfhz61NmSaSiZW-vamjIC50lZMD53Dy5QQdhhgsQueUTCmh9cV6urHQ2zBlhLFikRllB2jE6no2aWlTHf7Qx2jc92tCCBMly6oRerl_20DAoLPf-rzDyeq4DD77GLAqtQYXsdqp5A3uLKTgwxJDt4zJ59UGu5jwe7FBdRaXEX25G8hwho4cdL0df52n6Pn25ml-P3l4vFvMrx8mmnPOJg3nyjnVCF7WscrNBDQOimqNbbgB1zpBQBMhaO1MJYxTxDDeGMeZZtrxU7QYek2EtXxNfgNpJyN4-WnEtJSQstedlaxRWohasVJaVZQozZzh7ay1jLaqsqXrcujSKfZ9sk5qn2FPIifwnaRE7oHLtRyAyz1wOQAv4epX-HvMP7GrIWYLpK23Sfba26Ct8eUncnmF_7vgA023nys
CitedBy_id crossref_primary_10_1080_10255842_2025_2480686
crossref_primary_10_3390_s24155045
crossref_primary_10_1142_S0218126625504365
crossref_primary_10_1186_s13040_024_00368_y
crossref_primary_10_3390_s25010063
Cites_doi 10.3390/fi11120259
10.1155/2018/7316954
10.1109/JSEN.2019.2928502
10.1016/j.dcan.2015.02.006
10.1109/JSEN.2020.3027097
10.1007/s11370-020-00343-6
10.1109/JSEN.2019.2917225
10.1109/ACCESS.2020.2982225
10.1109/THMS.2021.3086008
10.3390/sym12091570
10.1109/ACCESS.2019.2940729
10.1007/s00521-015-2089-3
10.1109/ACCESS.2020.2971693
10.1155/2016/4073584
10.1049/ell2.12062
10.1109/SURV.2012.110112.00192
10.1109/ACCESS.2019.2906663
10.1109/TCSVT.2008.2005594
10.1109/JSEN.2020.2978772
10.3390/s16020184
10.3390/s19071644
10.4304/jnw.4.10.976-984
10.1109/ACCESS.2020.2984214
10.1016/j.asoc.2017.09.027
10.1109/ACCESS.2016.2557846
10.1016/j.jjimei.2021.100046
10.3389/frobt.2015.00028
10.1289/ehp.5350
10.1007/s11036-019-01445-x
10.1007/s00371-019-01775-7
10.1006/cviu.1998.0744
10.3390/electronics10030308
10.3390/sym8100100
10.1007/s00779-003-0240-0
10.1016/j.procs.2019.08.100
10.1016/0021-9681(62)90117-0
10.3390/s21051636
10.1016/j.procs.2018.04.095
10.1016/j.patrec.2018.02.010
10.3758/BF03212378
10.3390/s16010115
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.measen.2022.100512
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2665-9174
ExternalDocumentID oai_doaj_org_article_27bc886b2f9f4410bc2fd3959e219b4e
10_1016_j_measen_2022_100512
S2665917422001465
GroupedDBID 0SF
53G
6I.
AAEDW
AAFTH
AALRI
AAXUO
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c3332-733bffb78391724f58a7fa7249de73daf9f80ac08816fd48dfb0d237df32c2cf3
IEDL.DBID DOA
ISSN 2665-9174
IngestDate Fri Oct 03 12:53:17 EDT 2025
Thu Nov 20 00:37:08 EST 2025
Tue Nov 18 21:17:12 EST 2025
Sat Mar 02 16:00:14 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hybrid learning algorithm
Sensors
Human activity recognition
Convolution neural network
Convolution memory fusion algorithm
Convolution gated fusion algorithm
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3332-733bffb78391724f58a7fa7249de73daf9f80ac08816fd48dfb0d237df32c2cf3
ORCID 0000-0002-6838-2397
OpenAccessLink https://doaj.org/article/27bc886b2f9f4410bc2fd3959e219b4e
ParticipantIDs doaj_primary_oai_doaj_org_article_27bc886b2f9f4410bc2fd3959e219b4e
crossref_citationtrail_10_1016_j_measen_2022_100512
crossref_primary_10_1016_j_measen_2022_100512
elsevier_sciencedirect_doi_10_1016_j_measen_2022_100512
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Measurement. Sensors
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Mekruksavanich, Jitpattanakul (bib56) 2021; 10
Santos, Endo, Monteiro, Rocha, Silva, Lynn (bib18) 2019; 19
Žemgulys, Raudonis, Maskeliūnas, Damaševičius (bib4) 2018; 130
Ibrahim, Gomaa, Youssef (bib9) 2019; 19
Mozer (bib29) 1998, March; vol. 58
Chen, Zhang, Yao, Guo, Yu, Liu (bib23) 2021; 54
Katz, Jackson, Jaffe, Littell, Turk (bib13) 1962; 15
Panwar, Dyuthi, Prakash, Biswas, Acharyya, Maharatna, Naik (bib43) 2017, July
Weiss, Yoneda, Hayajneh (bib16) 2019; 7
Tapia, Intille, Larson (bib28) 2004, April
Xia, Huang, Wang (bib52) 2020; 8
Abdelnasser, Youssef, Harras (bib30) 2015, April
Ilägcrstrand (bib35) 1970; vol. 24
Zhao, Yang, Chevalier, Xu, Zhang (bib50) 2018; 2018
Gani, Sarwar, Rahman (bib37) 2009; 4
Dewangan, Sahu (bib39) 2020; 21
Zhan, Nishimura, Kuroda (bib20) 2010; 130
Johansson (bib26) 1973; 14
Zhao, Yang, Chevalier, Xu, Zhang (bib64) 2018; 2018
Gupta (bib70) 2021; 1
Hussain, Sheng, Zhang (bib24) 2019
Damaševičius, Vasiljevas, Šalkevičius, Woźniak (bib2) 2016; 2016
Maskeliūnas, Damaševičius, Segal (bib3) 2019; 11
Han (bib6) 2021; 17
Wang, He, Zhang (bib53) 2021; 51
Vrigkas, Nikou, Kakadiaris (bib17) 2015; 2
Ignatov (bib15) 2018; 62
Mekruksavanich, Jitpattanakul, Youplao, Yupapin (bib19) 2020; 12
Damirchi, Khorrambakht, Taghirad (bib69) 2020, December
Hernández, Suárez, Villamizar, Altuve (bib49) 2019, April
Benegui, Ionescu (bib57) 2020; 8
Semwal, Mondal, Nandi (bib42) 2017; 28
Musale, Baek, Werellagama, Woo, Choi (bib60) 2019; 7
Wang, Chen, Hao, Peng, Hu (bib1) 2019; 119
Xi, Guan, Shu, Borgeat, Goubran (bib41) 2020; 36
Zeng, Nguyen, Yu, Mengshoel, Zhu, Wu, Zhang (bib47) 2014, November
Weiss (bib22) 2019
Wang, He, Zhang (bib45) 2019; 19
Dang, Min, Wang, Piran, Lee, Moon (bib8) 2020; 108
Ullah, Ullah, Khan, Cheikh (bib63) 2019, October
Mekruksavanich, Jitpattanakul (bib12) 2021; 10
Wang, He, Zhang (bib67) 2021; 51
Turaga, Chellappa, Subrahmanian, Udrea (bib27) 2008; 18
Corbett (bib33) 2001
Damaševičius, Maskeliūnas, Venčkauskas, Woźniak (bib5) 2016; 8
Ashbrook, Starner (bib34) 2003; 7
Mutegeki, Han (bib51) 2020, February
Dewangan, Sahu (bib40) 2021; 14
Mutegeki, Han (bib65) 2020, February
Jobanputra, Bavishi, Doshi (bib7) 2019; 155
Mekruksavanich, Jitpattanakul (bib11) 2021; 21
Li, Liu, Zhang, Ni, Wang, Li (bib54) 2021
Aggarwal, Cai (bib25) 1999; 73
Seshadri, Li, Voos, Rowbottom, Alfes, Zorman, Drummond (bib32) 2019; 2
Ahmad, Alqarni, Khan, Khan, Hussain Chauhdary, Mazzara, Distefano (bib61) 2018
Zebin, Scully, Ozanyan (bib10) 2016, October
Neverova, Wolf, Lacey, Fridman, Chandra, Barbello, Taylor (bib62) 2016; 4
Dewangan, Sahu (bib38) 2021; 57
Li, Liu, Zhang, Ni, Wang, Li (bib68) 2021
Ordóñez, Roggen (bib66) 2016; 16
Angrisano, Bernardi, Cimitile, Gaglione, Vultaggio (bib59) 2020; 8
Weiss, Yoneda, Hayajneh (bib58) 2019; 7
Pires, Garcia, Pombo, Flórez-Revuelta (bib14) 2016; 16
Wan, Qi, Xu, Tong, Gu (bib44) 2020; 25
Teng, Wang, Zhang, He (bib46) 2020; 20
Lara, Labrador (bib21) 2012; 15
Ullah, Ullah, Khan, Cheikh (bib48) 2019, October
Wang, Zhou (bib31) 2015; 1
Parziale, Carmona-Duarte, Ferrer, Marcelli (bib55) 2021, September
Elgethun, Fenske, Yost, Palcisko (bib36) 2003; 111
Abdelnasser (10.1016/j.measen.2022.100512_bib30) 2015
Wang (10.1016/j.measen.2022.100512_bib31) 2015; 1
Ordóñez (10.1016/j.measen.2022.100512_bib66) 2016; 16
Ahmad (10.1016/j.measen.2022.100512_bib61) 2018
Mekruksavanich (10.1016/j.measen.2022.100512_bib12) 2021; 10
Ashbrook (10.1016/j.measen.2022.100512_bib34) 2003; 7
Ilägcrstrand (10.1016/j.measen.2022.100512_bib35) 1970; vol. 24
Mutegeki (10.1016/j.measen.2022.100512_bib51) 2020
Maskeliūnas (10.1016/j.measen.2022.100512_bib3) 2019; 11
Ullah (10.1016/j.measen.2022.100512_bib63) 2019
Semwal (10.1016/j.measen.2022.100512_bib42) 2017; 28
Katz (10.1016/j.measen.2022.100512_bib13) 1962; 15
Zhao (10.1016/j.measen.2022.100512_bib50) 2018; 2018
Zebin (10.1016/j.measen.2022.100512_bib10) 2016
Wang (10.1016/j.measen.2022.100512_bib53) 2021; 51
Žemgulys (10.1016/j.measen.2022.100512_bib4) 2018; 130
Ibrahim (10.1016/j.measen.2022.100512_bib9) 2019; 19
Hussain (10.1016/j.measen.2022.100512_bib24) 2019
Xia (10.1016/j.measen.2022.100512_bib52) 2020; 8
Damaševičius (10.1016/j.measen.2022.100512_bib2) 2016; 2016
Gupta (10.1016/j.measen.2022.100512_bib70) 2021; 1
Angrisano (10.1016/j.measen.2022.100512_bib59) 2020; 8
Weiss (10.1016/j.measen.2022.100512_bib22) 2019
Chen (10.1016/j.measen.2022.100512_bib23) 2021; 54
Gani (10.1016/j.measen.2022.100512_bib37) 2009; 4
Neverova (10.1016/j.measen.2022.100512_bib62) 2016; 4
Johansson (10.1016/j.measen.2022.100512_bib26) 1973; 14
Elgethun (10.1016/j.measen.2022.100512_bib36) 2003; 111
Dewangan (10.1016/j.measen.2022.100512_bib40) 2021; 14
Panwar (10.1016/j.measen.2022.100512_bib43) 2017
Ignatov (10.1016/j.measen.2022.100512_bib15) 2018; 62
Seshadri (10.1016/j.measen.2022.100512_bib32) 2019; 2
Benegui (10.1016/j.measen.2022.100512_bib57) 2020; 8
Vrigkas (10.1016/j.measen.2022.100512_bib17) 2015; 2
Wang (10.1016/j.measen.2022.100512_bib67) 2021; 51
Dewangan (10.1016/j.measen.2022.100512_bib38) 2021; 57
Damirchi (10.1016/j.measen.2022.100512_bib69) 2020
Mozer (10.1016/j.measen.2022.100512_bib29) 1998; vol. 58
Li (10.1016/j.measen.2022.100512_bib54) 2021
Weiss (10.1016/j.measen.2022.100512_bib16) 2019; 7
Zhan (10.1016/j.measen.2022.100512_bib20) 2010; 130
Tapia (10.1016/j.measen.2022.100512_bib28) 2004
Musale (10.1016/j.measen.2022.100512_bib60) 2019; 7
Turaga (10.1016/j.measen.2022.100512_bib27) 2008; 18
Zhao (10.1016/j.measen.2022.100512_bib64) 2018; 2018
Corbett (10.1016/j.measen.2022.100512_bib33) 2001
Ullah (10.1016/j.measen.2022.100512_bib48) 2019
Zeng (10.1016/j.measen.2022.100512_bib47) 2014
Xi (10.1016/j.measen.2022.100512_bib41) 2020; 36
Hernández (10.1016/j.measen.2022.100512_bib49) 2019
Santos (10.1016/j.measen.2022.100512_bib18) 2019; 19
Wan (10.1016/j.measen.2022.100512_bib44) 2020; 25
Teng (10.1016/j.measen.2022.100512_bib46) 2020; 20
Pires (10.1016/j.measen.2022.100512_bib14) 2016; 16
Wang (10.1016/j.measen.2022.100512_bib1) 2019; 119
Mekruksavanich (10.1016/j.measen.2022.100512_bib56) 2021; 10
Weiss (10.1016/j.measen.2022.100512_bib58) 2019; 7
Parziale (10.1016/j.measen.2022.100512_bib55) 2021
Mutegeki (10.1016/j.measen.2022.100512_bib65) 2020
Aggarwal (10.1016/j.measen.2022.100512_bib25) 1999; 73
Dewangan (10.1016/j.measen.2022.100512_bib39) 2020; 21
Han (10.1016/j.measen.2022.100512_bib6) 2021; 17
Jobanputra (10.1016/j.measen.2022.100512_bib7) 2019; 155
Li (10.1016/j.measen.2022.100512_bib68) 2021
Dang (10.1016/j.measen.2022.100512_bib8) 2020; 108
Damaševičius (10.1016/j.measen.2022.100512_bib5) 2016; 8
Wang (10.1016/j.measen.2022.100512_bib45) 2019; 19
Mekruksavanich (10.1016/j.measen.2022.100512_bib19) 2020; 12
Mekruksavanich (10.1016/j.measen.2022.100512_bib11) 2021; 21
Lara (10.1016/j.measen.2022.100512_bib21) 2012; 15
References_xml – volume: 119
  start-page: 3
  year: 2019
  end-page: 11
  ident: bib1
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
– volume: 19
  start-page: 7598
  year: 2019
  end-page: 7604
  ident: bib45
  article-title: Attention-based convolutional neural network for weakly labeled human activities' recognition with wearable sensors
  publication-title: IEEE Sensor. J.
– volume: 15
  start-page: 979
  year: 1962
  end-page: 984
  ident: bib13
  article-title: Multidisciplinary studies of illness in aged persons—VI: comparison study of rehabilitated and nonrehabilitated patients with fracture of the hip
  publication-title: J. Chron. Dis.
– volume: 10
  start-page: 308
  year: 2021
  ident: bib56
  article-title: Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models
  publication-title: Electronics
– volume: 19
  start-page: 1644
  year: 2019
  ident: bib18
  article-title: Accelerometer-based human fall detection using convolutional neural networks
  publication-title: Sensors
– volume: 11
  start-page: 259
  year: 2019
  ident: bib3
  article-title: A review of internet of things technologies for ambient assisted living environments
  publication-title: Future Internet
– start-page: 197
  year: 2014, November
  end-page: 205
  ident: bib47
  article-title: Convolutional neural networks for human activity recognition using mobile sensors
  publication-title: 6th International Conference on
– volume: 16
  start-page: 115
  year: 2016
  ident: bib66
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– volume: 7
  start-page: 37883
  year: 2019
  end-page: 37895
  ident: bib60
  article-title: You walk, we authenticate: lightweight seamless authentication based on gait in wearable IoT systems
  publication-title: IEEE Access
– volume: 2
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib32
  article-title: Wearable sensors for monitoring the physiological and biochemical profile of the athlete
  publication-title: NPJ digital medicine
– volume: 51
  start-page: 355
  year: 2021
  end-page: 364
  ident: bib53
  article-title: Sequential weakly labeled multiactivity localization and recognition on wearable sensors using recurrent attention networks
  publication-title: IEEE Transact. Human-Machine Syst.
– volume: 1
  year: 2021
  ident: bib70
  article-title: Deep learning based human activity recognition (HAR) using wearable sensor data
  publication-title: International Journal of Information Management Data Insights
– volume: 21
  start-page: 1636
  year: 2021
  ident: bib11
  article-title: Lstm networks using smartphone data for sensor-based human activity recognition in smart homes
  publication-title: Sensors
– start-page: 16266
  year: 2021
  end-page: 16275
  ident: bib68
  article-title: Uav-human: a large benchmark for human behavior understanding with unmanned aerial vehicles
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 14
  start-page: 201
  year: 1973
  end-page: 211
  ident: bib26
  article-title: Visual perception of biological motion and a model for its analysis
  publication-title: Percept. Psychophys.
– volume: 57
  start-page: 53
  year: 2021
  end-page: 56
  ident: bib38
  article-title: PotNet: pothole detection for autonomous vehicle system using convolutional neural network
  publication-title: Electron. Lett.
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: bib15
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl. Soft Comput.
– volume: 25
  start-page: 743
  year: 2020
  end-page: 755
  ident: bib44
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mobile Network. Appl.
– year: 2019
  ident: bib22
  article-title: UCI Machine Learning Repository
– volume: 8
  start-page: 27435
  year: 2020
  end-page: 27447
  ident: bib59
  article-title: Identification of walker identity using smartphone sensors: an experiment using ensemble learning
  publication-title: IEEE Access
– volume: 2
  start-page: 28
  year: 2015
  ident: bib17
  article-title: A review of human activity recognition methods
  publication-title: Frontiers in Robotics and AI
– volume: 1
  start-page: 20
  year: 2015
  end-page: 29
  ident: bib31
  article-title: A review on radio based activity recognition
  publication-title: Digital Communicat. Networks
– volume: 130
  start-page: 953
  year: 2018
  end-page: 960
  ident: bib4
  article-title: Recognition of basketball referee signals from videos using histogram of oriented gradients (HOG) and support vector machine (SVM)
  publication-title: Procedia Comput. Sci.
– volume: 130
  start-page: 565
  year: 2010
  end-page: 572
  ident: bib20
  article-title: Human activity recognition from environmental background sounds for wireless sensor networks
  publication-title: IEEJ Transact. Electro. Informat. Systems
– volume: 14
  start-page: 199
  year: 2021
  end-page: 214
  ident: bib40
  article-title: RCNet: road classification convolutional neural networks for intelligent vehicle system
  publication-title: Intelligent Service Robotics
– volume: 108
  year: 2020
  ident: bib8
  article-title: Sensor-based and vision-based human activity recognition: a comprehensive survey
  publication-title: Pattern Recogn.
– volume: 21
  start-page: 3570
  year: 2020
  end-page: 3578
  ident: bib39
  article-title: Deep learning-based speed bump detection model for intelligent vehicle system using raspberry Pi
  publication-title: IEEE Sensor. J.
– volume: 36
  start-page: 1869
  year: 2020
  end-page: 1882
  ident: bib41
  article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks
  publication-title: Vis. Comput.
– start-page: 1
  year: 2019, April
  end-page: 5
  ident: bib49
  article-title: Human activity recognition on smartphones using a bidirectional LSTM network
  publication-title: 2019 XXII Symposium on Image
– volume: 18
  start-page: 1473
  year: 2008
  end-page: 1488
  ident: bib27
  article-title: Machine recognition of human activities: a survey
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 4
  start-page: 1810
  year: 2016
  end-page: 1820
  ident: bib62
  article-title: Learning human identity from motion patterns
  publication-title: IEEE Access
– start-page: 1472
  year: 2015, April
  end-page: 1480
  ident: bib30
  article-title: Wigest: a ubiquitous wifi-based gesture recognition system
  publication-title: 2015 IEEE Conference on Computer Communications (INFOCOM)
– volume: 17
  start-page: 385
  year: 2021
  end-page: 398
  ident: bib6
  article-title: Residual learning based CNN for gesture recognition in robot interaction
  publication-title: J. Informat. Process. Syst.
– volume: vol. 58
  year: 1998, March
  ident: bib29
  article-title: The neural network house: an environment hat adapts to its inhabitants
  publication-title: Proc. AAAI Spring Symp. Intelligent Environments
– year: 2019
  ident: bib24
  article-title: Different Approaches for Human Activity Recognition: A Survey
– volume: 7
  start-page: 133190
  year: 2019
  end-page: 133202
  ident: bib16
  article-title: Smartphone and smartwatch-based biometrics using activities of daily living
  publication-title: IEEE Access
– volume: 12
  start-page: 1570
  year: 2020
  ident: bib19
  article-title: Enhanced hand-oriented activity recognition based on smartwatch sensor data using lstms
  publication-title: Symmetry
– start-page: 175
  year: 2019, October
  end-page: 180
  ident: bib63
  article-title: Stacked lstm network for human activity recognition using smartphone data
  publication-title: 2019 8th European Workshop on
– volume: 7
  start-page: 133190
  year: 2019
  end-page: 133202
  ident: bib58
  article-title: Smartphone and smartwatch-based biometrics using activities of daily living
  publication-title: IEEE Access
– volume: vol. 24
  year: 1970
  ident: bib35
  publication-title: What about People in Regional Science
– volume: 8
  start-page: 100
  year: 2016
  ident: bib5
  article-title: Smartphone user identity verification using gait characteristics
  publication-title: Symmetry
– volume: 111
  start-page: 115
  year: 2003
  end-page: 122
  ident: bib36
  article-title: Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument
  publication-title: Environ. Health Perspect.
– volume: 2018
  year: 2018
  ident: bib50
  article-title: Deep residual bidir-LSTM for human activity recognition using wearable sensors
  publication-title: Math. Probl Eng.
– volume: 20
  start-page: 7265
  year: 2020
  end-page: 7274
  ident: bib46
  article-title: The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition
  publication-title: IEEE Sensor. J.
– volume: 2016
  year: 2016
  ident: bib2
  article-title: Human activity recognition in AAL environments using random projections
  publication-title: Comput. Math. Methods Med.
– year: 2001
  ident: bib33
  article-title: Torsten hӓgerstrand, time geography
  publication-title: CSISS Classics
– start-page: 307
  year: 2021, September
  end-page: 321
  ident: bib55
  article-title: 2D vs 3D online writer identification: a comparative study
  publication-title: International Conference on Docu
– volume: 4
  start-page: 976
  year: 2009
  end-page: 984
  ident: bib37
  article-title: Prediction of state of wireless network using markov and hidden markov model
  publication-title: J. Network.
– start-page: 1
  year: 2016, October
  end-page: 3
  ident: bib10
  article-title: Human activity recognition with inertial sensors using a deep learning approach
  publication-title: 2016 IEEE Sensors
– start-page: 158
  year: 2004, April
  end-page: 175
  ident: bib28
  article-title: Activity recognition in the home using simple and ubiquitous sensors
  publication-title: International Conference on
– volume: 7
  start-page: 275
  year: 2003
  end-page: 286
  ident: bib34
  article-title: Using GPS to learn significant locations and predict movement across multiple users
  publication-title: Personal Ubiquitous Comput.
– start-page: 362
  year: 2020, February
  end-page: 366
  ident: bib51
  article-title: A CNN-LSTM approach to human activity recognition
  publication-title: 2020 International Conference o
– volume: 2018
  year: 2018
  ident: bib64
  article-title: Deep residual bidir-LSTM for human activity recognition using wearable sensors
  publication-title: Math. Probl Eng.
– volume: 51
  start-page: 355
  year: 2021
  end-page: 364
  ident: bib67
  article-title: Sequential weakly labeled multiactivity localization and recognition on wearable sensors using recurrent attention networks
  publication-title: IEEE Transactions on Human-Machine Systems
– volume: 10
  start-page: 308
  year: 2021
  ident: bib12
  article-title: Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models
  publication-title: Electronics
– volume: 15
  start-page: 1192
  year: 2012
  end-page: 1209
  ident: bib21
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Communicat. Surveys Tutorials
– start-page: 175
  year: 2019, October
  end-page: 180
  ident: bib48
  article-title: Stacked lstm network for human activity recognition using smartphone data
  publication-title: 2019 8th European Workshop on
– start-page: 362
  year: 2020, February
  end-page: 366
  ident: bib65
  article-title: A CNN-LSTM approach to human activity recognition
  publication-title: 2020 International Conference o
– volume: 28
  start-page: 565
  year: 2017
  end-page: 574
  ident: bib42
  article-title: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach
  publication-title: Neural Comput. Appl.
– volume: 73
  start-page: 428
  year: 1999
  end-page: 440
  ident: bib25
  article-title: Human motion analysis: a review
  publication-title: Comput. Vis. Image Understand.
– volume: 155
  start-page: 698
  year: 2019
  end-page: 703
  ident: bib7
  article-title: Human activity recognition: a survey
  publication-title: Procedia Comput. Sci.
– year: 2018
  ident: bib61
  article-title: Smartwatch-based Legitimate User Identification for Cloud-Based Secure Services
– volume: 54
  start-page: 1
  year: 2021
  end-page: 40
  ident: bib23
  article-title: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities
  publication-title: ACM Comput. Surv.
– volume: 16
  start-page: 184
  year: 2016
  ident: bib14
  article-title: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices
  publication-title: Sensors
– volume: 8
  start-page: 56855
  year: 2020
  end-page: 56866
  ident: bib52
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
– start-page: 2438
  year: 2017, July
  end-page: 2441
  ident: bib43
  article-title: CNN based approach for activity recognition using a wrist-worn accelerometer
  publication-title: 2017 39th Annual Internatio
– start-page: 16266
  year: 2021
  end-page: 16275
  ident: bib54
  article-title: Uav-human: a large benchmark for human behavior understanding with unmanned aerial vehicles
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 8
  start-page: 61255
  year: 2020
  end-page: 61266
  ident: bib57
  article-title: Convolutional neural networks for user identification based on motion sensors represented as images
  publication-title: IEEE Access
– volume: 19
  start-page: 9921
  year: 2019
  end-page: 9928
  ident: bib9
  article-title: CrossCount: a deep learning system for device-free human counting using WiFi
  publication-title: IEEE Sensor. J.
– start-page: 1382
  year: 2020, December
  end-page: 1388
  ident: bib69
  article-title: ARC-net: activity recognition through capsules
  publication-title: 2020 19th IEEE International Co
– volume: 11
  start-page: 259
  issue: 12
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib3
  article-title: A review of internet of things technologies for ambient assisted living environments
  publication-title: Future Internet
  doi: 10.3390/fi11120259
– start-page: 362
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib51
  article-title: A CNN-LSTM approach to human activity recognition
– start-page: 2438
  year: 2017
  ident: 10.1016/j.measen.2022.100512_bib43
  article-title: CNN based approach for activity recognition using a wrist-worn accelerometer
– volume: 2018
  year: 2018
  ident: 10.1016/j.measen.2022.100512_bib64
  article-title: Deep residual bidir-LSTM for human activity recognition using wearable sensors
  publication-title: Math. Probl Eng.
  doi: 10.1155/2018/7316954
– volume: 19
  start-page: 9921
  issue: 21
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib9
  article-title: CrossCount: a deep learning system for device-free human counting using WiFi
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2019.2928502
– volume: 1
  start-page: 20
  issue: 1
  year: 2015
  ident: 10.1016/j.measen.2022.100512_bib31
  article-title: A review on radio based activity recognition
  publication-title: Digital Communicat. Networks
  doi: 10.1016/j.dcan.2015.02.006
– volume: 21
  start-page: 3570
  issue: 3
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib39
  article-title: Deep learning-based speed bump detection model for intelligent vehicle system using raspberry Pi
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2020.3027097
– year: 2019
  ident: 10.1016/j.measen.2022.100512_bib22
– volume: 14
  start-page: 199
  issue: 2
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib40
  article-title: RCNet: road classification convolutional neural networks for intelligent vehicle system
  publication-title: Intelligent Service Robotics
  doi: 10.1007/s11370-020-00343-6
– start-page: 175
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib48
  article-title: Stacked lstm network for human activity recognition using smartphone data
– volume: vol. 24
  year: 1970
  ident: 10.1016/j.measen.2022.100512_bib35
– volume: 19
  start-page: 7598
  issue: 17
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib45
  article-title: Attention-based convolutional neural network for weakly labeled human activities' recognition with wearable sensors
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2019.2917225
– volume: 8
  start-page: 56855
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib52
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: 51
  start-page: 355
  issue: 4
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib53
  article-title: Sequential weakly labeled multiactivity localization and recognition on wearable sensors using recurrent attention networks
  publication-title: IEEE Transact. Human-Machine Syst.
  doi: 10.1109/THMS.2021.3086008
– volume: 12
  start-page: 1570
  issue: 9
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib19
  article-title: Enhanced hand-oriented activity recognition based on smartwatch sensor data using lstms
  publication-title: Symmetry
  doi: 10.3390/sym12091570
– start-page: 1
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib49
  article-title: Human activity recognition on smartphones using a bidirectional LSTM network
– volume: 7
  start-page: 133190
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib58
  article-title: Smartphone and smartwatch-based biometrics using activities of daily living
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940729
– volume: 108
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib8
  article-title: Sensor-based and vision-based human activity recognition: a comprehensive survey
  publication-title: Pattern Recogn.
– volume: 28
  start-page: 565
  issue: 3
  year: 2017
  ident: 10.1016/j.measen.2022.100512_bib42
  article-title: Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-2089-3
– volume: 2018
  year: 2018
  ident: 10.1016/j.measen.2022.100512_bib50
  article-title: Deep residual bidir-LSTM for human activity recognition using wearable sensors
  publication-title: Math. Probl Eng.
  doi: 10.1155/2018/7316954
– volume: 8
  start-page: 27435
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib59
  article-title: Identification of walker identity using smartphone sensors: an experiment using ensemble learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2971693
– volume: 2016
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib2
  article-title: Human activity recognition in AAL environments using random projections
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2016/4073584
– start-page: 158
  year: 2004
  ident: 10.1016/j.measen.2022.100512_bib28
  article-title: Activity recognition in the home using simple and ubiquitous sensors
– volume: 57
  start-page: 53
  issue: 2
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib38
  article-title: PotNet: pothole detection for autonomous vehicle system using convolutional neural network
  publication-title: Electron. Lett.
  doi: 10.1049/ell2.12062
– volume: 15
  start-page: 1192
  issue: 3
  year: 2012
  ident: 10.1016/j.measen.2022.100512_bib21
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Communicat. Surveys Tutorials
  doi: 10.1109/SURV.2012.110112.00192
– volume: 130
  start-page: 565
  issue: 4
  year: 2010
  ident: 10.1016/j.measen.2022.100512_bib20
  article-title: Human activity recognition from environmental background sounds for wireless sensor networks
  publication-title: IEEJ Transact. Electro. Informat. Systems
– volume: 54
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib23
  article-title: Deep learning for sensor-based human activity recognition: overview, challenges, and opportunities
  publication-title: ACM Comput. Surv.
– start-page: 16266
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib54
  article-title: Uav-human: a large benchmark for human behavior understanding with unmanned aerial vehicles
– volume: 7
  start-page: 37883
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib60
  article-title: You walk, we authenticate: lightweight seamless authentication based on gait in wearable IoT systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906663
– volume: 7
  start-page: 133190
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib16
  article-title: Smartphone and smartwatch-based biometrics using activities of daily living
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2940729
– volume: 18
  start-page: 1473
  issue: 11
  year: 2008
  ident: 10.1016/j.measen.2022.100512_bib27
  article-title: Machine recognition of human activities: a survey
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2008.2005594
– volume: 20
  start-page: 7265
  issue: 13
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib46
  article-title: The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition
  publication-title: IEEE Sensor. J.
  doi: 10.1109/JSEN.2020.2978772
– volume: 16
  start-page: 184
  issue: 2
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib14
  article-title: From data acquisition to data fusion: a comprehensive review and a roadmap for the identification of activities of daily living using mobile devices
  publication-title: Sensors
  doi: 10.3390/s16020184
– volume: vol. 58
  year: 1998
  ident: 10.1016/j.measen.2022.100512_bib29
  article-title: The neural network house: an environment hat adapts to its inhabitants
– volume: 19
  start-page: 1644
  issue: 7
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib18
  article-title: Accelerometer-based human fall detection using convolutional neural networks
  publication-title: Sensors
  doi: 10.3390/s19071644
– start-page: 1
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib10
  article-title: Human activity recognition with inertial sensors using a deep learning approach
– start-page: 1472
  year: 2015
  ident: 10.1016/j.measen.2022.100512_bib30
  article-title: Wigest: a ubiquitous wifi-based gesture recognition system
– volume: 4
  start-page: 976
  issue: 10
  year: 2009
  ident: 10.1016/j.measen.2022.100512_bib37
  article-title: Prediction of state of wireless network using markov and hidden markov model
  publication-title: J. Network.
  doi: 10.4304/jnw.4.10.976-984
– volume: 17
  start-page: 385
  issue: 2
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib6
  article-title: Residual learning based CNN for gesture recognition in robot interaction
  publication-title: J. Informat. Process. Syst.
– volume: 8
  start-page: 61255
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib57
  article-title: Convolutional neural networks for user identification based on motion sensors represented as images
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2984214
– volume: 62
  start-page: 915
  year: 2018
  ident: 10.1016/j.measen.2022.100512_bib15
  article-title: Real-time human activity recognition from accelerometer data using Convolutional Neural Networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.027
– volume: 51
  start-page: 355
  issue: 4
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib67
  article-title: Sequential weakly labeled multiactivity localization and recognition on wearable sensors using recurrent attention networks
  publication-title: IEEE Transactions on Human-Machine Systems
  doi: 10.1109/THMS.2021.3086008
– volume: 4
  start-page: 1810
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib62
  article-title: Learning human identity from motion patterns
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2557846
– start-page: 175
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib63
  article-title: Stacked lstm network for human activity recognition using smartphone data
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib70
  article-title: Deep learning based human activity recognition (HAR) using wearable sensor data
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100046
– volume: 2
  start-page: 28
  year: 2015
  ident: 10.1016/j.measen.2022.100512_bib17
  article-title: A review of human activity recognition methods
  publication-title: Frontiers in Robotics and AI
  doi: 10.3389/frobt.2015.00028
– volume: 111
  start-page: 115
  issue: 1
  year: 2003
  ident: 10.1016/j.measen.2022.100512_bib36
  article-title: Time-location analysis for exposure assessment studies of children using a novel global positioning system instrument
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.5350
– volume: 25
  start-page: 743
  issue: 2
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib44
  article-title: Deep learning models for real-time human activity recognition with smartphones
  publication-title: Mobile Network. Appl.
  doi: 10.1007/s11036-019-01445-x
– volume: 36
  start-page: 1869
  issue: 9
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib41
  article-title: An integrated approach for medical abnormality detection using deep patch convolutional neural networks
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-019-01775-7
– start-page: 197
  year: 2014
  ident: 10.1016/j.measen.2022.100512_bib47
  article-title: Convolutional neural networks for human activity recognition using mobile sensors
– start-page: 307
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib55
  article-title: 2D vs 3D online writer identification: a comparative study
– year: 2019
  ident: 10.1016/j.measen.2022.100512_bib24
– volume: 73
  start-page: 428
  issue: 3
  year: 1999
  ident: 10.1016/j.measen.2022.100512_bib25
  article-title: Human motion analysis: a review
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1006/cviu.1998.0744
– volume: 10
  start-page: 308
  issue: 3
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib56
  article-title: Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models
  publication-title: Electronics
  doi: 10.3390/electronics10030308
– start-page: 1382
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib69
  article-title: ARC-net: activity recognition through capsules
– year: 2001
  ident: 10.1016/j.measen.2022.100512_bib33
  article-title: Torsten hӓgerstrand, time geography
  publication-title: CSISS Classics
– volume: 8
  start-page: 100
  issue: 10
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib5
  article-title: Smartphone user identity verification using gait characteristics
  publication-title: Symmetry
  doi: 10.3390/sym8100100
– volume: 7
  start-page: 275
  issue: 5
  year: 2003
  ident: 10.1016/j.measen.2022.100512_bib34
  article-title: Using GPS to learn significant locations and predict movement across multiple users
  publication-title: Personal Ubiquitous Comput.
  doi: 10.1007/s00779-003-0240-0
– volume: 155
  start-page: 698
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib7
  article-title: Human activity recognition: a survey
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.08.100
– start-page: 362
  year: 2020
  ident: 10.1016/j.measen.2022.100512_bib65
  article-title: A CNN-LSTM approach to human activity recognition
– start-page: 16266
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib68
  article-title: Uav-human: a large benchmark for human behavior understanding with unmanned aerial vehicles
– volume: 2
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib32
  article-title: Wearable sensors for monitoring the physiological and biochemical profile of the athlete
  publication-title: NPJ digital medicine
– volume: 15
  start-page: 979
  issue: 10
  year: 1962
  ident: 10.1016/j.measen.2022.100512_bib13
  article-title: Multidisciplinary studies of illness in aged persons—VI: comparison study of rehabilitated and nonrehabilitated patients with fracture of the hip
  publication-title: J. Chron. Dis.
  doi: 10.1016/0021-9681(62)90117-0
– volume: 10
  start-page: 308
  issue: 3
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib12
  article-title: Biometric user identification based on human activity recognition using wearable sensors: an experiment using deep learning models
  publication-title: Electronics
  doi: 10.3390/electronics10030308
– volume: 21
  start-page: 1636
  issue: 5
  year: 2021
  ident: 10.1016/j.measen.2022.100512_bib11
  article-title: Lstm networks using smartphone data for sensor-based human activity recognition in smart homes
  publication-title: Sensors
  doi: 10.3390/s21051636
– volume: 130
  start-page: 953
  year: 2018
  ident: 10.1016/j.measen.2022.100512_bib4
  article-title: Recognition of basketball referee signals from videos using histogram of oriented gradients (HOG) and support vector machine (SVM)
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.04.095
– year: 2018
  ident: 10.1016/j.measen.2022.100512_bib61
– volume: 119
  start-page: 3
  year: 2019
  ident: 10.1016/j.measen.2022.100512_bib1
  article-title: Deep learning for sensor-based activity recognition: a survey
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2018.02.010
– volume: 14
  start-page: 201
  issue: 2
  year: 1973
  ident: 10.1016/j.measen.2022.100512_bib26
  article-title: Visual perception of biological motion and a model for its analysis
  publication-title: Percept. Psychophys.
  doi: 10.3758/BF03212378
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.measen.2022.100512_bib66
  article-title: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
SSID ssj0002810124
Score 2.2504354
Snippet Human Activity Recognition (HAR), based on sensor devices and the Internet of Things (IoT), attracted many researchers since it has diversified applications in...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100512
SubjectTerms Convolution gated fusion algorithm
Convolution memory fusion algorithm
Convolution neural network
Human activity recognition
Hybrid learning algorithm
Sensors
Title Human activity recognition based on hybrid learning algorithm for wearable sensor data
URI https://dx.doi.org/10.1016/j.measen.2022.100512
https://doaj.org/article/27bc886b2f9f4410bc2fd3959e219b4e
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2665-9174
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810124
  issn: 2665-9174
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx5YI1I7qe0RUCsGqBig6hbFdtyH2hS1BcTCb-cuTqqw0IUlciw7tu4uvrN99x0h1yZLJfCVBypUJoiYDYPUtWHXqmPrpG5ZW8A19R9FrycHA_VcS_WFPmEeHtgT7oYJbaRsa-aUA9UdasOc5SpWGfxrOspw9Q2Fqm2mJsWREeJW4ZUyKCBMRiiiKm6ucO6a4d0Hwp8yhn4CcYv90ksFfH9NPdVUTnef7JW2Ir31czwgW1l-SHZrCIJHpF8cwlOMTsAkEHTtDzTPKSooS6Ew-sKwLFomiBjSdDqcL8ar0YyCxUo_oRrjpyhMdQnv6DN6TF67nZf7h6BMlRAYzjnYyJxr57QAcwcsksjFMhUuhZKymeA2BeLJMDWwpLTazkbSOh1axoV1nBlmHD8hjXyeZ6eEStPiTkqnpNSRdgz4JdNYhbHOsItsEl4RKjEljjims5gmlcPYJPHkTZC8iSdvkwTrXm8eR2ND-zvkwbotomAXFSAbSSkbySbZaBJRcTApDQpvKMCnxn8Of_Yfw5-THfykd365II3V4j27JNvmYzVeLq4KgYXn03fnB6hH8FU
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+activity+recognition+based+on+hybrid+learning+algorithm+for+wearable+sensor+data&rft.jtitle=Measurement.+Sensors&rft.au=Athota%2C+Ravi+Kumar&rft.au=Sumathi%2C+D.&rft.date=2022-12-01&rft.issn=2665-9174&rft.eissn=2665-9174&rft.volume=24&rft.spage=100512&rft_id=info:doi/10.1016%2Fj.measen.2022.100512&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measen_2022_100512
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2665-9174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2665-9174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2665-9174&client=summon