Sports behavior analysis technology based on GCN and domain knowledge graph

Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial temporal features of sports behavior, achieving accurate action recognition. In the experimental results, the proposed graph convolutional network...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discover Computing Ročník 28; číslo 1; s. 1 - 22
Hlavní autori: Jiaojiao Hu, Shengnan Ran
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Springer 17.11.2025
Predmet:
ISSN:2948-2992
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Abstract To improve the performance of sports behavior recognition, the spatial temporal graph convolutional network is introduced to analyze the spatial temporal features of sports behavior, achieving accurate action recognition. In the experimental results, the proposed graph convolutional network algorithm achieved accuracy of 95.20%, 93.80%, and 92.50% in single-person, multi-person, and complex scenes, respectively. The spatial temporal graph convolutional network achieved a recognition accuracy of 95.3% in sports behavior analysis, with a Top-5 accuracy of 98.4%, an average recognition time of 12.5 ms/frame, and a parameter count of only 12.5 million, demonstrating its advantages in real-time performance and model complexity. The results indicate that the framework combining the proposed graph convolutional network algorithm, improved Openpose estimation, and spatial temporal graph convolutional network can effectively capture the spatio-temporal features of sports behavior and significantly improve recognition performance.
ISSN:2948-2992
DOI:10.1007/s10791-025-09794-w