Product collaborative filtering based recommendation systems for large-scale E-commerce

•E-commerce demands multi-choice products, challenging businesses.•Recommender systems reshape E-commerce with personalized experiences.•Scalability is a pressing issue for recommendation systems.•Parallel techniques tackle scalability challenges in E-commerce.•Apache Spark accelerates training time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information management data insights Jg. 5; H. 1; S. 100322
Hauptverfasser: Trinh, Trang, Nguyen, Van-Ho, Nguyen, Nghia, Nguyen, Duy-Nghia
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2025
Elsevier
Schlagworte:
ISSN:2667-0968, 2667-0968
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •E-commerce demands multi-choice products, challenging businesses.•Recommender systems reshape E-commerce with personalized experiences.•Scalability is a pressing issue for recommendation systems.•Parallel techniques tackle scalability challenges in E-commerce.•Apache Spark accelerates training time for large-scale E-commerce. The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a business offering a wide range of products. This paper introduces a product-based collaborative filtering approach utilizing Apache Spark, a powerful parallel processing framework to address the scalability issues of recommender systems in the cloud computing environment. Using Spark's distributed computing ability, our model attains a surprising 7.6 times speedup on the training time compared to traditional single-machine methods while preserving accuracy with a Root Mean Square Error (RMSE) 0.9. These results demonstrate the effectiveness of parallel and distributed techniques in developing efficient and accurate recommender systems for large-scale e-commerce applications. Future work will focus on applying multi-model to enhance the accuracy of prediction and configuration to optimize the cost of cluster operations.
AbstractList •E-commerce demands multi-choice products, challenging businesses.•Recommender systems reshape E-commerce with personalized experiences.•Scalability is a pressing issue for recommendation systems.•Parallel techniques tackle scalability challenges in E-commerce.•Apache Spark accelerates training time for large-scale E-commerce. The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a business offering a wide range of products. This paper introduces a product-based collaborative filtering approach utilizing Apache Spark, a powerful parallel processing framework to address the scalability issues of recommender systems in the cloud computing environment. Using Spark's distributed computing ability, our model attains a surprising 7.6 times speedup on the training time compared to traditional single-machine methods while preserving accuracy with a Root Mean Square Error (RMSE) 0.9. These results demonstrate the effectiveness of parallel and distributed techniques in developing efficient and accurate recommender systems for large-scale e-commerce applications. Future work will focus on applying multi-model to enhance the accuracy of prediction and configuration to optimize the cost of cluster operations.
The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a business offering a wide range of products. This paper introduces a product-based collaborative filtering approach utilizing Apache Spark, a powerful parallel processing framework to address the scalability issues of recommender systems in the cloud computing environment. Using Spark's distributed computing ability, our model attains a surprising 7.6 times speedup on the training time compared to traditional single-machine methods while preserving accuracy with a Root Mean Square Error (RMSE) 0.9. These results demonstrate the effectiveness of parallel and distributed techniques in developing efficient and accurate recommender systems for large-scale e-commerce applications. Future work will focus on applying multi-model to enhance the accuracy of prediction and configuration to optimize the cost of cluster operations.
ArticleNumber 100322
Author Nguyen, Van-Ho
Trinh, Trang
Nguyen, Nghia
Nguyen, Duy-Nghia
Author_xml – sequence: 1
  givenname: Trang
  surname: Trinh
  fullname: Trinh, Trang
  organization: University of Economics and Law, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: Van-Ho
  orcidid: 0000-0001-6706-0276
  surname: Nguyen
  fullname: Nguyen, Van-Ho
  email: honv@uel.edu.vn
  organization: University of Economics and Law, Ho Chi Minh City, Vietnam
– sequence: 3
  givenname: Nghia
  surname: Nguyen
  fullname: Nguyen, Nghia
  organization: University of Economics and Law, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Duy-Nghia
  surname: Nguyen
  fullname: Nguyen, Duy-Nghia
  organization: University of Economics and Law, Ho Chi Minh City, Vietnam
BookMark eNqFkM1q3TAQhUVJIWmaN8jCL-Bb_V1Z6qJQQpoGAumipUsxHo0uMrYVJDeQt69z3UDpIl3NMDPnMOd7x07mPBNjl4LvBBfmw7AbhjRR2kku9-uIKynfsDNpTNdyZ-zJX_0pu6h14JxLK4Q04oz9_FZy-IVLg3kcoc8FlvRITUzjQiXNh6aHSqEphHmaaA7rOs9NfaoLTbWJuTQjlAO1FWGk5ro9nhWk9-xthLHSxZ96zn58uf5-9bW9u7-5vfp816JSSrYKJDrTB2sUkDai44ErjaigdzwICK6LaGQESzxq0Xe6QxSaQuhUtALVObvdfEOGwT-UNEF58hmSPw5yOXgoS8KRPO_2e-sUmb0jLaW21gZnhebRORHArl4fNy8sudZC0WNajoGXAmn0gvtn4n7wG3H_TNxvxFex_kf88sx_ZJ82Ga2QHhMVXzHRjBTSynxZU6TXDX4D2ome4w
CitedBy_id crossref_primary_10_48175_IJARSCT_23953
crossref_primary_10_1007_s11227_025_07417_1
crossref_primary_10_22399_ijcesen_2846
crossref_primary_10_1177_14727978251364463
Cites_doi 10.6007/IJARAFMS/v11-i1/8987
10.1016/j.ins.2009.06.004
10.14778/2367502.2367562
10.1016/j.jjimei.2022.100145
10.1080/03772063.2021.1997357
10.25124/jmi.v19i3.2412
10.1109/ACCESS.2019.2937518
10.1504/IJCSE.2020.105727
10.1093/humupd/dmac035
10.1007/s10639-019-10063-9
10.1108/K-03-2019-0199
10.1016/j.jretconser.2020.102287
10.1515/cait-2016-0092
10.1109/ACCESS.2020.3002803
10.5194/gmd-15-5481-2022
10.1016/j.jjimei.2024.100256
10.1016/j.jjimei.2021.100027
10.1016/j.eij.2015.06.005
10.1002/cb.1588
10.1109/MC.2009.263
10.1016/j.jesp.2013.03.013
10.1016/j.jjimei.2022.100090
10.1016/j.knosys.2009.07.007
10.1016/j.jjimei.2022.100139
10.1007/s40031-024-00999-z
10.1016/j.joitmc.2024.100303
10.1016/j.knosys.2019.105058
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.jjimei.2025.100322
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2667-0968
ExternalDocumentID oai_doaj_org_article_0755893e659e4224888d98140f991da8
10_1016_j_jjimei_2025_100322
S2667096825000047
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
AAYXX
CITATION
ID FETCH-LOGICAL-c3332-3a2c96bd863ae46170d034cc3ab90d1ad97fc62fa8e0f41b747cc14edd73f81c3
IEDL.DBID DOA
ISSN 2667-0968
IngestDate Fri Oct 03 12:31:55 EDT 2025
Tue Nov 18 22:25:30 EST 2025
Sat Nov 29 07:53:24 EST 2025
Sat Jul 05 17:11:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Recommendation systems
E-commerce
Parallel and distributed computing
Collaborative filtering
Apache spark
Large-scale
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3332-3a2c96bd863ae46170d034cc3ab90d1ad97fc62fa8e0f41b747cc14edd73f81c3
ORCID 0000-0001-6706-0276
OpenAccessLink https://doaj.org/article/0755893e659e4224888d98140f991da8
ParticipantIDs doaj_primary_oai_doaj_org_article_0755893e659e4224888d98140f991da8
crossref_citationtrail_10_1016_j_jjimei_2025_100322
crossref_primary_10_1016_j_jjimei_2025_100322
elsevier_sciencedirect_doi_10_1016_j_jjimei_2025_100322
PublicationCentury 2000
PublicationDate June 2025
2025-06-00
2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: June 2025
PublicationDecade 2020
PublicationTitle International journal of information management data insights
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ferreira, Silva, Abelha, Machado (bib0007) 2020
Whinston, Choi, Stahl (bib0046) 1997
Dhawan, Singh, Batra (bib48) 2024; 105
Tran (bib0038) 2021; 58
Isinkaye (bib0014) 2023; 69
Rastogi, Jothi, Mishra (bib0030) 2022
Dittrich, Quiané-Ruiz (bib0005) 2012; 5
Koren, Bell, Volinsky (bib0016) 2009; 42
Negre (bib0025) 2015
Behera, Nain (bib0004) 2022
Gosh, Nahar, Wahab, Biswas, Hossain, Andersson (bib0010) 2020
Yan, Zhang, Li, Wu, Sun, Wang, Chen (bib0045) 2016; 15
Alzogbi, Koleva, Lausen (bib0002) 2019
Wilson (bib0042) 2019; 19
Mehta, Rana (bib0027) 2017
Ni, Li, McAuley (bib0024) 2019
Mutemi, Bacao (bib0023) 2024; 4
Rajendran, Sundarraj (bib0028) 2021; 1
RaviKanth, ChandraShekar, Sreekanth, Kumar (bib0031) 2021
Schafer, Konstan, Riedl (bib0033) 1999
Wakil, Alyari, Ghasvari, Lesani, Rajabion (bib0040) 2020; 49
Khanal, Prasad, Alsadoon, Maag (bib0015) 2020; 25
Leys, Ley, Klein, Bernard, Licata (bib0018) 2013; 49
Levine, Jørgensen, Martino-Andrade, Mendiola, Weksler-Derri, Jolles, Pinotti, Swan (bib0019) 2022; 29
Alamdari, Navimipour, Hosseinzadeh, Safaei, Darwesh (bib0003) 2020; 8
Venkatachalam, Ray (bib0039) 2022; 2
(bib0001) 2017
Gu, Ding, Wang, Zou, Liu, Yin (bib0011) 2020
Nguyen, Nguyen, Trinh, Ho, Le (bib0006) 2024; 10
Porcel, Herrera-Viedma (bib0026) 2010; 23
Shen, Zhou, Chen (bib0035) 2020; 21
Sivapalan, Sadeghian, Rahnama, Madni (bib47) 2014
Xie, Zhou, Li (bib0043) 2016; 16
Shandilya, Sharma, Wong (bib0034) 2022; 2
Rashid (bib0029) 2002
Hodson (bib0012) 2022; 15
Taher (bib0037) 2021; 11
Wei, Huang, Fu (bib0041) 2007
Salunke, Nichite (bib0032) 2022
Gazdar, Hidri (bib0009) 2020; 188
Isinkaye, Folajimi, Ojokoh (bib0013) 2015; 16
Liu, Lai, Lee (bib0020) 2009; 179
Mishra, Jothi, Urolagin, Irani (bib0022) 2023; 3
Falk (bib0008) 2019
Shoja, Tabrizi (bib0036) 2019; 7
MacKenzie, Meyer, Noble (bib0021) 2013
Isinkaye (10.1016/j.jjimei.2025.100322_bib0013) 2015; 16
Whinston (10.1016/j.jjimei.2025.100322_bib0046) 1997
Dhawan (10.1016/j.jjimei.2025.100322_bib48) 2024; 105
Levine (10.1016/j.jjimei.2025.100322_bib0019) 2022; 29
Mutemi (10.1016/j.jjimei.2025.100322_bib0023) 2024; 4
Xie (10.1016/j.jjimei.2025.100322_bib0043) 2016; 16
Negre (10.1016/j.jjimei.2025.100322_bib0025) 2015
Rajendran (10.1016/j.jjimei.2025.100322_bib0028) 2021; 1
Alzogbi (10.1016/j.jjimei.2025.100322_bib0002) 2019
Yan (10.1016/j.jjimei.2025.100322_bib0045) 2016; 15
Nguyen (10.1016/j.jjimei.2025.100322_bib0006) 2024; 10
RaviKanth (10.1016/j.jjimei.2025.100322_bib0031) 2021
Sivapalan (10.1016/j.jjimei.2025.100322_bib47) 2014
Shen (10.1016/j.jjimei.2025.100322_bib0035) 2020; 21
Falk (10.1016/j.jjimei.2025.100322_bib0008) 2019
Gosh (10.1016/j.jjimei.2025.100322_bib0010) 2020
Ni (10.1016/j.jjimei.2025.100322_bib0024) 2019
Liu (10.1016/j.jjimei.2025.100322_bib0020) 2009; 179
Shandilya (10.1016/j.jjimei.2025.100322_bib0034) 2022; 2
Dittrich (10.1016/j.jjimei.2025.100322_bib0005) 2012; 5
Shoja (10.1016/j.jjimei.2025.100322_bib0036) 2019; 7
Taher (10.1016/j.jjimei.2025.100322_bib0037) 2021; 11
Rashid (10.1016/j.jjimei.2025.100322_bib0029) 2002
Wei (10.1016/j.jjimei.2025.100322_bib0041) 2007
Wilson (10.1016/j.jjimei.2025.100322_bib0042) 2019; 19
Salunke (10.1016/j.jjimei.2025.100322_bib0032) 2022
Wakil (10.1016/j.jjimei.2025.100322_bib0040) 2020; 49
Tran (10.1016/j.jjimei.2025.100322_bib0038) 2021; 58
Gazdar (10.1016/j.jjimei.2025.100322_bib0009) 2020; 188
Hodson (10.1016/j.jjimei.2025.100322_bib0012) 2022; 15
Gu (10.1016/j.jjimei.2025.100322_bib0011) 2020
Porcel (10.1016/j.jjimei.2025.100322_bib0026) 2010; 23
Alamdari (10.1016/j.jjimei.2025.100322_bib0003) 2020; 8
Koren (10.1016/j.jjimei.2025.100322_bib0016) 2009; 42
Rastogi (10.1016/j.jjimei.2025.100322_bib0030) 2022
Schafer (10.1016/j.jjimei.2025.100322_bib0033) 1999
Behera (10.1016/j.jjimei.2025.100322_bib0004) 2022
MacKenzie (10.1016/j.jjimei.2025.100322_bib0021) 2013
Mehta (10.1016/j.jjimei.2025.100322_bib0027) 2017
Khanal (10.1016/j.jjimei.2025.100322_bib0015) 2020; 25
Mishra (10.1016/j.jjimei.2025.100322_bib0022) 2023; 3
(10.1016/j.jjimei.2025.100322_bib0001) 2017
Venkatachalam (10.1016/j.jjimei.2025.100322_bib0039) 2022; 2
Ferreira (10.1016/j.jjimei.2025.100322_bib0007) 2020
Isinkaye (10.1016/j.jjimei.2025.100322_bib0014) 2023; 69
Leys (10.1016/j.jjimei.2025.100322_bib0018) 2013; 49
References_xml – year: 2007
  ident: bib0041
  article-title: A survey of E-commerce recommender systems
  publication-title: Proceedings - ICSSSM’07: 2007 International Conference on Service Systems and Service Management
– volume: 69
  start-page: 6087
  year: 2023
  end-page: 6100
  ident: bib0014
  article-title: Matrix factorization in recommender systems: Algorithms, applications, and peculiar challenges
  publication-title: IETE Journal of Research
– volume: 29
  start-page: 157
  year: 2022
  end-page: 176
  ident: bib0019
  article-title: Temporal trends in sperm count: A systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries
  publication-title: Human Reproduction Update
– volume: 2
  year: 2022
  ident: bib0034
  article-title: MATURE-food: Food recommender system for mandatory feature choices A system for enabling digital health
  publication-title: International Journal of Information Management Data Insights
– start-page: 193
  year: 2019
  end-page: 200
  ident: bib0002
  article-title: Towards distributed multi-model learning on Apache Spark for model-based recommender
  publication-title: 2019 IEEE 35th International Conference on Data Engineering Workshops (ICDEW)
– volume: 49
  start-page: 764
  year: 2013
  end-page: 766
  ident: bib0018
  article-title: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median
  publication-title: Journal of Experimental Social Psychology
– volume: 8
  start-page: 115694
  year: 2020
  end-page: 115716
  ident: bib0003
  article-title: A systematic study on the recommender systems in the E-commerce
  publication-title: IEEE access : practical innovations, open solutions
– start-page: 127
  year: 2002
  end-page: 134
  ident: bib0029
  article-title: Getting to know you: Learning new user preferences in recommender systems
  publication-title: Proceedings of the international conference on intelligent user interfaces
– volume: 23
  start-page: 32
  year: 2010
  end-page: 39
  ident: bib0026
  article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries
  publication-title: Knowledge-Based Systems
– year: 2022
  ident: bib0032
  article-title: Recommender systems in E-commerce
– volume: 42
  start-page: 30
  year: 2009
  end-page: 37
  ident: bib0016
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– volume: 16
  start-page: 245
  year: 2016
  end-page: 255
  ident: bib0043
  article-title: Application of improved recommendation system based on SPARK platform in big data analysis
  publication-title: Cybernetics and Information Technologies
– volume: 1
  year: 2021
  ident: bib0028
  article-title: Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings
  publication-title: International Journal of Information Management Data Insights
– volume: 49
  start-page: 1325
  year: 2020
  end-page: 1346
  ident: bib0040
  article-title: A new model for assessing the role of customer behavior history, product classification, and prices on the success of the recommender systems in e-commerce
  publication-title: Kybernetes
– start-page: 158
  year: 1999
  end-page: 166
  ident: bib0033
  article-title: Recommender systems in e-commerce
  publication-title: Proceedings of the 1st ACM conference on Electronic commerce
– volume: 11
  start-page: 153
  year: 2021
  end-page: 165
  ident: bib0037
  article-title: E-commerce: Advantages and limitations
  publication-title: International Journal of Academic Research in Accounting Finance and Management Sciences
– volume: 7
  start-page: 119121
  year: 2019
  end-page: 119130
  ident: bib0036
  article-title: Customer reviews analysis with deep neural networks for E-Commerce Recommender systems
  publication-title: IEEE Access
– year: 1997
  ident: bib0046
  article-title: The economics of electronic commerce
– start-page: 137
  year: 2022
  end-page: 146
  ident: bib0004
  article-title: Trade-off between memory and model-based collaborative filtering recommender system
  publication-title: Proceedings of the International Conference on Paradigms of Communication, Computing and Data Sciences: PCCDS 2021
– year: 2017
  ident: bib0001
  publication-title: Proceedings of the Eleventh ACM Conference on Recommender Systems
– year: 2013
  ident: bib0021
  article-title: How retailers can keep up with consumers
– start-page: 2493
  year: 2020
  end-page: 2500
  ident: bib0011
  article-title: Deep multifaceted transformers for multi-objective ranking in large-scale e-commerce recommender systems
  publication-title: Proceedings of the 29th ACM International Conference on Information & Knowledge Management
– volume: 21
  start-page: 219
  year: 2020
  end-page: 225
  ident: bib0035
  article-title: Collaborative filtering-based recommendation system for big data
  publication-title: International Journal of Computational Science and Engineering
– volume: 15
  start-page: 516
  year: 2016
  end-page: 526
  ident: bib0045
  article-title: Effects of product portfolios and recommendation timing in the efficiency of personalized recommendation
  publication-title: J. Consumer Behav.
– volume: 25
  start-page: 2635
  year: 2020
  end-page: 2664
  ident: bib0015
  article-title: A systematic review: Machine learning based recommendation systems for e-learning
  publication-title: Education and Information Technologies
– volume: 10
  start-page: 100303
  year: 2024
  ident: bib0006
  article-title: A personalized product recommendation model in e-commerce based on retrieval strategy
  publication-title: Journal of Open Innovation: Technology, Market, and Complexity
– volume: 4
  year: 2024
  ident: bib0023
  article-title: Balancing act: Tackling organized retail fraud on e-commerce platforms with imbalanced learning text models
  publication-title: International Journal of Information Management Data Insights
– start-page: 269
  year: 2017
  end-page: 274
  ident: bib0027
  article-title: A review on matrix factorization techniques in recommender systems
  publication-title: 2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)
– volume: 105
  start-page: 657
  year: 2024
  end-page: 675
  ident: bib48
  article-title: A Novel Deep Learning Approach Toward Efficient and Accurate Recommendation Using Improved Alternating Least Squares in Social Media
  publication-title: J. Inst. Eng. India Ser. B
– start-page: 188
  year: 2019
  end-page: 197
  ident: bib0024
  article-title: Justifying recommendations using distantly-labeled reviews and fine-grained aspects
  publication-title: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP)
– volume: 58
  year: 2021
  ident: bib0038
  article-title: Managing the effectiveness of e-commerce platforms in a pandemic
  publication-title: Journal of Retailing and Consumer Services
– volume: 188
  year: 2020
  ident: bib0009
  article-title: A new similarity measure for collaborative filtering-based Recommender Systems
  publication-title: Knowledge-Based Systems
– volume: 15
  start-page: 5481
  year: 2022
  end-page: 5487
  ident: bib0012
  article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not
  publication-title: Geoscientific Model Development
– start-page: 880
  year: 2020
  end-page: 893
  ident: bib0010
  article-title: Recommendation system for e-commerce using alternating least squares (ALS) on apache spark
  publication-title: International Conference on Intelligent Computing & Optimization
– volume: 5
  start-page: 2014
  year: 2012
  end-page: 2015
  ident: bib0005
  article-title: Efficient big data processing in Hadoop MapReduce
  publication-title: Proceedings of the VLDB Endowment
– volume: 179
  start-page: 3505
  year: 2009
  end-page: 3519
  ident: bib0020
  article-title: A hybrid of sequential rules and collaborative filtering for product recommendation
  publication-title: Information Sciences
– start-page: 123
  year: 2021
  end-page: 129
  ident: bib0031
  article-title: Recommendation system for e-commerce by memory based and model based collaborative filtering
  publication-title: Proceedings of the 11th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2019)
– start-page: 179
  year: 2014
  end-page: 184
  ident: bib47
  article-title: August). Recommender systems in e-commerce
– year: 2019
  ident: bib0008
  article-title: Practical recommender systems
– volume: 3
  year: 2023
  ident: bib0022
  article-title: Knowledge based topic retrieval for recommendations and tourism promotions
  publication-title: International Journal of Information Management Data Insights
– year: 2015
  ident: bib0025
  article-title: Chapter 5 evaluating the quality of recommender systems
  publication-title: . essay
– start-page: 514
  year: 2022
  end-page: 519
  ident: bib0030
  article-title: Tourist spot recommendation from images based on age group and location for Dubai using Deep Transfer learning
  publication-title: 2022 8th International Conference on Signal Processing and Communication (ICSC)
– volume: 16
  start-page: 261
  year: 2015
  end-page: 273
  ident: bib0013
  article-title: Recommendation systems: Principles, methods and evaluation
  publication-title: Egyptian Informatics Journal
– volume: 19
  start-page: 241
  year: 2019
  end-page: 249
  ident: bib0042
  article-title: The impact of perceived usefulness and perceived ease-of-use toward repurchase intention In The Indonesian E-commerce industry
  publication-title: Jurnal Manajemen Indonesia
– year: 2020
  ident: bib0007
  article-title: Recommendation system -using autoencoders
  publication-title: MDPI
– volume: 2
  year: 2022
  ident: bib0039
  article-title: How do context-aware artificial intelligence algorithms used in fitness recommender systems? A literature review and research agenda
  publication-title: International Journal of Information Management Data Insights
– volume: 11
  start-page: 153
  issue: 1
  year: 2021
  ident: 10.1016/j.jjimei.2025.100322_bib0037
  article-title: E-commerce: Advantages and limitations
  publication-title: International Journal of Academic Research in Accounting Finance and Management Sciences
  doi: 10.6007/IJARAFMS/v11-i1/8987
– volume: 179
  start-page: 3505
  issue: 20
  year: 2009
  ident: 10.1016/j.jjimei.2025.100322_bib0020
  article-title: A hybrid of sequential rules and collaborative filtering for product recommendation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2009.06.004
– volume: 5
  start-page: 2014
  issue: 12
  year: 2012
  ident: 10.1016/j.jjimei.2025.100322_bib0005
  article-title: Efficient big data processing in Hadoop MapReduce
  publication-title: Proceedings of the VLDB Endowment
  doi: 10.14778/2367502.2367562
– start-page: 158
  year: 1999
  ident: 10.1016/j.jjimei.2025.100322_bib0033
  article-title: Recommender systems in e-commerce
– year: 2017
  ident: 10.1016/j.jjimei.2025.100322_bib0001
– volume: 3
  issue: 1
  year: 2023
  ident: 10.1016/j.jjimei.2025.100322_bib0022
  article-title: Knowledge based topic retrieval for recommendations and tourism promotions
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2022.100145
– volume: 69
  start-page: 6087
  issue: 9
  year: 2023
  ident: 10.1016/j.jjimei.2025.100322_bib0014
  article-title: Matrix factorization in recommender systems: Algorithms, applications, and peculiar challenges
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2021.1997357
– volume: 19
  start-page: 241
  issue: 3
  year: 2019
  ident: 10.1016/j.jjimei.2025.100322_bib0042
  article-title: The impact of perceived usefulness and perceived ease-of-use toward repurchase intention In The Indonesian E-commerce industry
  publication-title: Jurnal Manajemen Indonesia
  doi: 10.25124/jmi.v19i3.2412
– start-page: 137
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0004
  article-title: Trade-off between memory and model-based collaborative filtering recommender system
– start-page: 188
  year: 2019
  ident: 10.1016/j.jjimei.2025.100322_bib0024
  article-title: Justifying recommendations using distantly-labeled reviews and fine-grained aspects
– volume: 7
  start-page: 119121
  year: 2019
  ident: 10.1016/j.jjimei.2025.100322_bib0036
  article-title: Customer reviews analysis with deep neural networks for E-Commerce Recommender systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2937518
– volume: 21
  start-page: 219
  issue: 2
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0035
  article-title: Collaborative filtering-based recommendation system for big data
  publication-title: International Journal of Computational Science and Engineering
  doi: 10.1504/IJCSE.2020.105727
– start-page: 179
  year: 2014
  ident: 10.1016/j.jjimei.2025.100322_bib47
  article-title: August). Recommender systems in e-commerce
– year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0032
– volume: 29
  start-page: 157
  issue: 2
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0019
  article-title: Temporal trends in sperm count: A systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries
  publication-title: Human Reproduction Update
  doi: 10.1093/humupd/dmac035
– volume: 25
  start-page: 2635
  issue: 4
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0015
  article-title: A systematic review: Machine learning based recommendation systems for e-learning
  publication-title: Education and Information Technologies
  doi: 10.1007/s10639-019-10063-9
– volume: 49
  start-page: 1325
  issue: 5
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0040
  article-title: A new model for assessing the role of customer behavior history, product classification, and prices on the success of the recommender systems in e-commerce
  publication-title: Kybernetes
  doi: 10.1108/K-03-2019-0199
– volume: 58
  year: 2021
  ident: 10.1016/j.jjimei.2025.100322_bib0038
  article-title: Managing the effectiveness of e-commerce platforms in a pandemic
  publication-title: Journal of Retailing and Consumer Services
  doi: 10.1016/j.jretconser.2020.102287
– year: 2013
  ident: 10.1016/j.jjimei.2025.100322_bib0021
– start-page: 514
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0030
  article-title: Tourist spot recommendation from images based on age group and location for Dubai using Deep Transfer learning
– start-page: 269
  year: 2017
  ident: 10.1016/j.jjimei.2025.100322_bib0027
  article-title: A review on matrix factorization techniques in recommender systems
– volume: 16
  start-page: 245
  issue: 6
  year: 2016
  ident: 10.1016/j.jjimei.2025.100322_bib0043
  article-title: Application of improved recommendation system based on SPARK platform in big data analysis
  publication-title: Cybernetics and Information Technologies
  doi: 10.1515/cait-2016-0092
– volume: 8
  start-page: 115694
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0003
  article-title: A systematic study on the recommender systems in the E-commerce
  publication-title: IEEE access : practical innovations, open solutions
  doi: 10.1109/ACCESS.2020.3002803
– volume: 15
  start-page: 5481
  issue: 14
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0012
  article-title: Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not
  publication-title: Geoscientific Model Development
  doi: 10.5194/gmd-15-5481-2022
– start-page: 193
  year: 2019
  ident: 10.1016/j.jjimei.2025.100322_bib0002
  article-title: Towards distributed multi-model learning on Apache Spark for model-based recommender
– volume: 4
  issue: 2
  year: 2024
  ident: 10.1016/j.jjimei.2025.100322_bib0023
  article-title: Balancing act: Tackling organized retail fraud on e-commerce platforms with imbalanced learning text models
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2024.100256
– volume: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.jjimei.2025.100322_bib0028
  article-title: Using topic models with browsing history in hybrid collaborative filtering recommender system: Experiments with user ratings
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2021.100027
– volume: 16
  start-page: 261
  issue: 3
  year: 2015
  ident: 10.1016/j.jjimei.2025.100322_bib0013
  article-title: Recommendation systems: Principles, methods and evaluation
  publication-title: Egyptian Informatics Journal
  doi: 10.1016/j.eij.2015.06.005
– year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0007
  article-title: Recommendation system -using autoencoders
  publication-title: MDPI
– year: 2007
  ident: 10.1016/j.jjimei.2025.100322_bib0041
  article-title: A survey of E-commerce recommender systems
– volume: 15
  start-page: 516
  year: 2016
  ident: 10.1016/j.jjimei.2025.100322_bib0045
  article-title: Effects of product portfolios and recommendation timing in the efficiency of personalized recommendation
  publication-title: J. Consumer Behav.
  doi: 10.1002/cb.1588
– start-page: 880
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0010
  article-title: Recommendation system for e-commerce using alternating least squares (ALS) on apache spark
– volume: 42
  start-page: 30
  issue: 8
  year: 2009
  ident: 10.1016/j.jjimei.2025.100322_bib0016
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– volume: 49
  start-page: 764
  issue: 4
  year: 2013
  ident: 10.1016/j.jjimei.2025.100322_bib0018
  article-title: Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median
  publication-title: Journal of Experimental Social Psychology
  doi: 10.1016/j.jesp.2013.03.013
– start-page: 127
  year: 2002
  ident: 10.1016/j.jjimei.2025.100322_bib0029
  article-title: Getting to know you: Learning new user preferences in recommender systems
– volume: 2
  issue: 2
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0034
  article-title: MATURE-food: Food recommender system for mandatory feature choices A system for enabling digital health
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2022.100090
– volume: 23
  start-page: 32
  issue: 1
  year: 2010
  ident: 10.1016/j.jjimei.2025.100322_bib0026
  article-title: Dealing with incomplete information in a fuzzy linguistic recommender system to disseminate information in university digital libraries
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2009.07.007
– start-page: 123
  year: 2021
  ident: 10.1016/j.jjimei.2025.100322_bib0031
  article-title: Recommendation system for e-commerce by memory based and model based collaborative filtering
– volume: 2
  issue: 2
  year: 2022
  ident: 10.1016/j.jjimei.2025.100322_bib0039
  article-title: How do context-aware artificial intelligence algorithms used in fitness recommender systems? A literature review and research agenda
  publication-title: International Journal of Information Management Data Insights
  doi: 10.1016/j.jjimei.2022.100139
– volume: 105
  start-page: 657
  year: 2024
  ident: 10.1016/j.jjimei.2025.100322_bib48
  article-title: A Novel Deep Learning Approach Toward Efficient and Accurate Recommendation Using Improved Alternating Least Squares in Social Media
  publication-title: J. Inst. Eng. India Ser. B
  doi: 10.1007/s40031-024-00999-z
– start-page: 2493
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0011
  article-title: Deep multifaceted transformers for multi-objective ranking in large-scale e-commerce recommender systems
– year: 2015
  ident: 10.1016/j.jjimei.2025.100322_bib0025
  article-title: Chapter 5 evaluating the quality of recommender systems
– volume: 10
  start-page: 100303
  issue: 2
  year: 2024
  ident: 10.1016/j.jjimei.2025.100322_bib0006
  article-title: A personalized product recommendation model in e-commerce based on retrieval strategy
  publication-title: Journal of Open Innovation: Technology, Market, and Complexity
  doi: 10.1016/j.joitmc.2024.100303
– year: 1997
  ident: 10.1016/j.jjimei.2025.100322_bib0046
– volume: 188
  year: 2020
  ident: 10.1016/j.jjimei.2025.100322_bib0009
  article-title: A new similarity measure for collaborative filtering-based Recommender Systems
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2019.105058
– year: 2019
  ident: 10.1016/j.jjimei.2025.100322_bib0008
SSID ssj0002811261
Score 2.31393
Snippet •E-commerce demands multi-choice products, challenging businesses.•Recommender systems reshape E-commerce with personalized experiences.•Scalability is a...
The rapid growth in e-commerce and the increasing diversity of customer preferences necessitates the development of an effective recommender system for a...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100322
SubjectTerms Apache spark
Collaborative filtering
E-commerce
Large-scale
Parallel and distributed computing
Recommendation systems
Title Product collaborative filtering based recommendation systems for large-scale E-commerce
URI https://dx.doi.org/10.1016/j.jjimei.2025.100322
https://doaj.org/article/0755893e659e4224888d98140f991da8
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access: DOAJ - Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-0968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811261
  issn: 2667-0968
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-0968
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002811261
  issn: 2667-0968
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsNAEF0hREGDOIW5tAUFFCtsr68tASWigCgFiHSW95JsJQHFISXfzuzhyDSkoXFhrb3WzFjvjT3zBqHrIheU6TQkIU8lSQSkOyyLBdHaSEFSo9diPf2cj0bFZMLGvVFfpibMyQM7w90BpKWAqSpLmUoAbyBjk8zINGlgNrKybb7AenrJVGM_GZnWmKjrlbMFXU1Tz1QNKWGcmtoAGse_sMhK9vcgqQczw3205_khvnfPdYC21PwQBa6JFvsXscU3Xi369gi9j51mK-55dKWwrs1vcMAlbHBKYpP4zmbKj1DCTsC5xUBZ8dQUg5MWnKXwgNhlC6GO0dtw8Pr4RPy0BCIopTGhVSxYxmWR0UolRmddhjQRglachTKqJMu1yGJdFSrUScQhjxAiSpSUOdVFJOgJ2p5_zNUpwlzSOJRpIbgAesKBNVAacXBmnsAOXAWIdnYrhZcSNxMtpmVXM9aUztqlsXbprB0gsr7q00lpbFj_YFyyXmuEsO0JCI_Sh0e5KTwClHcOLT2ncFwBblX_uf3Zf2x_jnbNLV1t2QXaXi6-1CXaEatl3S6ubMzC8eV78AOWke_G
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Product+collaborative+filtering+based+recommendation+systems+for+large-scale+E-commerce&rft.jtitle=International+journal+of+information+management+data+insights&rft.au=Trinh%2C+Trang&rft.au=Nguyen%2C+Van-Ho&rft.au=Nguyen%2C+Nghia&rft.au=Nguyen%2C+Duy-Nghia&rft.date=2025-06-01&rft.pub=Elsevier+Ltd&rft.issn=2667-0968&rft.eissn=2667-0968&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1016%2Fj.jjimei.2025.100322&rft.externalDocID=S2667096825000047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-0968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-0968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-0968&client=summon