A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws

SUMMARY We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal for numerical methods in engineering Ročník 91; číslo 9; s. 950 - 970
Hlavní autori: Moro, D., Nguyen, N. C., Peraire, J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 31.08.2012
Wiley
Predmet:
ISSN:0029-5981, 1097-0207
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract SUMMARY We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf‐sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propose to enforce this explicitly by introducing a constraint into the local Petrov–Galerkin problem. When the resulting nonlinear system is solved using the Newton–Raphson procedure, the solution inside each element can be locally condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This results in a significant reduction in memory storage and computation time for the solution of the matrix system, albeit at the cost of solving the local Petrov–Galerkin problems. However, these local problems are independent of each other and thus perfectly scalable. We present several numerical examples to assess the performance of the proposed method. The results show that the HDPG method outperforms the hybridizable discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed by Peterson, the HDPG method provides optimal convergence of order k + 1. Copyright © 2012 John Wiley & Sons, Ltd.
AbstractList SUMMARY We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf‐sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propose to enforce this explicitly by introducing a constraint into the local Petrov–Galerkin problem. When the resulting nonlinear system is solved using the Newton–Raphson procedure, the solution inside each element can be locally condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This results in a significant reduction in memory storage and computation time for the solution of the matrix system, albeit at the cost of solving the local Petrov–Galerkin problems. However, these local problems are independent of each other and thus perfectly scalable. We present several numerical examples to assess the performance of the proposed method. The results show that the HDPG method outperforms the hybridizable discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed by Peterson, the HDPG method provides optimal convergence of order k + 1. Copyright © 2012 John Wiley & Sons, Ltd.
We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The method combines a hybridization technique with a local Petrov–Galerkin approach in which the test functions are computed to maximize the inf‐sup condition. Since the Petrov–Galerkin approach does not guarantee a conservative solution, we propose to enforce this explicitly by introducing a constraint into the local Petrov–Galerkin problem. When the resulting nonlinear system is solved using the Newton–Raphson procedure, the solution inside each element can be locally condensed to yield a global linear system involving only the degrees of freedom of the numerical trace. This results in a significant reduction in memory storage and computation time for the solution of the matrix system, albeit at the cost of solving the local Petrov–Galerkin problems. However, these local problems are independent of each other and thus perfectly scalable. We present several numerical examples to assess the performance of the proposed method. The results show that the HDPG method outperforms the hybridizable discontinuous Galerkin method for problems involving discontinuities. Moreover, for the test case proposed by Peterson, the HDPG method provides optimal convergence of order k  + 1. Copyright © 2012 John Wiley & Sons, Ltd.
Author Nguyen, N. C.
Moro, D.
Peraire, J.
Author_xml – sequence: 1
  givenname: D.
  surname: Moro
  fullname: Moro, D.
  email: dmoro@mit.edu, D. Moro, 77 Massachusetts Ave. 37-422 Cambridge MA 02139, USA., dmoro@mit.edu
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA, Cambridge, USA
– sequence: 2
  givenname: N. C.
  surname: Nguyen
  fullname: Nguyen, N. C.
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA, Cambridge, USA
– sequence: 3
  givenname: J.
  surname: Peraire
  fullname: Peraire, J.
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, MA, Cambridge, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26204713$$DView record in Pascal Francis
BookMark eNp10E1LAzEQBuAgFWyr4E_Yi-Blaz42m-ZYi7ZCrSKKx5DNB43dZkuyba2_3q1VQdHTDMwzw_B2QMtX3gBwimAPQYgv_ML0MgLhAWgjyFkKMWQt0G5GPKW8j45AJ8YXCBGikLTBdJDMtkVw2r0ZnWgXVeVr51fVKib3pg7VOh3J0oS580lUM7Mwia1C08pShqTB0YS1rF3lk1Ju4jE4tLKM5uSzdsHT9dXjcJxO7kY3w8EkVYQQmGqkqCaMS6goxxRRwizXRJtMZ9oWXCtbMJ1xawuD-5AjhBgmRW5QLilGlnTB2f7uUu5esUF65aJYBreQYStwjmHGEGlcb-9UqGIMxgrl6o936yBdKRAUu9REk5rYpdYsnP9a-Lr5B033dONKs_3Xient1U_vYm1ev70Mc5Ezwqh4no7EeDxk_YdJX1ySdziLjTc
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_4858
crossref_primary_10_1007_s10915_019_00911_8
crossref_primary_10_1016_j_cma_2023_116285
crossref_primary_10_1016_j_jcp_2015_05_048
crossref_primary_10_1007_s10915_019_00967_6
crossref_primary_10_1016_j_camwa_2013_12_015
crossref_primary_10_1007_s42967_021_00128_3
crossref_primary_10_1016_j_cma_2017_08_043
crossref_primary_10_1016_j_jcp_2015_09_024
crossref_primary_10_1007_s10915_019_01081_3
crossref_primary_10_1016_j_cma_2014_04_018
crossref_primary_10_1137_19M1309894
crossref_primary_10_1002_nme_4652
Cites_doi 10.1137/070706616
10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K
10.1137/S0036142901384162
10.1137/0728006
10.1090/S0025-5718-2010-02410-X
10.2514/6.2010-363
10.1137/070685518
10.2514/6.2011-3228
10.1007/BF02165003
10.1002/nme.2646
10.1007/s10915-010-9359-0
10.1016/j.cma.2009.10.007
10.1137/S0036142997316712
10.1016/j.jcp.2011.05.018
10.1023/A:1012873910884
10.1137/080726653
10.1016/j.jcp.2011.01.035
10.1016/j.cma.2010.01.003
10.1006/jcph.2002.7206
10.1016/j.jcp.2009.01.030
10.1002/nme.1893
10.1016/j.jcp.2009.11.010
10.1016/j.jcp.2010.10.032
10.1016/S0045-7825(98)00359-4
10.1016/j.jcp.2006.01.018
10.1016/j.cma.2004.07.024
10.1016/j.jcp.2009.08.030
10.1137/080728810
10.2514/6.2010-362
10.1002/num.20640
10.1006/jcph.1996.5572
10.1006/jcph.2002.7118
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/nme.4300
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 970
ExternalDocumentID 26204713
10_1002_nme_4300
NME4300
ark_67375_WNG_HHC78RL8_B
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
ALUQN
AAYXX
CITATION
O8X
31~
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
GBZZK
IQODW
M6O
PALCI
RIWAO
SAMSI
VH1
VOH
ZY4
~A~
ID FETCH-LOGICAL-c3330-d1c5d379a0c59251537f9d3de4d4dfb9dcfb7d49ffbe2809111723b6e16a521f3
IEDL.DBID DRFUL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307342500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Mon Jul 21 09:15:00 EDT 2025
Sat Nov 29 06:43:46 EST 2025
Tue Nov 18 20:53:05 EST 2025
Sun Sep 21 06:17:22 EDT 2025
Tue Nov 11 03:33:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Performance evaluation
Discontinuity
Costs
Constraint
nonlinear conservation laws
Non linear system
Modeling
Newton Raphson method
Trace
Galerkin-Petrov method
Computation time
Conservation law
Linear system
Petrov-Galerkin
hybridized discontinuous Galerkin
Galerkin method
Non linear effect
Numerical convergence
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3330-d1c5d379a0c59251537f9d3de4d4dfb9dcfb7d49ffbe2809111723b6e16a521f3
Notes ark:/67375/WNG-HHC78RL8-B
ArticleID:NME4300
istex:6EBD8D85C95061C69BA386FEF1BA9FE15F28C063
PageCount 21
ParticipantIDs pascalfrancis_primary_26204713
crossref_citationtrail_10_1002_nme_4300
crossref_primary_10_1002_nme_4300
wiley_primary_10_1002_nme_4300_NME4300
istex_primary_ark_67375_WNG_HHC78RL8_B
PublicationCentury 2000
PublicationDate 31 August 2012
PublicationDateYYYYMMDD 2012-08-31
PublicationDate_xml – month: 08
  year: 2012
  text: 31 August 2012
  day: 31
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Demkowicz L, Gopalakrishnan J. A class of discontinuous Petrov-Galerkin methods. Part II: optimal test functions. Numerical Methods for Partial Differential Equations 2010; 27(1):70-105.
Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis 2009; 47(2):1319-1365.
Cockburn B, Dong B, Guzmán J, Restelli M, Sacco R. A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM Journal on Scientific Computing 2009; 31(5):3827-3846.
Nguyen NC, Peraire J, Cockburn B. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations. Journal of Computational Physics 2011; 230(19):7151-7175.
Nguyen NC, Peraire J, Cockburn B. A comparison of HDG methods for Stokes flow. Journal of Scientific Computing 2010; 45:215-237.
Cockburn B, Shu C. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261.
Cockburn B, Gopalakrishnan J, Nguyen NC, Peraire J, Sayas F. Analysis of HDG methods for Stokes flow. Mathematics of Computation 2011; 80:723-760.
Baumann C, Oden J. A discontinuous HP finite element method for convection-diffusion problems. Computer Methods in Applied Mechanical Engineering 1999; 175(3-4):311-341.
Lomtev I, Karniadakis G. A discontinuous Galerkin method for the Navier-Stokes equations. International Journal for Numerical Methods in Engineering 1999; 29(5):587-603.
Arnold D, Brezzi F, Cockburn B, Marini L. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis 2002; 39(5):1749-1779.
Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279.
Hesthaven J, Warburton T. Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations. Journal of Computational Physics 2002; 181(1):186-221.
Barter G, Darmofal D. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. Formulation. Journal of Computational Physics 2010; 229(5):1810-1827.
Güzey S, Cockburn B, Stolarski HK. The embedded discontinuous Galerkin method: application to linear shell problems. International Journal for Numerical Methods in Engineering 2007; 70(7):757-790.
Nguyen NC, Peraire J, Cockburn B. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics 2011; 230(10):3695-3718.
Peraire J, Persson PO. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM Journal on Scientific Computing 2008; 30(4):1806-1824.
Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463.
Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. Journal of Computational Physics 2009; 228(9):3232-3254.
Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. Journal of Computational Physics 2011; 230(4):1147-1170.
Klaij C, Van der Vegt J, Van der Ven H. Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. Journal of Computational Physics 2006; 217(2):589-611.
Demkowicz L, Gopalakrishnan J. A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation. Computer Methods in Applied Mechanical Engineering 2010; 199(23-24):1558-1572.
Soon SC, Cockburn B, Stolarski HK. A hybridizable discontinuous Galerkin method for linear elasticity. International Journal for Numerical Methods in Engineering 2009; 80(8):1058-1092.
Nguyen NC, Peraire J, Cockburn B. A hybridizable discontinuous Galerkin method for Stokes flow. Computer Methods in Applied Mechanical Engineering 2010; 199(9-12):582-597.
Peterson TE. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM Journal on Numerical Analysis 1991; 28(1):133-140.
Cockburn B, Gopalakrishnan J. The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM Journal on Numerical Analysis 2009; 47:1092-1125.
Babuška I. Error-bounds for finite element method. Numerische Mathematik 1971; 16(4):322-333.
Hartmann R, Houston P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics 2002; 183(2):508-532.
Bottasso C, Micheletti S, Sacco R. A multiscale formulation of the discontinuous Petrov-Galerkin method for advective-diffusive problems. Computer Methods in Applied Mechanical Engineering 2005; 194(25-26):2819-2838.
Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. Journal of Computational Physics 2009; 228(23):8841-8855.
2002; 39
2009; 47
2005; 194
2010; 229
2009; 80
2011
2011; 80
2010
1999; 29
1997; 131
1973
2007; 70
2008; 30
2006; 217
2011; 230
2010; 45
2010; 27
2002; 183
1991; 28
2002; 181
2009; 31
1971; 16
1999; 175
2010; 199
2001; 16
2009; 228
1998; 35
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_27_1
Nguyen NC (e_1_2_8_25_1) 2011
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – reference: Babuška I. Error-bounds for finite element method. Numerische Mathematik 1971; 16(4):322-333.
– reference: Arnold D, Brezzi F, Cockburn B, Marini L. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical Analysis 2002; 39(5):1749-1779.
– reference: Nguyen NC, Peraire J, Cockburn B. High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. Journal of Computational Physics 2011; 230(10):3695-3718.
– reference: Nguyen NC, Peraire J, Cockburn B. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell's equations. Journal of Computational Physics 2011; 230(19):7151-7175.
– reference: Güzey S, Cockburn B, Stolarski HK. The embedded discontinuous Galerkin method: application to linear shell problems. International Journal for Numerical Methods in Engineering 2007; 70(7):757-790.
– reference: Barter G, Darmofal D. Shock capturing with PDE-based artificial viscosity for DGFEM: part I. Formulation. Journal of Computational Physics 2010; 229(5):1810-1827.
– reference: Cockburn B, Shu C. Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing 2001; 16(3):173-261.
– reference: Baumann C, Oden J. A discontinuous HP finite element method for convection-diffusion problems. Computer Methods in Applied Mechanical Engineering 1999; 175(3-4):311-341.
– reference: Hesthaven J, Warburton T. Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell's equations. Journal of Computational Physics 2002; 181(1):186-221.
– reference: Peterson TE. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM Journal on Numerical Analysis 1991; 28(1):133-140.
– reference: Cockburn B, Shu C. The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM Journal on Numerical Analysis 1998; 35(6):2440-2463.
– reference: Cockburn B, Dong B, Guzmán J, Restelli M, Sacco R. A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems. SIAM Journal on Scientific Computing 2009; 31(5):3827-3846.
– reference: Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. Journal of Computational Physics 2011; 230(4):1147-1170.
– reference: Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. Journal of Computational Physics 1997; 131(2):267-279.
– reference: Cockburn B, Gopalakrishnan J, Nguyen NC, Peraire J, Sayas F. Analysis of HDG methods for Stokes flow. Mathematics of Computation 2011; 80:723-760.
– reference: Klaij C, Van der Vegt J, Van der Ven H. Space-time discontinuous Galerkin method for the compressible Navier-Stokes equations. Journal of Computational Physics 2006; 217(2):589-611.
– reference: Peraire J, Persson PO. The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM Journal on Scientific Computing 2008; 30(4):1806-1824.
– reference: Cockburn B, Gopalakrishnan J. The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM Journal on Numerical Analysis 2009; 47:1092-1125.
– reference: Hartmann R, Houston P. Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. Journal of Computational Physics 2002; 183(2):508-532.
– reference: Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations. Journal of Computational Physics 2009; 228(23):8841-8855.
– reference: Lomtev I, Karniadakis G. A discontinuous Galerkin method for the Navier-Stokes equations. International Journal for Numerical Methods in Engineering 1999; 29(5):587-603.
– reference: Nguyen NC, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations. Journal of Computational Physics 2009; 228(9):3232-3254.
– reference: Demkowicz L, Gopalakrishnan J. A class of discontinuous Petrov-Galerkin methods. Part II: optimal test functions. Numerical Methods for Partial Differential Equations 2010; 27(1):70-105.
– reference: Soon SC, Cockburn B, Stolarski HK. A hybridizable discontinuous Galerkin method for linear elasticity. International Journal for Numerical Methods in Engineering 2009; 80(8):1058-1092.
– reference: Nguyen NC, Peraire J, Cockburn B. A hybridizable discontinuous Galerkin method for Stokes flow. Computer Methods in Applied Mechanical Engineering 2010; 199(9-12):582-597.
– reference: Demkowicz L, Gopalakrishnan J. A class of discontinuous Petrov-Galerkin methods. Part I: the transport equation. Computer Methods in Applied Mechanical Engineering 2010; 199(23-24):1558-1572.
– reference: Cockburn B, Gopalakrishnan J, Lazarov R. Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM Journal on Numerical Analysis 2009; 47(2):1319-1365.
– reference: Nguyen NC, Peraire J, Cockburn B. A comparison of HDG methods for Stokes flow. Journal of Scientific Computing 2010; 45:215-237.
– reference: Bottasso C, Micheletti S, Sacco R. A multiscale formulation of the discontinuous Petrov-Galerkin method for advective-diffusive problems. Computer Methods in Applied Mechanical Engineering 2005; 194(25-26):2819-2838.
– year: 2011
– volume: 35
  start-page: 2440
  issue: 6
  year: 1998
  end-page: 2463
  article-title: The local discontinuous Galerkin method for time‐dependent convection–diffusion systems
  publication-title: SIAM Journal on Numerical Analysis
– volume: 16
  start-page: 173
  issue: 3
  year: 2001
  end-page: 261
  article-title: Runge–Kutta discontinuous Galerkin methods for convection‐dominated problems
  publication-title: Journal of Scientific Computing
– volume: 217
  start-page: 589
  issue: 2
  year: 2006
  end-page: 611
  article-title: Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 47
  start-page: 1092
  year: 2009
  end-page: 1125
  article-title: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow
  publication-title: SIAM Journal on Numerical Analysis
– volume: 230
  start-page: 7151
  issue: 19
  year: 2011
  end-page: 7175
  article-title: Hybridizable discontinuous Galerkin methods for the time‐harmonic Maxwell's equations
  publication-title: Journal of Computational Physics
– volume: 199
  start-page: 582
  issue: 9‐12
  year: 2010
  end-page: 597
  article-title: A hybridizable discontinuous Galerkin method for Stokes flow
  publication-title: Computer Methods in Applied Mechanical Engineering
– volume: 30
  start-page: 1806
  issue: 4
  year: 2008
  end-page: 1824
  article-title: The compact discontinuous Galerkin (CDG) method for elliptic problems
  publication-title: SIAM Journal on Scientific Computing
– volume: 230
  start-page: 1147
  issue: 4
  year: 2011
  end-page: 1170
  article-title: An implicit high‐order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 228
  start-page: 3232
  issue: 9
  year: 2009
  end-page: 3254
  article-title: An implicit high‐order hybridizable discontinuous Galerkin method for linear convection–diffusion equations
  publication-title: Journal of Computational Physics
– volume: 194
  start-page: 2819
  issue: 25‐26
  year: 2005
  end-page: 2838
  article-title: A multiscale formulation of the discontinuous Petrov–Galerkin method for advective–diffusive problems
  publication-title: Computer Methods in Applied Mechanical Engineering
– volume: 80
  start-page: 1058
  issue: 8
  year: 2009
  end-page: 1092
  article-title: A hybridizable discontinuous Galerkin method for linear elasticity
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 29
  start-page: 587
  issue: 5
  year: 1999
  end-page: 603
  article-title: A discontinuous Galerkin method for the Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 199
  start-page: 1558
  issue: 23‐24
  year: 2010
  end-page: 1572
  article-title: A class of discontinuous Petrov‐Galerkin methods. Part I: the transport equation
  publication-title: Computer Methods in Applied Mechanical Engineering
– volume: 230
  start-page: 3695
  issue: 10
  year: 2011
  end-page: 3718
  article-title: High‐order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics
  publication-title: Journal of Computational Physics
– year: 1973
– volume: 183
  start-page: 508
  issue: 2
  year: 2002
  end-page: 532
  article-title: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations
  publication-title: Journal of Computational Physics
– volume: 27
  start-page: 70
  issue: 1
  year: 2010
  end-page: 105
  article-title: A class of discontinuous Petrov–Galerkin methods. Part II: optimal test functions
  publication-title: Numerical Methods for Partial Differential Equations
– volume: 45
  start-page: 215
  year: 2010
  end-page: 237
  article-title: A comparison of HDG methods for Stokes flow
  publication-title: Journal of Scientific Computing
– volume: 181
  start-page: 186
  issue: 1
  year: 2002
  end-page: 221
  article-title: Nodal high‐order methods on unstructured grids: I. Time‐domain solution of Maxwell's equations
  publication-title: Journal of Computational Physics
– year: 2010
– volume: 80
  start-page: 723
  year: 2011
  end-page: 760
  article-title: Analysis of HDG methods for Stokes flow
  publication-title: Mathematics of Computation
– volume: 39
  start-page: 1749
  issue: 5
  year: 2002
  end-page: 1779
  article-title: Unified analysis of discontinuous Galerkin methods for elliptic problems
  publication-title: SIAM Journal on Numerical Analysis
– volume: 47
  start-page: 1319
  issue: 2
  year: 2009
  end-page: 1365
  article-title: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems
  publication-title: SIAM Journal on Numerical Analysis
– start-page: 63
  year: 2011
  end-page: 84
– volume: 28
  start-page: 133
  issue: 1
  year: 1991
  end-page: 140
  article-title: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation
  publication-title: SIAM Journal on Numerical Analysis
– volume: 131
  start-page: 267
  issue: 2
  year: 1997
  end-page: 279
  article-title: A high‐order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 16
  start-page: 322
  issue: 4
  year: 1971
  end-page: 333
  article-title: Error‐bounds for finite element method
  publication-title: Numerische Mathematik
– volume: 70
  start-page: 757
  issue: 7
  year: 2007
  end-page: 790
  article-title: The embedded discontinuous Galerkin method: application to linear shell problems
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 228
  start-page: 8841
  issue: 23
  year: 2009
  end-page: 8855
  article-title: An implicit high‐order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations
  publication-title: Journal of Computational Physics
– volume: 229
  start-page: 1810
  issue: 5
  year: 2010
  end-page: 1827
  article-title: Shock capturing with PDE‐based artificial viscosity for DGFEM: part I. Formulation
  publication-title: Journal of Computational Physics
– volume: 175
  start-page: 311
  issue: 3‐4
  year: 1999
  end-page: 341
  article-title: A discontinuous HP finite element method for convection–diffusion problems
  publication-title: Computer Methods in Applied Mechanical Engineering
– volume: 31
  start-page: 3827
  issue: 5
  year: 2009
  end-page: 3846
  article-title: A hybridizable discontinuous Galerkin method for steady‐state convection–diffusion‐reaction problems
  publication-title: SIAM Journal on Scientific Computing
– ident: e_1_2_8_15_1
  doi: 10.1137/070706616
– ident: e_1_2_8_12_1
  doi: 10.1002/(SICI)1097-0363(19990315)29:5<587::AID-FLD805>3.0.CO;2-K
– ident: e_1_2_8_2_1
  doi: 10.1137/S0036142901384162
– ident: e_1_2_8_33_1
  doi: 10.1137/0728006
– ident: e_1_2_8_37_1
– ident: e_1_2_8_21_1
  doi: 10.1090/S0025-5718-2010-02410-X
– ident: e_1_2_8_14_1
– ident: e_1_2_8_27_1
  doi: 10.2514/6.2010-363
– ident: e_1_2_8_13_1
  doi: 10.1137/070685518
– ident: e_1_2_8_30_1
  doi: 10.2514/6.2011-3228
– ident: e_1_2_8_35_1
  doi: 10.1007/BF02165003
– ident: e_1_2_8_19_1
  doi: 10.1002/nme.2646
– ident: e_1_2_8_26_1
  doi: 10.1007/s10915-010-9359-0
– ident: e_1_2_8_22_1
  doi: 10.1016/j.cma.2009.10.007
– ident: e_1_2_8_6_1
  doi: 10.1137/S0036142997316712
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jcp.2011.05.018
– ident: e_1_2_8_7_1
  doi: 10.1023/A:1012873910884
– ident: e_1_2_8_20_1
  doi: 10.1137/080726653
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jcp.2011.01.035
– ident: e_1_2_8_8_1
  doi: 10.1016/j.cma.2010.01.003
– ident: e_1_2_8_9_1
  doi: 10.1006/jcph.2002.7206
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jcp.2009.01.030
– ident: e_1_2_8_29_1
  doi: 10.1002/nme.1893
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jcp.2009.11.010
– start-page: 63
  volume-title: Lecture Notes in Computational Science and Engineering
  year: 2011
  ident: e_1_2_8_25_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jcp.2010.10.032
– ident: e_1_2_8_5_1
  doi: 10.1016/S0045-7825(98)00359-4
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jcp.2006.01.018
– ident: e_1_2_8_36_1
  doi: 10.1016/j.cma.2004.07.024
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jcp.2009.08.030
– ident: e_1_2_8_38_1
– ident: e_1_2_8_31_1
  doi: 10.1137/080728810
– ident: e_1_2_8_24_1
  doi: 10.2514/6.2010-362
– ident: e_1_2_8_32_1
  doi: 10.1002/num.20640
– ident: e_1_2_8_4_1
  doi: 10.1006/jcph.1996.5572
– ident: e_1_2_8_10_1
  doi: 10.1006/jcph.2002.7118
– ident: e_1_2_8_34_1
SSID ssj0011503
Score 2.1510072
Snippet SUMMARY We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws....
We present a hybridized discontinuous Petrov–Galerkin (HDPG) method for the numerical solution of steady and time‐dependent scalar conservation laws. The...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 950
SubjectTerms Classical transport
Exact sciences and technology
hybridized discontinuous Galerkin
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonlinear algebraic and transcendental equations
nonlinear conservation laws
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Petrov-Galerkin
Physics
Sciences and techniques of general use
Statistical physics, thermodynamics, and nonlinear dynamical systems
Transport processes
Title A hybridized discontinuous Petrov-Galerkin scheme for scalar conservation laws
URI https://api.istex.fr/ark:/67375/WNG-HHC78RL8-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.4300
Volume 91
WOSCitedRecordID wos000307342500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEB5VSQ9wKC0UNaVFWwnBycXxrr3eI1BCDhAhBCo3a38FKiRVTCjtqe_QN-yTMGM7FpFaqVJPlqVZ2zuzP9-MZ78B2JJGmVhnjqqX8UjI2EfGUZaFl8YiPkb_La6KTcjRKL-8VKdNViWdhan5IdqAG82Mar2mCa5NufuENPTWfxQ8Rne9m-CwFR3ofjobXBy3_xAQ6vB5gkeq8v6cejZOdudtFzajLun1gZIjdYn6CXVhi0XQWu06g5X_-d6X8KLBmmyvHhyv4Jkfr8JKgztZM6vLVVh-QkqIdyctk2u5Bqd77Oo7neq6_oFt6AzvhGpLzCazklE1rsn975-_jnCXoZg7Q1fZ33qGQJhR5_SUWcrWbuK-7EZ_K1_DxeDw_GAYNVUYIss5jyPXt6njUunYpgrRUMplUI47L5xwwShng5FOqBCMT_KYFk-ZcJP5fqYRGwS-Dp3xZOzfAEt1yLxRPM-MFcIILYxJpPJ9K1XwJu_BztwchW0oyqlSxk1RkysnBSqxICX24EMr-bWm5fiDzHZl0VZAT79QGptMi8-jo2I4PJD52XFe7Pdgc8HkbYOKrB-9eHxSZdm_vqoYnRzS9e2_Cm7AEiKvpA5Ov4PO3XTm38Nze393XU43m5H8CNw0-PM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5VCRJwoFBAhEdZJAQnU8e79nrFqZSmQSRWVbWit9U-RdU2qeKmPE78B_4hv4Qdv9RIICFxsizN2t6ZfXwznv0G4CXXQscqs1i9jEaMxy7SFrMsHNcm4OPgv8VVsQleFPnxsdhfg7ftWZiaH6ILuOHMqNZrnOAYkN66xhp67t4wGgd_vc_CKEp70H9_MDqadD8RAtahbYZHKvJhyz0bJ1tt25XdqI-K_YrZkaoMCvJ1ZYtV1FptO6P1__rgu3CnQZtkux4e92DNzTZgvUGepJnX5QbcvkZLGO6mHZdreR_2t8nnb3iu6-R7aIOneOdYXWI5X5YE63HNr379-LkX9hmMupPgLLtzRwIUJtg7tSAG87WbyC85U1_KB3A02j3cGUdNHYbIUErjyA5NaikXKjapCHgopdwLS61jllmvhTVec8uE99oleYzLJ0-oztwwUwEdePoQerP5zD0CkiqfOS1onmnDmGaKaZ1w4YaGC-90PoDXrT2kaUjKsVbGmazplRMZlChRiQN40Ule1MQcf5B5VZm0E1CLU0xk46n8VOzJ8XiH5weTXL4bwOaKzbsGFV1_8OPDkyrT_vVVspju4vXxvwo-h5vjw-lETj4UH5_ArYDDkjpU_RR6l4ulewY3zNXlSbnYbIb1b7mz_OM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZaxRBEC5CVkQfjEaD6xFbEH0aMzvdMz2NT7k2K26GJRjMW9MnBpPdsJONx5P_wX_oL0nXXGRBQfBpGKieo6pr-qua6q8AXnEtdKwyi93LaMR47CJtscrCcW0CPg7xW1w1m-BFkZ-ciMkKvGv3wtT8EF3CDT2j-l6jg7sL67dusIaeu7eMxiFe77FUZMEre3tHw-Nx9xMhYB3aVnikIh-03LNxstWOXVqNeqjYb1gdqcqgIF93tlhGrdWyM1z7rwe-D_catEm26-nxAFbcdB3WGuRJGr8u1-HuDVrCcHbYcbmWD2GyTT5_x31dpz_CGNzFO8PuEovZoiTYj2t29fvnr4OwzmDWnYRg2Z07EqAwwbdTc2KwXrvJ_JIz9bV8BMfD_Y-7o6jpwxAZSmkc2YFJLeVCxSYVAQ-llHthqXXMMuu1sMZrbpnwXrskj_HzyROqMzfIVEAHnm7A6nQ2dY-BpMpnTguaZ9owppliWidcuIHhwjud9-FNaw9pGpJy7JVxJmt65UQGJUpUYh9edpIXNTHHH2ReVybtBNT8Cxay8VR-Kg7kaLTL86NxLnf6sLlk825ARdcf4vhwpcq0f72VLA738fjkXwVfwO3J3lCO3xcfnsKdAMOSOlP9DFYv5wv3HG6Zq8vTcr7ZzOprSzP8Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybridized+discontinuous+Petrov%E2%80%93Galerkin+scheme+for+scalar+conservation+laws&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Moro%2C+D.&rft.au=Nguyen%2C+N.+C.&rft.au=Peraire%2C+J.&rft.date=2012-08-31&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=91&rft.issue=9&rft.spage=950&rft.epage=970&rft_id=info:doi/10.1002%2Fnme.4300&rft.externalDBID=10.1002%252Fnme.4300&rft.externalDocID=NME4300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon